CN106669840A - 一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法 - Google Patents

一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法 Download PDF

Info

Publication number
CN106669840A
CN106669840A CN201710020467.6A CN201710020467A CN106669840A CN 106669840 A CN106669840 A CN 106669840A CN 201710020467 A CN201710020467 A CN 201710020467A CN 106669840 A CN106669840 A CN 106669840A
Authority
CN
China
Prior art keywords
polyaniline
solution
nano
palladium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710020467.6A
Other languages
English (en)
Other versions
CN106669840B (zh
Inventor
夏友谊
孙林
胡红霞
杨建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201710020467.6A priority Critical patent/CN106669840B/zh
Publication of CN106669840A publication Critical patent/CN106669840A/zh
Application granted granted Critical
Publication of CN106669840B publication Critical patent/CN106669840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法,属于金属纳米材料催化技术领域。所述复合催化剂是聚苯胺与纳米钯粒子的复合物,呈网络状结构,且复合物中纳米钯被聚苯胺薄层所包覆。其具体制备过程是:室温下,将氯钯酸钠和聚苯胺、二丙二醇甲醚的N,N二甲基甲酰胺(DMF)溶液混合,搅拌30min后,缓慢滴加抗坏血酸/DMF混合溶液,30∽50℃下回流反应1h后,过滤获得不溶物,经洗涤、干燥后可得纳米钯/聚苯胺网络状复合催化剂。该催化剂制备过程方便、工艺简单;其在催化甲酸分解制氢中表现出良好的催化活性,可用于制氢反应及其它相关催化领域。

Description

一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法
技术领域
本发明属于金属纳米材料催化技术领域,具体涉及一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法。
背景技术
Pd基纳米复合催化剂可催化甲酸分解制氢、乙醇电氧化、Heck交叉偶联反应等多类化学与电化学反应,因此在化学、化工、材料等领域具有广泛的应用(张海博,刘一凡,朱轩伯,谭捷,丁连俊.藻土负载钯催化剂、制备方法及其应用,CN105772080A)。探索新颖Pd基复合催化剂及其制备方法,一直是纳米Pd催化领域的研究热点。
聚苯胺是一种应用广泛的导电聚合物,其具合成方便、成本低廉、稳定性好等特点。由于其可提供良好的导电环境,因此近年来常被用来作为贵金属纳米Pd催化剂的载体使用,促进Pd催化活性的提升(马先斌,冯媛媛,李扬,韩运石,鹿国萍,杨海芳,孔德生.聚苯胺对钯催化甲酸电氧化反应的促进作用,催化学报,2015,7,943-951;曾朝霞,杨元法,卢茂玲,蒋静.聚苯胺负载钯催化剂的制备及对Heck反应的催化性能,浙江师范大学学报,2006,29,431-434.)。这些研究的方法一般是先制备聚苯胺固体粉末,而后将贵金属纳米Pd粒子锚定在其表面,从而获得负载型复合催化剂。固然,上述复合型催化剂具有制备简单、适合规模化。然而这类负载时,多数情况只是纳米Pd粒子在聚苯胺上的轻度锚定和接触,因此还存在聚苯胺对纳米Pd金属的催化活性促进能力不高、纳米Pd粒子在催化反应中易团聚、致使催化活性稳定性欠佳等缺陷。
发明内容
本发明针对现有技术存在的以上问题,提供了一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法。
本发明提供了一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂,该复合催化剂是聚苯胺与纳米钯粒子的复合物,呈网络状结构,且复合物中纳米钯被聚苯胺薄层所包覆。
本发明同时提供了上述纳米钯@聚苯胺核/壳纳米粒子复合催化剂的制备方法,具体包括如下步骤:
(1)将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、洗涤、烘干后,得盐酸掺杂的聚苯胺固体粉末;所述苯胺单体与盐酸溶液的体积比为1:200。
(2)将步骤(1)制备的盐酸掺杂的聚苯胺固体粉末置于质量分数为2%的氨水溶液,搅拌过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性后干燥,获得处理后的聚苯胺粉末;所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20。
(3)室温下,将步骤(2)处理后的聚苯胺粉末0.5g溶于100ml DMF中,于25~90℃溶解12h,过滤除去不溶物,获得质量分数为0.005~0.02%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;所述二丙二醇甲醚在混合溶液中的质量分数为0.001%。
(4)称取一定量的氯钯酸钠溶于步骤(3)制备的混合溶液,搅拌得到A溶液;所述氯钯酸钠在A溶液中的质量分数为0.025~0.2%。
(5)按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,30~50℃下,反应1h后,过滤获得不溶物,经蒸馏水、乙醇洗涤,干燥后得到纳米钯@聚苯胺核/壳纳米粒子复合催化剂;所述抗坏血酸/DMF溶液质量分数为10~15%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
本发明一方面利用了导电聚苯胺高分子的结构指引作用,促使生成的复合材料具有特殊的网络结构;另一方面,在复合材料的形成过程中,利用聚苯胺大分子和钯的相互作用使其在纳米钯表面形成了薄层包覆,因而能充分发挥聚苯胺对纳米钯(核层)催化活性的促进作用,使复合材料展现优良的催化性能。
与现有技术相比,本发明具有以下技术效果:
1、所述复合催化剂催化性能优良,在64℃下,其催化甲酸分解制氢速率是商业化Pd/C催化剂(Aldrich公司,Pd含量为10%)的1.8-2.5倍。
2、该催化剂制备过程方便、工艺简单,可用于制氢反应及其它相关催化。
附图说明
图1为本发明实施例1制备的一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂透射电镜图片(放大倍数:1万倍);
从图1中可以看出,复合催化剂呈网络状。
图2为本发明实施例1制备的一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂透射电镜图片(放大倍数:10万倍);
图2确认了复合催化剂的网络状结构,可看出其由许多纳米粒子复合而成。
图3为本发明实施例1制备的一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂透射电镜图片(放大倍数:30万倍);
从图3中可以看出,复合物中纳米钯(黑色)被聚苯胺薄层(浅色,约0.5~2.5nm)所包覆,形成了特殊的纳米钯(核)/聚苯胺(壳)结构。
具体实施方式
以下结合具体实施例详述本发明,但本发明不局限于下述实施例。
实施例1
1、将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、蒸馏水洗涤,并于60℃烘干后,得盐酸掺杂的聚苯胺固体粉末;所述苯胺单体与盐酸溶液的体积比为1:200。
2、将盐酸掺杂的聚苯胺固体粉末置于2%的氨水溶液,搅拌30min过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性,于60℃下干燥,获得处理后的聚苯胺粉末;所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20。
3、室温下,将处理后的聚苯胺粉末0.5g溶于100ml N,N二甲基甲酰胺(DMF)中,于25℃溶解12h,过滤除去不溶物,获得质量分数为0.005%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;所述二丙二醇甲醚在混合溶液中的质量分数为0.001%。
4、称取一定量的氯钯酸钠溶于步骤3制备的混合溶液,搅拌30min,得到A溶液。所述氯钯酸钠在A溶液中的质量分数为0.025%。
5、按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,30℃下,反应1h后,过滤获得不溶物,经大量蒸馏水、乙醇洗涤,干燥后得到纳米钯/聚苯胺网络状复合催化剂。所述抗坏血酸/DMF溶液质量分数为10%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
所得纳米钯/聚苯胺网络状复合催化剂在64℃下,其催化甲酸分解制氢速率是商业化Pd/C催化剂(Aldrich公司,Pd含量为10%)的2.5倍(通过气相色谱法测试,下同)。
实施例2
1、将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、蒸馏水洗涤,并于60℃烘干后,得盐酸掺杂的聚苯胺固体粉末;所述苯胺单体与盐酸溶液的体积比为1:200。
2、将盐酸掺杂的聚苯胺固体粉末置于2%的氨水溶液,搅拌30min过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性,于60℃下干燥,获得处理后的聚苯胺粉末;所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20。
3、室温下,将处理后的聚苯胺粉末0.5g溶于100ml N,N二甲基甲酰胺(DMF)中,于90℃溶解12h,过滤除去不溶物,获得质量分数为0.02%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;所述二丙二醇甲醚在混合溶液中的质量分数为0.001%。
4、称取一定量的氯钯酸钠溶于步骤3制备的混合溶液,搅拌30min,得到A溶液。所述氯钯酸钠在A溶液中的质量分数为0.2%。
5、按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,50℃下,反应1h后,过滤获得不溶物,经大量蒸馏水、乙醇洗涤,干燥后得到纳米钯/聚苯胺网络状复合催化剂。所述抗坏血酸/DMF溶液质量分数为15%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
所得纳米钯/聚苯胺网络状复合催化剂在64℃下,其催化甲酸分解制氢速率是商业化Pd/C催化剂(Aldrich公司,Pd含量为10%)的1.8倍。
实施例3
1、将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、蒸馏水洗涤,并于60℃烘干后,得盐酸掺杂的聚苯胺固体粉末;所述苯胺单体与盐酸溶液的体积比为1:200。
2、将盐酸掺杂的聚苯胺固体粉末置于2%的氨水溶液,搅拌30min过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性,于60℃下干燥,获得处理后的聚苯胺粉末;所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20。
3、室温下,将处理后的聚苯胺粉末0.5g溶于100ml N,N二甲基甲酰胺(DMF)中,于50℃溶解12h,过滤除去不溶物,获得质量分数为0.01%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;所述二丙二醇甲醚在混合溶液中的质量分数为0.001%。
4、称取一定量的氯钯酸钠溶于步骤3制备的混合溶液,搅拌30min,得到A溶液。所述氯钯酸钠在A溶液中的质量分数为0.1%。
5、按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,35℃下,反应1h后,过滤获得不溶物,经大量蒸馏水、乙醇洗涤,干燥后得到纳米钯/聚苯胺网络状复合催化剂。所述抗坏血酸/DMF溶液质量分数为10%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
所得纳米钯/聚苯胺网络状复合催化剂在64℃下,其催化甲酸分解制氢速率是商业化Pd/C催化剂(Aldrich公司,Pd含量为10%)的2倍。
实施例4
1、将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、蒸馏水洗涤,并于60℃烘干后,得盐酸掺杂的聚苯胺固体粉末;所述苯胺单体与盐酸溶液的体积比为1:200。
2、将盐酸掺杂的聚苯胺固体粉末置于2%的氨水溶液,搅拌30min过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性,于60℃下干燥,获得处理后的聚苯胺粉末;所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20。
3、室温下,将处理后的聚苯胺粉末0.5g溶于100ml N,N二甲基甲酰胺(DMF)中,于70℃溶解12h,过滤除去不溶物,获得质量分数为0.015%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;所述二丙二醇甲醚在混合溶液中的质量分数为0.001%。
4、称取一定量的氯钯酸钠溶于步骤3制备的混合溶液,搅拌30min,得到A溶液。所述氯钯酸钠在A溶液中的质量分数为0.15%。
5、按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,45℃下,反应1h后,过滤获得不溶物,经大量蒸馏水、乙醇洗涤,干燥后得到纳米钯/聚苯胺网络状复合催化剂。所述抗坏血酸/DMF溶液质量分数为12%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
所得纳米钯/聚苯胺网络状复合催化剂在64℃下,其催化甲酸分解制氢速率是商业化Pd/C催化剂(Aldrich公司,Pd含量为10%)的1.95倍。
实施例5
1、将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、蒸馏水洗涤,并于60℃烘干后,得盐酸掺杂的聚苯胺固体粉末;所述苯胺单体与盐酸溶液的体积比为1:200。
2、将盐酸掺杂的聚苯胺固体粉末置于2%的氨水溶液,搅拌30min过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性,于60℃下干燥,获得处理后的聚苯胺粉末;所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20。
3、室温下,将处理后的聚苯胺粉末0.5g溶于100ml N,N二甲基甲酰胺(DMF)中,于80℃溶解12h,过滤除去不溶物,获得质量分数为0.018%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;所述二丙二醇甲醚在混合溶液中的质量分数为0.001%。
4、称取一定量的氯钯酸钠溶于步骤3制备的混合溶液,搅拌30min,得到A溶液。所述氯钯酸钠在A溶液中的质量分数为0.2%。
5、按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,30℃下,反应1h后,过滤获得不溶物,经大量蒸馏水、乙醇洗涤,干燥后得到纳米钯/聚苯胺网络状复合催化剂。所述抗坏血酸/DMF溶液质量分数为15%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
所得纳米钯/聚苯胺网络状复合催化剂在64℃下,其催化甲酸分解制氢速率是商业化Pd/C催化剂(Aldrich公司,Pd含量为10%)的1.9倍。

Claims (2)

1.一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂,其特征在于,所述复合催化剂是聚苯胺与纳米钯粒子的复合物,呈网络状结构,且复合物中纳米钯被聚苯胺薄层所包覆。
2.如权利要求1所述的纳米钯@聚苯胺核/壳纳米粒子复合催化剂的制备方法,其特征在于包括如下步骤:
(1)将经减压蒸馏后的苯胺单体加入1mol/L的盐酸溶液中,搅拌30min后,加入与苯胺单体相同摩尔数的过硫酸铵固体,室温下持续搅拌5h后,产品经过滤、洗涤、烘干后,得盐酸掺杂的聚苯胺固体粉末;
所述苯胺单体与盐酸溶液的体积比为1:200;
(2)将步骤(1)制备的盐酸掺杂的聚苯胺固体粉末置于质量分数为2%的氨水溶液,搅拌过滤后再置于3mol/L NaOH水溶液,经大量水洗涤至洗涤液呈中性后干燥,获得处理后的聚苯胺粉末;
所述盐酸掺杂的聚苯胺固体粉末与氨水溶液和NaOH水溶液的质量比均为1:20;
(3)室温下,将步骤(2)处理后的聚苯胺粉末0.5g溶于100ml DMF中,于25~90℃溶解12h,过滤除去不溶物,获得质量分数为0.005~0.02%的聚苯胺/DMF溶液,而后加入二丙二醇甲醚,得到混合溶液;
所述二丙二醇甲醚在混合溶液中的质量分数为0.001%;
(4)称取一定量的氯钯酸钠溶于步骤(3)制备的混合溶液,搅拌得到A溶液;
所述氯钯酸钠在A溶液中的质量分数为0.025~0.2%;
(5)按一定体积比,将抗坏血酸/DMF溶液缓慢滴加至A溶液,30~50℃下,反应1h后,过滤获得不溶物,经蒸馏水、乙醇洗涤,干燥后得到纳米钯@聚苯胺核/壳纳米粒子复合催化剂;
所述抗坏血酸/DMF溶液质量分数为10~15%,所述抗坏血酸/DMF溶液和A溶液的体积比为1:15。
CN201710020467.6A 2017-01-12 2017-01-12 一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法 Active CN106669840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710020467.6A CN106669840B (zh) 2017-01-12 2017-01-12 一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710020467.6A CN106669840B (zh) 2017-01-12 2017-01-12 一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106669840A true CN106669840A (zh) 2017-05-17
CN106669840B CN106669840B (zh) 2019-03-05

Family

ID=58849638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710020467.6A Active CN106669840B (zh) 2017-01-12 2017-01-12 一种纳米钯@聚苯胺核/壳纳米粒子复合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106669840B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080025A (zh) * 2017-12-21 2018-05-29 广东医科大学 一种钯基聚苯胺包裹碳纳米管纳米催化剂的制备方法及其在Heck反应的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786304A (zh) * 2005-12-05 2006-06-14 西安交通大学 一种导电高分子聚苯胺纳米纤维的制备方法
CN102030899A (zh) * 2010-11-08 2011-04-27 昆明理工大学 一种高分子负载型催化剂及制备及应用
CN102185140A (zh) * 2011-03-31 2011-09-14 中国科学院过程工程研究所 一种纳米网络导电聚合物包覆磷酸铁锂正极材料的制备方法
CN102935385A (zh) * 2012-11-02 2013-02-20 常州大学 一种高效稳定的可见光聚苯胺基纳米磷酸银复合光催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786304A (zh) * 2005-12-05 2006-06-14 西安交通大学 一种导电高分子聚苯胺纳米纤维的制备方法
CN102030899A (zh) * 2010-11-08 2011-04-27 昆明理工大学 一种高分子负载型催化剂及制备及应用
CN102185140A (zh) * 2011-03-31 2011-09-14 中国科学院过程工程研究所 一种纳米网络导电聚合物包覆磷酸铁锂正极材料的制备方法
CN102935385A (zh) * 2012-11-02 2013-02-20 常州大学 一种高效稳定的可见光聚苯胺基纳米磷酸银复合光催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
K.G.NEOH等: "Thermal degradation of leucoemeraldine, emeraldine base and their complexes", 《THERMOCHIMICA ACTA》 *
WEIRAN ZHENG等: "A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution", 《CHEMCOMM》 *
XIANBIN MA等: "Promoting effect of polyaniline on Pd catalysts for the formic acid", 《CHINESE JOURNAL OF CATALYSIS》 *
YU L等: "Heck Reactions Catalyzed by Ultrasmall and Uniform Pd Nanoparticles Supported on Polyaniline", 《J ORG CHEM. 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080025A (zh) * 2017-12-21 2018-05-29 广东医科大学 一种钯基聚苯胺包裹碳纳米管纳米催化剂的制备方法及其在Heck反应的应用

Also Published As

Publication number Publication date
CN106669840B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
Shen et al. Recent advances on micellar catalysis in water
Lin et al. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells
Baig et al. Magnetic Fe@ g-C3N4: a photoactive catalyst for the hydrogenation of alkenes and alkynes
Wunder et al. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes
Han et al. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki− Miyaura cross-coupling reaction in water
Han et al. Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers
Ohde et al. Hydrogenation of olefins in supercritical CO2 catalyzed by palladium nanoparticles in a water-in-CO2 microemulsion
Lin et al. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells
Guo et al. Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction
Gholinejad et al. Copper nanoparticles supported on agarose as a bioorganic and degradable polymer for multicomponent click synthesis of 1, 2, 3-triazoles under low copper loading in water
Niakan et al. Pd supported on clicked cellulose-modified magnetite-graphene oxide nanocomposite for CC coupling reactions in deep eutectic solvent
Gao et al. Facile synthesis of polyaniline-supported Pd nanoparticles and their catalytic properties toward selective hydrogenation of alkynes and cinnamaldehyde
Bihani et al. Microballs containing Ni (0) Pd (0) nanoparticles for highly selective micellar catalysis in water
Guo et al. Raspberry-like hierarchical Au/Pt nanoparticle assembling hollow spheres with nanochannels: an advanced nanoelectrocatalyst for the oxygen reduction reaction
Prodromidis et al. Preorganized composite material of polyaniline–palladium nanoparticles with high electrocatalytic activity to methanol and ethanol oxidation
CN102198398A (zh) 有机相中合成石墨烯负载贵金属催化剂的制备方法
CN100434477C (zh) 聚邻苯二胺与银的纳米复合粒子及其制备方法
CN102432876B (zh) 一种杂化二氧化钛-聚苯胺纳米粒子及其制备方法
Yang et al. Palladium separation by Pd-catalyzed gel formation via alkyne coupling
CN113797936B (zh) 一种Pt-Cu合金空心纳米球的水相制备方法及应用
Xiao et al. Immobilization of Pd (0) nanoparticles on gemini quaternary ammonium functionalized polyacrylonitrile fibers as highly active catalysts for heck reactions and 4-nitrophenol reduction
CN108355651A (zh) 一种钌纳米金属电催化剂及制备方法
Saha et al. Surface enriched palladium on palladium-copper bimetallic nanoparticles as catalyst for polycyclic triazoles synthesis
Karadaghi et al. Techno-economic analysis of recycled ionic liquid solvent used in a model colloidal platinum nanoparticle synthesis
CN110841715A (zh) MIL-68(In)MOFs空心棒的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant