CN106661063A - N‑取代的吡啶阳离子基膦类、它们的制备方法和用途 - Google Patents

N‑取代的吡啶阳离子基膦类、它们的制备方法和用途 Download PDF

Info

Publication number
CN106661063A
CN106661063A CN201580028648.2A CN201580028648A CN106661063A CN 106661063 A CN106661063 A CN 106661063A CN 201580028648 A CN201580028648 A CN 201580028648A CN 106661063 A CN106661063 A CN 106661063A
Authority
CN
China
Prior art keywords
aryl
heteroaryl
halogen
substituent
nhr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580028648.2A
Other languages
English (en)
Other versions
CN106661063B (zh
Inventor
M·阿尔卡拉索
C·威尔
H·廷纳曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of CN106661063A publication Critical patent/CN106661063A/zh
Application granted granted Critical
Publication of CN106661063B publication Critical patent/CN106661063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/324Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/18Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及可用作金属配体的新的阳离子化合物的合成和应用。具体地,制备了N‑烷基/芳基取代的吡啶阳离子基膦类,并将其用作过渡金属的配体。还描述了如此获得的金属配合物及其在化学合成中作为催化剂的用途。还值得提及的是,本发明的N‑烷基/芳基吡啶阳离子基膦类可以通过短的、可放大的和高度模块化的途径合成。

Description

N-取代的吡啶阳离子基膦类、它们的制备方法和用途
本发明涉及可用作金属配体的新的阳离子化合物的合成和应用。具体地,制备了N-烷基/芳基取代的吡啶阳离子基膦类(pyridiniophosphines),并将其用于过渡金属作为配体。还描述了如此获得的金属配合物以及它们在化学合成中作为催化剂的用途。还值得提及的是,本发明的N-烷基/芳基吡啶阳离子基膦类可以通过短的、可放大的和高度模块化的途径合成。
对于有效的金属催化过程的设计,辅助配体的选择是至关重要的;事实上,其可能与金属本身的选择一样关键。这是由于配体对所得催化剂的反应性和不是更不重要的对催化方法的产物选择性施加的特别控制。因此,对于每个特定转化的最合适的配体的选择必须考虑速率确定步骤的性质和似合理的(不期望的)反应途径。
在其中需要展示不同性质的配体的情况下,磷烷起着突出的作用,因为它们的给体能力和空间需求二者都可以通过修饰连接到磷原子上的取代基来调节。
最近,本发明人已经开发了用于合成甚至更弱的电子给体膦的替代策略,其包括将至多三个阳离子双(二烷基氨基)环丙烯鎓取代基直接连接到中心P原子上。由此引入的正电荷对这些配体显示出的差的σ-给体和优异的π-受体能力做出了解释。然而,二(异丙基氨基)环丙烯鎓取代基的具体使用在某种程度上损害了所得膦类的空间和电子性质的独立微调,这是由于这些阳离子基团施加的合成和几何限制。此外,通常通过使用二-或三-阳离子催化剂获得最佳的催化性能,所述催化剂由于它们的高带电性质表现出在典型有机溶剂中的低溶解度。由于这些原因,使用更适合于立体电子修饰的替代性带正电荷的取代基似乎足以进一步扩展极限π-受体配体的仍然有限的全部能力以及它们在金属催化中的应用。
现在,本发明人已经发现N-(烷基/芳基吡啶鎓)取代的膦类可能是潜在非常有用的强π-受体配体家族。根据本发明人的考虑,这是由于三个有益因素的同时汇合:(a)吡啶鎓部分的低π*轨道应当在磷处与孤对有效地相互作用,使得所得的膦类是非常差的给体配体;(b)除了在磷上选择其它两个R基团之外,在吡啶鎓环上引入取代基对于所得膦的立体电子微调提供了额外的多样性(图1);最后,(c)1-烷基/芳基-2-氯吡啶鎓盐与不同的仲膦类的反应为目标配体提供了短的、有效的和高度模块化的合成路线。
因此,本发明涉及N-烷基/芳基-取代的吡啶阳离子基膦类,其具有通式(I)
其中
R1、R2、R3和R4相同或不同且各自表示氢,卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少一个通过-O-或-NR-结合到吡啶阳离子基环上,或R1,R2,R3和R4的至少两个可以形成直链或支链C4-C12烷基环,其可以包含至少一个不饱和键并且其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少两个可以形成C5-C14-芳族或-杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R5表示直链、环状或支链C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R6和R7各自表示饱和或不饱和、直链、支链或环状C1-C20-烷基或或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;或R6和R7可以形成C4-C20环,其可以包含至少一个不饱和键或芳族或杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R表示C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,且X-是阴离子。
R1,R2,R3,R4,R5,R6和R7及其任选的取代基使得它们特别不负面影响吡啶阳离子基化合物或其金属配合物的反应性。因此,任何反应性取代基如R1,R2,R3,R4,R5,R6和R7中任一个的-OH优选不在连接到吡啶阳离子基环原子的碳原子上。诸如-O-、-NH或NR-的取代基可存在于R1,R2,R3,R4,R5,R6,R7和R的C1-C20-烷基中,并因此也可形成醚键或氨基键。
在具体的实施方案中,本发明涉及通式(I)的N-取代的吡啶阳离子基膦类,其中R1,R3和R4各自表示氢,且R2表示卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基的取代基,或R2通过-O-或-NR-结合到吡啶阳离子基环上;且R5,R6,R7,R和X-具有上述所给出的含义。
在本发明的通式(I)的N-取代的吡啶阳离子基膦中,X-可以是任何不负面影响所催化的反应的阴离子,并且可以是Cl-,Br-,I-,PF6 -,SbF6 -,BF4 -,ClO4 -,F3CCOO-,Tf2N-,(Tf=三氟甲磺酰基),TfO-,对甲苯磺酰基,[B[3,5-(CF3)2C6H3]4]-,[B(C6F5)4]-,[Al(OC(CF3)3)4]-,且优选是选自BF4 -,PF6 -,SbF6 -,[B(C6F5)4]-的阴离子。
本发明还涉及具有通式I的N-取代的吡啶阳离子基膦的制备方法:
其中
R1、R2、R3和R4相同或不同且各自表示氢,卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少一个通过-O-或-NR-结合到吡啶阳离子基环上,或R1,R2,R3和R4的至少两个可以形成直链或支链C4-C12烷基环,其可以包含至少一个不饱和键并且其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少两个可以形成C5-C14-芳族或-杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R5表示直链、环状或支链C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R6和R7各自表示饱和或不饱和、直链、支链或环状C1-C20-烷基或或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;或R6和R7可以形成C4-C20环,其可以包含至少一个不饱和键或芳族或杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R表示C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,和
X-是阴离子,
在该方法中,使通式II的吡啶阳离子基-化合物盐:
其中R1,R2,R3,R4,R5和X-如上所定义且Q表示离去基,
与通式III的膦反应:
HPR7R8 (III)
其中R7和R8如上所定义。
离去基Q可以在宽范围内选择,并且可以是卤素,磺酸酯,对甲苯磺酰基或三氟甲磺酸酯基。
反应条件不是关键的,并且基本上包括在含有通式II的吡啶鎓化合物(1.0当量)和所需的仲膦(2.5-3.0当量)的混悬液的有机溶剂例如THF中用轻微热量加热至回流1-7天。对于空间有要求的底物,可以使用反应混合物的微波加热(150℃)。
如此制备的新的通式(I)的N-取代的吡啶阳离子基膦类可以作为用于金属配合物的配体。它们可以通过使通式(I)的N-取代的吡啶阳离子基膦类与所需的金属前体反应而容易地制备。作为说明性的实例,已经制备了含有B,Cu,Fe,Ni,Co,Ag,Au,Ru,Rh,Pd,Os,Ir和Pt的配合物。
因此,本发明还涉及通式(IV)的金属配合物
其中
R1、R2、R3和R4相同或不同且各自表示氢,卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少一个通过-O-或-NR-结合到吡啶阳离子基环上,或R1,R2,R3和R4的至少两个可以形成直链或支链C4-C12烷基环,其可以包含至少一个不饱和键并且其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少两个可以形成C5-C14-芳族或-杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R5表示直链、环状或支链C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R6和R7各自表示饱和或不饱和、直链、支链或环状C1-C20-烷基或或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;或R6和R7可以形成C4-C20环,其可以包含至少一个不饱和键或芳族或杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R表示C1-C02-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,和
X-是阴离子,
M表示金属原子,优选选自B,Cu,Fe,Ni,Co,Ag,Au,Ru,Rh,Pd,Os,Ir和Pt,
L表示配体,其可以是阳离子,阴离子或中性的,并且如果超过一个L配位到金属上,则其可以全部相同或不同,和
m可以为1,2或3,
n可以为1,2或3,
o可以为1-5的整数,和
取决于金属原子,选择m,n和o以得到金属配合物,所述金属配合物是稳定的并且如下所详细描述的可以作为各种化学反应中的催化剂。
取决于选自B,Cu,Ag,Fe,Ni,Co,Au,Ru,Rh,Pd,Os,Ir或Pt的金属,选择本发明通式(I)的N-取代的吡啶阳离子基膦类的配体L的数目和阴离子X-,以得到稳定不变的金属配合物。
金属配合物上的配体L可以选自卤素,CN,CO,烯烃类,环烯烃类和/或炔烃类,芳烃类,腈类,膦类,胺类,吡啶类或羧酸酯类。
金属配合物优选包括选自B,Cu,Ag,Fe,Ni,Co,Au,Ru,Rh,Pd,Os,Ir或Pt的金属M。
本发明的金属配合物可有利地用作有机合成中的催化剂,特别是用于环异构化和氢化芳基化(hydroarylation),而且还用于不饱和化合物例如炔烃类、丙二烯类和烯烃类的羟基化和氢化氨基化以及直接芳基化反应。
催化方法的反应条件不是关键的且是相当温和的(critical quite soft),并且通常包括在中等温度(20-80℃)下在有机溶剂或其混合物例如二氯乙烷中搅拌催化剂和所需的底物。
在本发明化合物中,一个或多个杂原子可以作为杂取代基存在,其可以具有如上所述的卤素,=O,-OH,-OR,-NH2,-NHR,-NR2的含义。因此,取代基基团还可以含有一至三个卤素原子,例如-CF3基团。
此外,C1-C20-烷基可以是直链或支链的并且具有1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19或20碳原子。烷基可以是C1-C12-烷基或低级烷基如C1-C6-烷基,尤其是甲基,乙基,丙基,异丙基,丁基,异丁基,仲丁基,或叔丁基,乙基戊基,1-,2-或3-甲基丙基,1,1-,1,2-或2,2-二甲基丙基,1-乙基丙基,己基,1-,2,3-或4-甲基戊基,1,1-,1,2-,1,3-,2,2-,2,3-或3,3-二甲基丁基,1-或2-乙基丁基,1-乙基-1-甲基丙基,1-乙基-2-甲基丙基,1,1,2-或1,2,2-三甲基丙基。取代的烷基基团是三氟甲基,五氟乙基和1,1,1-三氟乙基。
环烷基可以优选是C3-C10-烷基,并且可以是环丙基,环丁基,环戊基,环己基或环庚基。
烯基可以是C2-C20烯基。
炔基可以是C2-C20炔基。
卤素是F,Cl,Br或I。
烷氧基优选是C2-C10烷氧基,如甲氧基,乙氧基,丙氧基,异丙氧基,叔丁氧基等。
具有一个或更多个选自N、O和S的杂原子的杂环烷基优选是2,3-二氢-2-,-3-,-4-或-5-呋喃基,2,5-二氢-2-,-3-,-4-或-5-呋喃基,四氢-2-或-3-呋喃基,1,3-二氧戊环-4-基,四氢-2-或-3-噻吩基,2,3-二氢-1-,-2-,-3-,-4-或-5-吡咯基,2,5-二氢-1-,-2-,-3-,-4-或-5-吡咯基,1-,2-或3-吡咯烷基,四氢-1-,-2-或-4-咪唑基,2,3-二氢-1-,-2-,-3-,-4-或-5-吡唑基,四氢-1-,-3-或-4-吡唑基,1,4-二氢-1-,-2-,-3-或-4-吡啶基,1,2,3,4-四氢-1-,-2-,-3-,-4-,-5-或-6-吡啶基,1-,2-,3-或4-哌啶基,2-,3-或4-吗啉基,四氢-2-,-3-或-4-吡喃基,1,4-二噁烷基,1,3-二噁烷-2-,-4-或-5-基,六氢-1-,-3-或-4-哒嗪基,六氢-1-,-2-,-4-或-5-嘧啶基,1-,2-或3-哌嗪基,1,2,3,4-四氢-1-,-2-,-3-,-4-,-5-,-6-,-7-或-8-喹啉基,1,2,3,4-四氢-1-,-2-,-3-,-4-,-5-,-6-,-7-或-8-异喹啉基,2-,3-,5-,6-,7-或8-3,4-二氢-2H-苯并-1,4-噁嗪基。
任选取代的意味着未取代的或对于烃上的每个氢是单取代的,二取代的,三取代的,四取代的,五取代的,或甚至进一步取代的。
芳基可以是苯基,萘基,联苯基,蒽基和其它多稠合的芳族系统。
芳基-(C1-C6)-烷基可以是苄基或取代的苄基。
杂芳基可以具有一个或更多个选自N、O和S的杂原子,并且优选是2-或3-呋喃基,2-或3-噻吩基,1-,2-或3-吡咯基,1-,2-,4-或5-咪唑基,1-,3-,4-或5-吡唑基,2-,4-或5-噁唑基,3-,4-或5-异噁唑基,2-,4-或5-噻唑基,3-,4-或5-异噻唑基,2-,3-或4-吡啶基,2-,4-,5-或6-嘧啶基,还优选是1,2,3-三唑-1-,-4-或-5-基,1,2,4-三唑-1-,-3-或-5-基,1-或5-四唑基,1,2,3-噁二唑-4-或-5-基,1,2,4-噁二唑-3-或-5-基,1,3,4-噻二唑-2-或-5-基,1,2,4-噻二唑-3-或-5-基,1,2,3-噻二唑-4-或-5-基,3-或4-哒嗪基,吡嗪基,1-,2-,3-,4-,5-,6-或7-吲哚基,4-或5-异吲哚基,1-,2-,4-或5-苯并咪唑基,1-,3-,4-,5-,6-或7-苯并吡唑基,2-,4-,5-,6-或7-苯并噁唑基,3-,4-,5-,6-或7-苯并异噁唑基,2-,4-,5-,6-或7-苯并噻唑基,2-,4-,5-,6-或7-苯并异噻唑基,4-,5-,6-或7-苯并-2,1,3-噁二唑基,2-,3-,4-,5-,6-,7-或8-喹啉基,1-,3-,4-,5-,6-,7-或8-异喹啉基,3-,4-,5-,6-,7-或8-噌啉基,2-,4-,5-,6-,7-或8-喹唑啉基,5-或6-喹喔啉基,2-,3-,5-,6-,7-或8-2H-苯并-1,4-噁嗪基,还优选是1,3-苯并间二氧杂环戊烯-5-基,1,4-苯并二噁烷-6-基,2,1,3-苯并噻二唑-4-或-5-基或2,1,3-苯并噁二唑-5-基。
如下面的实验部分中所示的,本发明人通过附图和反应方案中所示的两步序列以良好至优异的收率制备了吡啶鎓-取代的膦12-19,以便将它们的设计概念付诸实践。首先,用三甲基-或三乙基氧鎓四氟硼酸盐对易得的2-氯吡啶1-4进行N-烷基化,以优异的收率得到相应的吡啶鎓盐6、8-11。1-芳基取代的2-氯吡啶鎓盐如7也可以通过替代方法获得,所述替代方法包括吡啶酮5和碘芳烃之间的Ullmann偶合和然后用草酰氯处理。随后,2-氯吡啶鎓盐6-11与一系列仲膦的前所未有的缩合以中等至良好的产率有效地提供了所需的吡啶鎓取代的膦类12-19(参见方案1)。
在这一点上,本发明人试图通过分析反式-[RhCl(CO)L2]配合物20-25(表1和方案2)中的CO拉伸频率来评价新的阳离子膦类的给体贡献。然而,这些数据容易使人产生误解,自然需要谨慎对待。例如,在16中正式引入四个-CF3基团似乎使得到的配体19成为更强的纯给体(表1,条目3和6)。这清楚地表明,在Rh配合物20-25中,CO拉伸频率可能不仅仅由Rh上的配体的电子性质决定,而且还受到CO和其它配体之间的通过空间相互作用(through-space interactions)或由空间因素导致的金属周围的小的几何改变的影响。为此,选择通过循环伏安法测定的膦12-19的氧化电位Ep(ox)作为更可靠的参数以对它们的电子性能进行排序。这些数据符合预期的趋势,并表明两个装饰有两个环己基取代基的配体17和18显示出与(MeO)3P类似的给体能力,而12、15、16和19是甚至比亚磷酸酯更弱的给体(表1)。
表1-在固态[RhCl(CO)L2](BF4)2配合物中的羰基拉伸频率和配体的电化学氧化还原电位。还包括常用的磷配体的值用于比较。
[a]以cm-1为单位的值。[b]以V为单位记录的氧化峰值电位。相对于在CH2Cl2中的二茂铁/二茂铁鎓(E1/2=0.24V),Bu4NPF6(0.1M)校准。[c]在CH3CN中测定。
为了比较的目的,还显示了测量的环丙烯鎓取代的膦类26和27的Ep(ox)。[2a,2c]这些值支持吡啶鎓取代基是比二(烷基氨基)环丙烯鎓环更有效的吸电子基团的概念(比较条目1和7),并且还指出如果适当取代,吡啶阳离子基膦类可以达到双阳离子配体特征性的给体能力(条目3、6和8)。
鉴于这种分析,本发明人测试了吡啶阳离子基膦类在催化中的电位并制备了一组Pt(II)和Au(I)配合物,其中盐12-19用作配体(方案3)。因此,通过向相应配体的溶液中加入K2PtCl4或(Me2S)AuCl,得到化合物28-34,其为空气稳定的固体。此外,获得28和31的晶体,并确定了它们的结构,确认了预期的连接。
为了比较配合物28和29与标准Pt催化剂的催化性能,选择炔丙基芳基醚35至色烯36的氢化芳基化作为第一模型反应,因为所提出的这一转化的机理表明具有增强的阳离子特性的铂催化剂应促进整个过程。事实上,当使用(C6F5)3P用作辅助配体或者如果更高氧化的Pt物质如PtCl4用作催化剂时,观察到中等的加速。图3还显示了在其它条件相同(2mol%Pt,80℃)下前催化剂28和29的转化率与时间的关系图。它们的极其优异的性能,明显超过其它催化混合物,完美地证明了吡啶阳离子基膦类配体增加Pt中心的π-酸性的精妙能力。此外,可以建立由催化剂28和29显示的反应性和对它们相应的游离配体所测量的氧化电位Ep(ox)之间的定性相关性。这额外地支持了使用循环伏安法作为表征P-基配体的电子性质的适当技术。
重要的是,其它合成上有用和机理更复杂的Pt(II)-促进的转化也响应配体12-19的强π-受体性质。具体地,选择烯炔37环化异构化为环丁烯38作为另外的模型,因为已知当在CO气氛(1atm)下进行时该方法被加速。因此,这种反应的研究允许吡啶阳离子基膦类和原型π-受体配体之间的直接比较。图4显示了在其它条件相同(2mol%Pt,室温)下针对一组不同催化系统编制的动力学曲线。可以理解,CO在反应性方面比任何其它所测试的π-受体配体(PhO)3P或(C6F5)3P都更好;然而,催化剂28和29显示出的活性没有竞争者,并且可以在仅几分钟之后就以极好的收率得到环丁烯38。
最后,Au催化的苯乙炔(39)与均三甲苯(40)的氢化芳基化作为吡啶阳离子基膦类超越Pt化学的效用的探针。配体12-19的增加的π-受体性质使得配合物30-34中的Au原子更亲电,结果是,它们对于40的分子间攻击应当非常有效地活化炔烃39。根据这种理解,图4中所示的结果表明,配合物33和34的催化活性显著超过了基于经典π-受体配体的Au催化剂的催化活性。
本发明通过附图和方案进一步说明。这些图和反应方案显示:
图1:吡啶鎓-取代的膦类的结构特征;
图2:化合物12的晶体结构。为清楚起见省略了氢原子和BF4阴离子;以50%的概率设置椭圆体;
图3:配体对Pt-催化的炔丙基芳基醚35氢化芳基化为色烯36的影响;
图4:配体对Pt-催化的烯炔37环异构化为环丁烯38的影响;
图5:配体对Au-催化的炔烃39与芳烃40的氢化芳基化的影响;
方案1:吡啶鎓-取代的膦类的合成;
方案2:Rh配合物的合成和23的晶体结构。为清楚起见省略了氢原子和BF4阴离子;以50%的概率设置椭圆体;
方案3:Pt和Au配合物的合成和28和31的晶体结构。
更详细地,附图和方案示显示出:
图1示出了本发明的吡啶鎓-取代的膦类的结构特征及它们对所得配体的给体性质的影响。
图2描述了固态的12的结构。P1-C1距离()仅比其它两个C-P键(P1-C7,P1-C13,)略长,这可能是由于当与两个苯环对比时N-甲基吡啶鎓其余部分(rest)的增加的空间位阻。此外,磷的金字塔化程度(61.3%)甚至略高于所观察到的PPh3(56.7%)。这些参数表明非键合电子对保留在磷原子上。
图3显示配体对Pt-催化的炔丙基芳基醚35氢化芳基化为色烯36的影响。
试剂和反应条件:
a)33(0.05M),Pt前催化剂2mol%,AgSbF6 2mol%,(CH2)2Cl2,80℃。通过气相色谱确定转化率。
图4显示配体对Pt-催化的烯炔37环异构化为环丁烯38的影响。
试剂和反应条件:
a)37(0.05M),Pt前催化剂2mol%,AgSbF6 2mol%,(CH2)2Cl2,室温。通过气相色谱确定转化率。
图5显示配体对Au-催化的炔烃39与芳烃40的氢化芳基化的影响。
试剂和反应条件:
a)39(0.05M),40(4当量;0.2M),Au前催化剂5mol%,AgX 5mol%,(CH2)2Cl2,60℃。通过气相色谱确定转化率。
方案1示出了吡啶鎓-取代的膦类的合成。
试剂和条件(收率):
a)MeOBF4或EtOBF4,CH2Cl2,室温;6(91%);8(99%);9(99%);10(98%);11(89%);
b)5(1.2当量),碘苯(1当量),CuBr(10mol%),Cs2CO3(2.1当量),DMSO,60℃,(95%);
c)草酰氯(3当量),Cl(CH2)2Cl,然后NaBF4(4当量),(71%);
d)二芳基/烷基膦(2当量),THF,65℃;12(70%),1-3天;13(80%);14(71%);15(43%);16(60%);17(77%);18(89%);19(30%)。
方案2示出了Rh配合物的合成和23的晶体结构。为清楚起见省略了氢原子和BF4阴离子;以50%的概率设置椭圆体。
试剂和条件(收率):
a)[RhCl(CO)2]2(0.25当量),CH2Cl2,室温;20(99%);21(77%);22(57%);23(78%);24(74%)。
方案3示出了Pt和Au配合物的合成和28和31的晶体结构。为清楚起见省略了氢原子、溶剂分子和BF4阴离子;以50%的概率设置椭圆体。
试剂和条件(收率):
a)K2PtCl4(1.0当量),CH3CN,室温;28(80%);29(40%);
b)(Me2S)AuCl(1.0当量),CH2Cl2,室温;30(97%);31(69%);32(98%);33(98%);34(38%)。
本发明在下面的实验部分中进一步说明。
一般方法
所有反应在氩气下在火焰干燥的玻璃器皿中进行。所有溶剂通过在所示干燥剂上蒸馏来纯化并在氩气下转移。CH2Cl2(CaH2),己烷,甲苯(Na/K)。快速色谱法:Merck硅胶60(230-400目)。IR:Nicolet FT-7199光谱仪,波数以cm-1为单位。MS(EI):Finnigan MAT 8200(70eV),ESI-MS:Finnigan MAT 95,精确质量测定:Bruker APEX III FT-MS(7T磁铁)。NMR:在所示溶剂中在Bruker DPX 300或AV 400光谱仪上记录光谱;1H和13C化学位移(δ)以ppm为单位相对于TMS给出,耦合常数(J)以Hz为单位。溶剂信号用作参考,且化学位移转化为TMS标度。除非另有说明,所有商购化合物(Acros,Fluka,Lancaster,Alfa Aesar,Aldrich)以原样使用。根据文献中所述的方法制备化合物7、35和37。
用于2-氯吡啶类的烷基化的一般方法
将相应的2-氯吡啶(1当量)在DCM中的溶液(0.05M)加入到固体Me3OBF4或Et3OBF4(1当量)中,并将混悬液搅拌过夜。然后,过滤掉溶剂,并将剩余的白色固体用二氯甲烷洗涤两次并在真空中干燥。
化合物6:按照一般方法,由2-氯吡啶(2.0g,17.6mmol)和Me3OBF4(2.6g,17.6mmol)制备。用DCM(2×20ml)洗涤后,得到6,为白色固体(3.47g,91%)。
1H NMR(300MHz,CD3CN)δ=8.75(d,J=6.2Hz,1H),8.47(td,J=8.2,1.5Hz,1H),8.12(d,J=8.3Hz,1H),7.94(t,3J=6.8Hz,1H),4.30(s,3H);13C NMR(75MHz,CD3CN)δ=148.98,148.96,148.38,131.00,127.40,48.62;IR(纯的)735,778,805,1024,1123,1177,1274,1286,1314,1446,1499,1574,1623,3059,3094,3115,3138cm-1。HRMS,对于C12H14BCl2F4N2:计算值:343.056684;实测值:343.056646。
化合物8:按照一般方法,由2-氯-5-氟吡啶(1.0g,7.6mmol)和Me3OBF4(1.12g,7.6mmol)制备。用DCM(2×20ml)洗涤后,得到8,为白色固体(1.75g,99%)。
1H NMR(300MHz,CD3CN)δ=8.88(t,J=3.1Hz,1H),8.36(ddd,J=9.4,6.7,2.9Hz,1H),8.16(dd,J=9.3,4.9Hz,1H),4.31(s,3H);13C NMR(75MHz,CD3CN)δ=159.92(d,JC-F=255.1Hz),145.62,138.70(d,JC-F=40.0Hz),136.23(d,JC-F=19.8Hz),132.21(d,JC-F=7.9Hz),49.46;19F NMR(282MHz,CD3CN)δ=-120.22,-151.77,-151.82;IR(纯的)698,743,767,854,901,1022,1126,1165,1282,1392,1439,1509,1593,1641,3084,3104cm-1;HRMS,对于C12H12N2BCl2F6:计算值:379.036928;实测值:379.037035。
化合物9:按照一般方法,由2-氯-5-(三氟甲基)吡啶(400mg,2.2mmol)和Me3OBF4(325mg,2.2mmol)制备。用DCM(2×2ml)洗涤后,得到9,为白色固体(620mg,99%)。
1H NMR(300MHz,CD3CN)δ=9.23(s,1H),8.75(dd,J=8.7,2.0Hz,1H),8.34(d,J=8.7Hz,1H),4.39(s,3H);13C NMR(75MHz,CD3CN)δ=153.30,147.41(m),144.96(q,JC-F=3.0Hz),132.13,129.37(q,JC-F=37.0Hz),122.32(q,JC-F=272.7Hz),49.45;19FNMR(282MHz,CD3CN)δ=-63.45,-151.99,-152.04;IR(纯的) 690,722,804,861,888,916,944,998,1025,1125,1192,1268,1331,1435,1479,1590,1639,2296,2342,2383,3055cm-1;HRMS,对于C7H6NClF3:计算值:196.013540;实测值:196.013563。
化合物11:按照一般方法,由在DCM(20ml)中的2-氯-5-甲氧基吡啶(965mg,6.72mmol)和Me3OBF4(994mg,6.72mmol)制备。用DCM(2×20ml)洗涤后,得到11,为白色固体(1.47g,89%)。
1H NMR(300MHz,CD3CN)δ=8.47(d,J=2.7Hz,1H),8.10-7.93(m,2H),4.27(s,3H),4.00(s,3H);13C NMR(75MHz,CD3CN)δ=158.33,140.00,136.02,134.07,130.94,58.76,48.98;19F NMR(282MHz,CD3CN)δ=-151.67,-151.72;IR(纯的)739,847,875,936,1013,1037,1099,1159,1177,1197,1271,1308,1391,1425,1445,1469,1513,1590,1622,3101,3156cm-1;HRMS,对于C14H18N2BCl2F4O2:计算值:403.077864;实测值:403.078070。
化合物10:按照一般方法,由在DCM(20ml)中的2-氯-5-(三氟甲基)吡啶(1g,5.5mmol)和Et3OBF4(1.05g,5.5mmol)制备,通过过滤和用DCM(2×10ml)洗涤纯化,得到10,为白色固体(1.6g,5.4mmol,99%)。
1H NMR(300MHz,CD3CN)δ=9.24(d,J=0.7Hz,1H),8.74(dd,J=8.7,2.1Hz,1H),8.34(d,J=8.7Hz,1H),4.82(q,J=7.3Hz,2H),1.62(t,J=7.3Hz,3H);13C NMR(75MHz,CD3CN)=152.27,146.25,144.89(q,JC-F=3.0Hz),132.79,129.92(q,JC-F=36.9Hz),122.21(q,JC-F=273.7Hz);19F NMR(282MHz,CD3CN)δ=-63.46,-151.88,-151.94;IR(纯的)740,767,809,858,939,1023,1056,1095,1110,1146,1183,1193,1233,1299,1328,1395,1413,1453,1473,1509,1586,1639,3089cm-1;HRMS,对于C8H8NClF3:计算值:210.029185;实测值:210.028857。
用于制备吡啶阳离子基膦类的一般方法
向相应的1-烷基/芳基-2-氯吡啶鎓四氟硼酸盐(1当量)在THF(2ml)中的溶液中加入所需的仲膦(2.5-3.0当量),并将所得的混悬液加热1-7天。冷却至室温后,蒸发溶剂,并将粗反应混合物用正戊烷(2×2ml)洗涤,溶于DCM并用饱和NaBF4水溶液洗涤。有机相用NaSO4干燥并蒸发溶剂。如果需要,所得固体可以通过用THF(1-2ml)另外洗涤来进一步纯化。
化合物12:通过在65℃下加热6(400mg,1.8mmol)和二苯基膦(1.1ml,5.6mmol)的THF混悬液3天而制备。白色固体(477mg,70%)。
1H NMR(300MHz,CDCl3)δ=9.04(d,J=5.7Hz,1H),8.25(td,J=7.9,0.9Hz,1H),8.03-7.95(m,1H),7.57-7.43(m,6H),7.39-7.27(m,5H),4.30(d,J=1.1Hz,3H);13C NMR(75MHz,CDCl3)δ=161.02(d,JC-P=33.4Hz),149.54,144.04,134.70(d,JC-P=21.7Hz),132.63,131.60,130.20(d,JC-P=8.4Hz),129.03(d,J=6.7Hz),127.96,47.64(d,JC-P=21.0Hz);31P NMR(121MHz,CDCl3)δ=-8.61;IR(纯的)724,748,798,954,1000,1038,1051,1161,1181,1265,1310,1436,1492,1571,1610,3055,3103,3134cm-1;HRMS,对于C18H17NP:计算值:278.109315;实测值:278.109239。
化合物13:通过在65℃下加热6(500mg,2.3mmol)和二环己基膦(0.75ml,5.8mmol)的THF混悬液3天而制备。白色固体(699mg,80%)。
1H NMR(400MHz,CDCl3)δ=9.11(d,J=5.2Hz,1H),8.48(t,J=7.8Hz,1H),8.05(dd,J=14.3,7.5Hz,2H),4.59(s,3H),2.11(t,J=11.8Hz,2H),1.91(d,J=12.0Hz,2H),1.81(d,J=12.8Hz,2H),1.69(t,J=11.9Hz,4H),1.51(d,J=12.5Hz,2H),1.41-1.01(m,10H);13C NMR(101MHz,CDCl3)δ=160.33(d,JC-P=42.5Hz),149.73,143.58,133.44(d,JC-P=3.2Hz),128.24,48.82(d,JC-P=26.1Hz),34.36(d,JC-P=15.1Hz),29.95(d,JC-P=15.9Hz),29.44(d,JC-P=8.6Hz),26.78(d,JC-P=12.5Hz),26.65(d,JC-P=8.8Hz),25.91;31PNMR(162MHz,CDCl3)δ=-3.52;IR(纯的)779,851,915,1053,1179,1262,1448,1497,1571,1610,2851,2925cm-1;HRMS,对于C18H29NP:计算值:290.203217;实测值:290.203415。
化合物14:通过在微波炉中在130℃下加热7(650mg,2.3mmol)和二苯基膦(1.2ml,6.9mmol)的THF混悬液12小时而制备。白色固体(715mg,71%)。
1H NMR(300MHz,CDCl3)δ=8.76(d,J=5.1Hz,1H),8.46(td,J=8.0Hz,1.3,1H),8.06(t,J=6.9Hz,1H),7.66-7.50(m,4H),7.50-7.37(m,6H),7.32-7.21(m,6H);13C NMR(75MHz,CD3CN)δ=149.53,146.74,135.83(d,JC-P=22.5Hz),134.40,132.53,132.11,131.40(d,JC-P=8.2Hz),130.58(d,JC-P=7.6Hz),128.25,127.40(d,JC-P=3.8Hz);19F NMR(282MHz,CDCl3)δ=-151.82,-151.87;31P NMR(121MHz,CDCN)δ=-7.74;IR(纯的)699,734,748,757,786,841,863,901,931,979,997,1011,1035,1047,1079,1163,1178,1254,1288,1315,1438,1455,1475,1492,1563,1589,1607,3070,3117cm-1;HRMS,对于C23H19NP:计算值:340.124626;实测值:360.124961。
化合物15:通过在65℃下加热8(500mg,2.14mmol)和二苯基膦(0.92ml,5.35mmol)的THF混悬液3天而制备。白色固体(351mg,43%)。
1H NMR(300MHz,CD3CN)δ=8.94-8.82(m,1H),8.18-8.07(m,1H),7.58(m,6H),7.42(m,5H),4.23(d,J=1.4Hz,3H);13CNMR(75MHz,CDCN)δ=160.91(d,JC-F=255.7Hz),139.81(d,JC-P=38.2Hz),135.66(d,JC-P=0.9Hz),135.62(d,JC-P=21.9Hz),132.84(d,JC-P=17.4Hz),132.43(d,JC-P=0.6Hz),130.92(d,JC-P=8.3Hz),130.28(d,JC-P=6.7Hz),49.12(d,JC-P=21.5Hz);31P NMR(121MHz,CDCl3)δ=-9.34;IR(纯的)715,738,753,760,858,895,931,958,998,1024,1143,1165,1181,1273,1314,1384,1436,1479,1500,1583,1623cm-1;HRMS,对于C18H16NFP:计算值:296.099965;实测值:296.099889。
化合物16:通过在65℃下加热9(500mg,1.8mmol)和二苯基膦(0.62ml,4.4mmol)的THF混悬液1天而制备。白色固体(451mg,60%)。
1H NMR(300MHz,CD3CN)δ=9.18(s,1H),8.51(dd,J=8.4,1.3Hz,1H),7.72-7.50(m,7H),7.50-7.38(m,4H),4.25(d,J=1.0Hz,3H);13C NMR(75MHz,CD3CN)δ=167.44(d,JC-P=35.6Hz),147.74,141.70(q,JC-F=3.0Hz),135.92(d,JC-P=22.0Hz),134.82(d,JC-P=1.2Hz),132.72,131.05(d,JC-P=8.6Hz),129.85(q,JC-F=36.1),129.43(d,JC-P=6.0Hz),122.51(q,JC-F=272.6Hz),49.24(d,JC-P=20.7);19F NMR(282MHz,CD3CN)δ=-63.67,-151.79,-151.84;31P NMR(121MHz,CD3CN)δ=-6.00;IR(纯的)702,727,743,752,862,892,913,996,1048,1090,1115,1148,1174,1267,1342,1435,1504,1579,1639,3103cm-1;HRMS,对于C19H16NF3P:计算值:346.09727;实测值:346.097027。
化合物17:通过在65℃下在12小时期间加热8(500mg,2.14mmol)和二环己基膦(1.08ml,5.35mmol)的THF混悬液而制备。白色固体(648mg,77%)。
1H NMR(300MHz,CDCl3)δ=9.06(d,J=2.3Hz,1H),8.34-8.21(m,1H),8.21-8.08(m,1H),4.64(s,3H),2.12(t,J=11.5Hz,2H),1.98-1.61(m,8H),1.52(d,J=11.7Hz,2H),1.44-1.02(m,10H);13C NMR(75MHz,CD3CN)δ=160.88(d,JC-F=255.9Hz),158.18(dd,JC-P=43.7,JC-F=4.2Hz),140.06(d,JC-P=36.1Hz),136.29(dd,JC-P=7.4Hz,JC-F=3.4Hz),131.93(d,JC-P=17.2Hz),50.13(d,JC-P=26.4Hz),34.72(d,JC-P=14.3Hz),30.48(d,JC-P=16.2Hz),30.01(d,JC-P=8.7Hz),27.42(d,JC-P=10.9Hz),27.28(d,JC-P=10.9Hz),26.61;19F NMR(282MHz,CDCl3)δ=-118.61,-151.62,-151.67;31P NMR(121MHz,CD3CN)δ=-4.49;IR(纯的)738,765,817,851,889,920,958,1004,1025,1040,1057,1112,1170,1182,1202,1269,1279,1433,1450,1504,1582,1626,2852,2925,3077cm-1;HRMS,对于C18H17NP:计算值:308.193442;实测值:308.193793。
化合物18:通过在65℃下在12小时期间加热11(500mg,2.05mmol)和二环己基膦(1.25ml,6.16mmol)的THF混悬液而制备。白色固体(744mg,89%)。
1H NMR(300MHz,CDCl3)δ=8.48(d,J=2.1Hz,1H),8.04(d,J=9.0Hz,1H),7.94(dd,J=9.0,2.6Hz,1H),4.43(s,3H),4.01(s,3H),2.21-2.08(m,2H),1.85-0.96(m,20H);13CNMR(75MHz,CD3CN)δ=159.15,138.13,135.35,135.31,58.35,49.85(d,JC-P=27.5Hz),34.82(d,JC-P=13.5Hz),30.76(d,JC-P=16.9Hz),29.97(d,JC-P=8.1Hz),27.48(d,J=13.2Hz),27.34(d,JC-P=8.8Hz),26.73(d,JC-P=1.1Hz);19F NMR(282MHz,CDCl3)δ=-151.83,-151.88;31P NMR(121MHz,CDCN)δ=-7.27;IR(纯的)741,816,842,884,916,1000,1015,1035,1046,1163,1187,1196,1286,1317,1434,1447,1507,1574,1615,2845,2920cm-1;HRMS,对于C19H31NOP:计算值:320.213778;实测值:320.213335。
化合物19:在-78℃下向KH(8.75mg,0.22mmol)在THF(2ml)中的混悬液中加入双(3,5-双(三氟甲基)苯基)膦(100mg,0.22mmol),并将得到的深红色混悬液搅拌1小时。然后,将混悬液在相同温度下转移至10(64.9mg,0.22mmol)在THF(2ml)中的预冷混悬液(-78℃)中,并将混合物升温至室温并搅拌3天。蒸发溶剂并用DCM(2×2ml)洗涤后,得到化合物19,为灰白色固体(48mg,30%)。
1H NMR(300MHz,CDCl3)δ=9.32(s,1H),8.62(d,J=7.7Hz,1H),8.25(s,2H),8.02(d,J=7.2Hz,4H),7.92(d,J=7.9Hz,1H),4.88(m,2H),1.56(t,J=7.3Hz,3H);13C NMR(75MHz,CD3CN)δ=161.99(d,JC-P=33.4Hz),147.95-146.40(m),143.99-142.39(m),137.44,136.89-136.01(m),133.59(qd,JC-F=33.9Hz,JC-P=7.7Hz),133.19(d,JC-P=13.5Hz),132.18(d,JC-P=36.9Hz),124.10(q,JC-F=272.4Hz),121.46(q,JC-F=273.0Hz),58.60(d,JC-P=23.4Hz),16.29(d,JC-P=3.5Hz);19F NMR(282MHz,CDCl3)δ=-63.52,-63,68,-151.80,-151.85;31P NMR(121MHz,CDCN)δ=-10.52;IR(纯的)700,741,767,846,862,900,913,1051,1095,1120,1279,1331,1356,1405,1459,1502,1588,1634,2001,3090cm-1;HRMS,对于C24H14F15NP:计算值:632.062949;实测值:632.061889。
用于制备吡啶阳离子基膦铑配合物的一般方法
将[Rh(CO)2Cl]2(0.25当量)加入到相应的吡啶阳离子基膦配体(1当量)在DCM(2ml)中的溶液中。将所得混悬液在室温下搅拌1小时,并在蒸发溶剂后,将固体用正戊烷(2×2ml)洗涤并在真空中干燥。这些化合物可以从乙腈/乙醚混合物中结晶。
化合物20:按照一般方法,由12(100mg,0.274mmol)和[Rh(CO)Cl2]2(26.6mg,0.063mmol)制备。黄色固体(121mg,99%)。
1H NMR(300MHz,CDCN)δ=8.84(d,J=5.9Hz,2H),8.38(t,J=7.7Hz,2H),8.11-8.02(m,2H),7.84(s,8H),7.79-7.72(m,4H),7.72-7.58(m,10H),4.50(s,6H);13C NMR(75MHz,CDCN)δ=186.07(dt,JC-Rh=31.9Hz,JC-P=15.6Hz),153.59(t,JC-P=18.1Hz),151.14,145.60,136.20,134.99,134.20,131.14,130.07,126.58(t,JC-P=24.3Hz),50.82;31P NMR(121MHz,CDCN)δ=37.82(d,JP-Rh=130.7Hz);IR(纯的)707,752,773,799,900,931,998,1056,1165,1182,1274,1314,1411,1438,1481,1499,1576,1610,1996,3093,3138cm-1;HRMS,对于C37H34BClF4N2OP2Rh:计算值:809.092884;实测值:809.093025。
化合物21:按照一般方法,由15(75mg,0.2mmol)和[Rh(CO)2Cl]2(19.3mg,0.05mmol)制备。黄色固体(121mg,69%)。
1H NMR(300MHz,CDCN)δ=8.98(s,2H),8.27-8.16(m,2H),7.84(s,8H),7.76(t,J=7.4Hz,4H),7.68(t,J=7.6Hz,10H),4.54(s,6H);13C NMR(75MHz,CDCN)δ=161.59(d,JC-F=259.3Hz),150.65,141.69(d,JC-F=38.2Hz),136.72(d,JC-P=8.5Hz),136.17,134.35,132.75(d,JC-F=17.3Hz),131.22,126.48,51.51(d,JC-P=1.6Hz);31P NMR(121MHz,CDCN)δ=39.02(d,JRh-P=130.7Hz);IR(纯的)738,754,850,962,998,1054,1169,1282,1437,1482,1505,1590,1624,1994,3087cm-1;HRMS,对于C37H32BClF6N2OP2Rh:计算值:845.074040;实测值:845.073864。
化合物22:按照一般方法,由16(100mg,0.231mmol)和[Rh(CO)2Cl]2(22.5mg,0.058mmol)制备。黄色固体(68mg,57%)。
1H NMR(300MHz,CDCN)δ=9.28(s,2H),8.65(d,J=8.2Hz,2H),7.95-7.63(m,22H),4.56(s,6H);13C NMR(75MHz,CDCN)δ=167.45(d,JC-P=36.8Hz),147.80,141.73,136.46(d,JC-P=22.1Hz),134.84,132.76,131.08(d,JC-P=8.5Hz),129.81(d,JC-P=36.7Hz),129.44(d,JC-P=5.4Hz),122.54(q,JC-F=272.8Hz),47.26(d,JC-P=20.6Hz);31PNMR(121MHz,CDCN)δ=40.44(d,JRh-P=131.0Hz);IR(纯的)705,752,858,890,932,998,1052,1090,1118,1159,1177,1243,1275,1334,1392,1438,1482,1509,1586,1634,1741,2004,3092cm-1;HRMS,对于C39H32BClF10N2OP2Rh:计算值:945.067689;实测值:945.067581。
化合物23:按照一般方法,由14(100mg,0.253mmol)和[Rh(CO)2Cl]2(24.6mg,0.063mmol)制备。黄色固体(94mg,78%)。
1H NMR(300MHz,CDCl3)δ=8.62(d,J=5.6Hz,2H),8.49(t,J=7.9Hz,2H),8.17-8.07(m,4H),7.78(dd,J=12.7,6.3Hz,8H),7.54(ddd,J=22.9,14.9,7.8Hz,16H),7.33(t,J=7.5Hz,2H),6.91(t,J=8.0Hz,4H);13C NMR(101MHz,CDCN)δ=154.96,151.72,146.24,142.28,136.52(t,JC-P=7.2Hz),136.12-135.26(m),133.73,132.75,130.74(t,JC-P=5.5Hz),130.48,129.97,128.15,127.91,127.71;31P NMR(121MHz,CDCl3)δ=42.09(d,JRh-P=134.4Hz);IR(纯的)749,925,998,1034,1048,1182,1254,1286,1318,1437,1457,1479,1587,1603,1981,2350,3060cm-1;HRMS,对于C47H38BClF4N2OP2Rh:计算值:933.124354;实测值:933.123835。
化合物24:按照一般方法,由18(75mg,0.184mmol)和[Rh(CO)2Cl]2(17.9mg,0.046mmol)制备。黄色固体(67mg,74%)。
1H NMR(300MHz,DMSO)δ=9.11(s,2H),8.38(d,J=9.1Hz,2H),8.20(dd,J=9.0,2.3Hz,2H),4.90(s,6H),4.08(s,6H),2.17(s,4H),2.02-0.94(m,40H);13C NMR(101MHz,DMSO)δ=185.13(dt,JC-Rh=33.4Hz,JC-P=16.4Hz),158.14,140.35,138.33(t,JC-P=12.9Hz),134.89,127.44,57.59,51.11(t,JC-P=4.2Hz),36.04,33.28,29.39,28.39,27.61,26.59,25.77,25.49;31P NMR(121MHz,DMSO)δ=40.26(d,JRh-P=123.0Hz);IR(纯的)739,765,815,854,888,918,940,1018,1050,1098,1172,1180,1207,1269,1317,1415,1450,1475,1515,1614,1974,2850,2928cm-1;HRMS,对于C39H62BClF4N2O3P2Rh:计算值:893.301860;实测值:893.302947。
用于制备膦铂配合物的一般方法
将细粉碎的K2PtCl4(1当量)加入到吡啶阳离子基膦盐(1当量)在MeCN(2ml)中的溶液中,并将所得混悬液在室温下搅拌过夜。蒸发溶剂后,将固体用正戊烷(2×2ml)洗涤,用DMSO/DCM结晶并在真空中干燥,得到所需的铂配合物。
化合物28:按照一般方法,由12(100mg,0.274mmol)和K2PtCl4(114mg,0.274mmol)制备。白色固体(127mg,80%)。
1H NMR(300MHz,DMSO)δ=9.18(d,J=5.7Hz,1H),8.53(t,J=7.9Hz,1H),8.20(t,J=6.9Hz,1H),8.02(dd,J=12.3Hz,J=7.2Hz,4H),7.79-7.57(m,6H),7.39(t,J=7.0Hz,1H),4.35(s,3H);13C NMR(75MHz,CD3CN)δ=150.13,144.54(d,JC-P=5.7Hz),135.32(d,JC-P=11.6Hz),132.81(d,JC-P=7.5Hz),132.63(d,JC-P=2.5Hz),129.28(d,JC-P=11.6Hz),128.78,124.56,123.71,48.32(d,JC-P=7.3Hz);31P NMR(121MHz,DMSO)δ=8.49(JC-Pt=1954Hz);IR(纯的)822,1003,1023,1051,1659,2126,2253,2342,2383cm-1;HRMS,DMSO加合物,对于C20H23Cl2NOPPtS:计算值:621.024487;实测值:621.024734。
化合物29:按照一般方法,由16(100mg,0.231mmol)和K2PtCl4(96mg,0.231mmol)制备。白色固体(59mg,40%)。
1H NMR(300MHz,DMSO)δ=9.85(s,1H),8.98(d,J=8.2Hz,1H),8.05(dd,J=12.4Hz,J=7.4Hz,4H),7.81-7.60(m,6H),7.55(dd,J=7.5Hz,J=7.1Hz,1H),4.42(s,3H);13C NMR(75MHz,CD3CN)δ=155.07(d,JC-P=46.9Hz),148.54,141.59,135.47(d,JC-P=11.7Hz),133.48(d,JC-P=7.7Hz),132.99,129.46(d,JC-P=11.6Hz),128.77(d,JC-P=36.1Hz),123.54(d,JC-P=64.0Hz),121.24(q,JC-P=273.6Hz),49.19(d,JC-P=6.8Hz);31PNMR(121MHz,DMSO)δ=10.63(JC-Pt=1953Hz);IR(纯的)704,725,755,872,890,1036,1114,1148,1179,1192,1270,1332,1388,1438,1481,1508,1631,3001,3044cm-1;HRMS,DMSO加合物,对于C21H22Cl2F3NOPPtS:计算值:689.013152;实测值:689.014029。
用于制备膦金配合物的一般方法
将AuCl·SMe2(1当量)加入到所需的吡啶阳离子基膦盐(1当量)在DCM(2ml)中的溶液中,并将所得混悬液在室温下搅拌1小时。蒸发溶剂后,将所得固体用正戊烷(2×2ml)洗涤并在真空中干燥,得到所需的金配合物。
化合物30:按照一般方法,由12(100mg,0.274mmol)和AuCl·SMe2(80.7mg,0.274mmol)制备。白色固体(159mg,99%)。
1H NMR(300MHz,CDCl3)δ=9.06(d,J=0.5Hz,1H),8.44(t,J=7.7Hz,1H),8.20(t,J=6.4Hz,1H),7.86-7.53(m,10H),7.38(t,J=7.5Hz,1H),4.45(s,3H);13C NMR(75MHz,CDCl3)δ=151.71,147.12(d,JC-P=52.2Hz),145.39(d,J=5.6Hz),134.83(d,JC-P=15.6Hz),134.05(d,JC-P=2.0Hz),133.77(d,JC-P=9.3Hz),130.48(d,JC-P=12.8Hz),122.55,121.90,48.64(d,JC-P=11.4Hz);31P NMR(121MHz,CDCl3)δ=30.88;IR(纯的)729,913,998,1055,1097,1162,1185,1278,1438,1482,1500,1609,3061,3138cm-1;HRMS,对于C18H17NAuClP:计算值:510.044722;实测值:510.044585。
化合物31:按照一般方法,由14(50mg,0.12mmol)和AuCl·SMe2(34.5mg,0.12mmol)制备。白色固体(53mg,68%)。
1H NMR(400MHz,CD3CN)δ=8.94(s,1H),8.63(t,J=8.0Hz,1H),8.29(t,J=6.7Hz,1H),7.83-7.59(m,12H),7.43(t,J=8.0Hz,2H),7.23(d,J=7.9Hz,2H);13C NMR(101MHz,CD3CN)δ=152.22,148.28(d,JC-P=5.2Hz),141.55(d,JC-P=4.5Hz),136.26(d,JC-P=15.9Hz),136.10(d,JC-P=8.2Hz),134.89(d,JC-P=2.5Hz),133.32,131.31(d,JC-P=3.2Hz),131.17,131.01,127.87,125.84,125.22;31P NMR(162MHz,CD3CN)δ=31.36;IR(纯的)689,712,735,753,765,786,853,926,980,997,1030,1044,1099,1144,1162,1189,1256,1283,1433,1442,1458,1483,1587,1603,3060cm-1;HRMS,对于C23H19NAuClP:计算值:572.060365;实测值:572.060083。
化合物32:按照一般方法,由15(100mg,0.26mmol)和AuCl·SMe2(76.6mg,0.26mmol)制备。白色固体(166mg,97%)。
1H NMR(400MHz,CD3CN)δ=9.02(dd,J=6.0Hz,2.7,1H),8.27(ddd,J=9.1,6.6,2.6Hz,1H),7.88-7.63(m,10H),7.58-7.48(m,1H),4.40(s,3H);13C NMR(101MHz,CD3CN)δ=162.24(d,JC-F=260.5Hz),142.99(d,JC-P=37.3Hz),137.51(dd,JC-F=10.0Hz,JC-P=8.4Hz),136.23(d,JC-P=15.9Hz),135.36(d,JC-P=2.6Hz),133.81(d,JC-P=6.2Hz),133.58(d,JC-P=6.3Hz),131.65(d,JC-P=12.8Hz),123.98(d,JC-P=62.6Hz),50.70(d,JC-P=11.9Hz);31P NMR(162MHz,CD3CN)δ=28.68;IR(纯的)717,737,751,852,964,996,1034,1048,1170,1279,1437,1478,1505,1594,1615,3055,3079cm-1;HRMS,对于C18H16NAuClFP:计算值:528.035295;实测值:528.035127。
化合物33:按照一般方法,由16(100mg,0.23mmol)和AuCl·SMe2(68mg,0.23mmol)制备。白色固体(151mg,99%)。
1H NMR(300MHz,CD3CN)δ=9.38(s,1H),8.80-8.71(m,1H),7.90-7.67(m,11H),4.47(s,3H);13C NMR(75MHz,CD3CN)δ=153.75(d,JC-P=46.8Hz),150.38(d,JC-P=2.5Hz),143.92(td,JC-P=6.1,JC-F=3.0Hz),136.42(d,JC-P=15.7Hz),136.41,135.62(d,JC-P=2.7Hz),133.42-131.99(dq,JC-P=37.1Hz,JC-F=1.6Hz),131.74(d,JC-P=13.0Hz),123.16(d,JC-P=64.7Hz),122.07(q,JC-F=273.3Hz),50.82(d,JC-P=11.3Hz);19F NMR(282MHz,CDCl3)δ=-63.71,-151.49,-151.54;31P NMR(121MHz,CD3CN)δ=31.54;IR(纯的)705,715,752,873,892,996,1053,1118,1162,1200,1280,1334,1393,1440,1481,1510,1590,
1634,3092cm-1;HRMS,对于C20H18F3NP:计算值:578.032104;实测值:578.032257。
化合物34:按照一般方法,由19(73mg,0.1mmol)和AuCl·SMe2(30mg,0.1mmol)制备。白色固体(37mg,38%)。
1H NMR(400MHz,CD3CN)δ=9.44(s,1H),8.78(d,J=8.4Hz,1H),8.45(s,2H),8.30(d,J=13.7Hz,4H),7.92(t,J=7.7Hz,1H),4.83(qd,J=7.0,0.9Hz,2H),1.64(t,J=7.2Hz,3H);13C NMR(101MHz,CD3CN)δ=149.17,144.40(dd,JC-P=5.9Hz,JC-F=3.0Hz),138.49(d,JC-P=9.6Hz),137.13(d,JC-P=3.1Hz),136.96(d,JC-P=3.1Hz),134.10(qd,JC-F=34.5Hz,JC-P=13.2Hz),134.00(d,JC-P=37.3Hz),129.97(d,JC-P=2.4Hz),126.61(d,JC-P=60.9Hz),123.66(q,JC-F=273.1Hz),122.00(q,JC-F=273.6Hz),58.97(d,JC-P=12.7Hz),16.49;19F NMR(282MHz,CDCl3)δ=-63.49,-63.59,-151.86,-151.90;31P NMR(162MHz,CD3CN)δ=32.38;IR(纯的)699,718,731,742,764,847,866,899,927,997,1032,1058,1097,1123,1186,1280,1337,1358,1405,1447,1505,1630,3093cm-1;HRMS,对于C24H14NAuClF15P:计算值:863.997295;实测值:863.997181。
如上所示,本发明人在此概述了通过短而高度模块化的合成制备一类新的工作台稳定(bench stable)的阳离子膦类即吡啶阳离子基膦类。本发明人已经发现,当用作辅助配体时,它们的电子性质证明了弱σ给体和相当强的π-受体性质。这些性质对其衍生的Pt(II)和Au(I)配合物赋予了显著增强的π-酸性,由此所述化合物显示改进的活化炔烃对亲核攻击的能力。已经沿着几种机理不同的Pt(II)和Au(I)催化的转化证明了这种优异的性能。因此,当用作配体时,本发明的化合物显示了优异的π-受体性质,并因此显示出增强它们配位的金属的路易斯酸性的显著能力。这些性质在均相催化中的有益效果已经沿着三种机理不同的Pt(II)-和Au(I)-催化反应得到证明。

Claims (9)

1.通式(I)的N-取代的吡啶阳离子基膦:
其中
R1、R2、R3和R4相同或不同且各自表示氢,卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少一个通过-O-或-NR-结合到吡啶阳离子基环上,或R1,R2,R3和R4的至少两个可以形成直链或支链C4-C12烷基环,其可以包含至少一个不饱和键并且其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少两个可以形成C5-C14-芳族或-杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R5表示直链、环状或支链C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R6和R7各自表示饱和或不饱和、直链、支链或环状C1-C20-烷基或或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;或R6和R7可以形成C4-C20环,其可以包含至少一个不饱和键或芳族或杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R表示C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,且
X-是阴离子。
2.根据权利要求1的通式(I)的N-取代的吡啶阳离子基膦,其中R1,R3和R4各自表示氢且R2表示卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基的取代基,或R2通过-O-或-NR-结合到吡啶阳离子基环上;且
R5,R6,R7,R和X-具有上述所给出的含义。
3.根据权利要求1或2的通式(I)的N-取代的吡啶阳离子基膦,其中X-是选自Cl-,Br-,I-,PF6 -,SbF6 -,BF4 -,ClO4 -,F3CCOO-,Tf2N-,(Tf=三氟甲磺酰基),TfO-,对甲苯磺酰基,[B[3,5-(CF3)2C6H3]4]-,[B(C6F5)4]-,[Al(OC(CF3)3)4]-的阴离子,优选选自BF4 -,PF6 -,SbF6 -,BPh4 -的阴离子。
4.通式I的N-取代的吡啶阳离子基膦的制备方法:
其中
R1、R2、R3和R4相同或不同且各自表示氢,卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少一个通过-O-或-NR-结合到吡啶阳离子基环上,或R1,R2,R3和R4的至少两个可以形成直链或支链C4-C12烷基环,其可以包含至少一个不饱和键并且其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少两个可以形成C5-C14-芳族或-杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R5表示直链、环状或支链C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R6和R7各自表示饱和或不饱和、直链、支链或环状C1-C20-烷基或或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;或R6和R7可以形成C4-C20环,其可以包含至少一个不饱和键或芳族或杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R表示C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,且
X-是阴离子,
在该方法中,使通式II的吡啶阳离子基-化合物盐:
其中R1,R2,R3,R4,R5和X-如上所定义且Q表示离去基,
与通式III的膦反应:
HPR7R8 (III)
其中R7和R8如上所定义。
5.根据权利要求1、2或3的通式(I)的N-取代的吡啶阳离子基膦作为金属配合物中的配体的用途。
6.通式(IV)的金属配合物
其中
R1、R2、R3和R4相同或不同且各自表示氢,卤素,直链、环状或支链C1-C20-烷基、-烯基或-炔基,或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少一个通过-O-或-NR-结合到吡啶阳离子基环上,或R1,R2,R3和R4的至少两个可以形成直链或支链C4-C12烷基环,其可以包含至少一个不饱和键并且其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,或R1,R2,R3和R4的至少两个可以形成C5-C14-芳族或-杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R5表示直链、环状或支链C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R6和R7各自表示饱和或不饱和、直链、支链或环状C1-C20-烷基或或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;或R6和R7可以形成C4-C20环,其可以包含至少一个不饱和键或芳族或杂芳族环,其可以具有适当的选自卤素,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基;
R表示C1-C20-烷基或C5-C14-芳基或-杂芳基,其可以具有适当的选自卤素,=O,-OH,-OR,-NH2,-NHR,-NR2,芳基或杂芳基的取代基,和
X-是阴离子,
M表示金属原子,优选选自B,Cu,Fe,Ni,Co,Ag,Au,Ru,Rh,Pd,Os,Ir和Pt,
L表示配体,其可以是阳离子,中性或阴离子的,并且如果超过一个L配位到金属上,则其可以相同或不同,和
m可以为1,2或3,
n可以为1,2或3,
o可以为1-5的整数,和
取决于金属原子,选择m,n和o以得到金属配合物。
7.权利要求6的金属配合物,其特征在于,配体L可以选自卤素,CN,CO,烯烃类,环烯烃类和/或炔烃类,芳烃类,腈类,膦类,胺类,吡啶类或羧酸酯类。
8.权利要求6或7的金属配合物,其优选包含选自Ag,Au,Ru,Rh,Pd,Os,Ir和Pt的M。
9.权利要求6-8之一的金属配合物作为有机合成、尤其是环异构化中的催化剂的用途。
CN201580028648.2A 2014-04-27 2015-04-21 N-取代的吡啶阳离子基膦类、它们的制备方法和用途 Active CN106661063B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14166125.6 2014-04-27
EP14166125.6A EP2937354A1 (en) 2014-04-27 2014-04-27 N-substituted pyridiniophosphines, processes for their preparation and their use
PCT/EP2015/058618 WO2015165781A1 (en) 2014-04-27 2015-04-21 N-substituted pyridiniophosphines, processes for their preparation and their use

Publications (2)

Publication Number Publication Date
CN106661063A true CN106661063A (zh) 2017-05-10
CN106661063B CN106661063B (zh) 2019-01-15

Family

ID=50555083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580028648.2A Active CN106661063B (zh) 2014-04-27 2015-04-21 N-取代的吡啶阳离子基膦类、它们的制备方法和用途

Country Status (7)

Country Link
US (1) US9962690B2 (zh)
EP (2) EP2937354A1 (zh)
JP (1) JP6236170B2 (zh)
KR (1) KR102204260B1 (zh)
CN (1) CN106661063B (zh)
CA (1) CA2946922C (zh)
WO (1) WO2015165781A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87107279A (zh) * 1986-12-05 1988-06-15 国际壳牌研究有限公司 炔属不饱和化合物的羰基化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269522A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp 新規なルテニウム錯体、その製造方法、及びそれを用いたアミド化合物の製造方法
JP2008088153A (ja) * 2006-04-10 2008-04-17 Okayama Univ アミド化合物を製造する方法及びその方法に使用される触媒
JP2009023925A (ja) * 2007-07-18 2009-02-05 Okayama Univ アミド化合物を製造する方法及びその方法に使用される触媒
DE102007052640A1 (de) * 2007-11-05 2009-05-07 Albert-Ludwigs-Universität Freiburg Verfahren zur Hydroformylierung
EP2543685A1 (de) * 2011-07-08 2013-01-09 cynora GmbH Verfahren zur kovalenten Bindung eines Metallkomplexes an ein Polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87107279A (zh) * 1986-12-05 1988-06-15 国际壳牌研究有限公司 炔属不饱和化合物的羰基化方法

Also Published As

Publication number Publication date
CA2946922C (en) 2021-07-06
WO2015165781A1 (en) 2015-11-05
JP6236170B2 (ja) 2017-11-22
EP3137472B1 (en) 2018-07-04
CN106661063B (zh) 2019-01-15
JP2017519722A (ja) 2017-07-20
CA2946922A1 (en) 2015-11-05
KR102204260B1 (ko) 2021-01-18
US20170050180A1 (en) 2017-02-23
EP3137472A1 (en) 2017-03-08
KR20160147277A (ko) 2016-12-22
US9962690B2 (en) 2018-05-08
EP2937354A1 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
Gandelman et al. A PCN ligand system. Exclusive C− C activation with rhodium (I) and C− H activation with platinum (II)
Kozlov et al. Hybrid thiophosphoryl–benzothiazole palladium SCN-pincer complexes: Synthesis and effect of structure modifications on catalytic performance in the Suzuki cross-coupling
Fliedel et al. Thioether-Functionalized N-Heterocyclic Carbenes: Mono-and Bis-(S, C NHC) Palladium Complexes, Catalytic C− C Coupling, and Characterization of a Unique Ag4I4 (S, C NHC) 2 Planar Cluster
Soro et al. Synthesis of the first C-2 cyclopalladated derivatives of 1, 3-Bis (2-pyridyl) benzene. Crystal structures of [Hg (NCN) Cl],[Pd (NCN) Cl], and [Pd2 (NCN) 2 (μ-OAc)] 2 [Hg2Cl6]. Catalytic activity in the Heck reaction
WO2006138166A2 (en) Stable cyclic (alkyl)(amino) carbenes as ligands for transition metal catalysts
Kwong et al. A novel synthesis of atropisomeric P, N ligands by catalytic phosphination using triarylphosphines
TWI422430B (zh) 用於置換反應作用觸媒之新穎釕複合物
JP6840147B2 (ja) 触媒可逆的なアルキレン−ニトリル相互変換のための方法
Aleksanyan et al. Hybrid NCS palladium pincer complexes of thiophosphorylated benzaldimines and their ketimine analogs
Holm et al. Thiol-functionalized 1, 2, 4-triazolium salt as carbene ligand precursor
Sureshbabu et al. A mild and efficient method for the synthesis of structurally diverse 1, 2, 3-triazolylidene palladium (II) diiodo complexes. Comparison of catalytic activities for Suzuki–Miyaura coupling
Li et al. (IPr) Pd (pydc)(pydc= pyridine-2, 6-dicarboxylate)–A highly active precatalyst for the sterically hindered C–N coupling reactions
Stepnicka et al. Synthesis, Coordination Properties, and Catalytic Use of Phosphinoferrocene Carboxamides Bearing Donor-Functionalized Amide Substituents
Kawamura et al. 2-Phenylimidazole− PdCl2 and 2-Phenylimidazoline− PdCl2 Complexes: Single-Crystal and Powder X-ray Diffractometry, 1H NMR Spectra, and Comparison of Catalytic Activities in Coupling Reactions
CA2556850A1 (en) Transition metal complexes of n-heterocyclic carbenes, method of preparation and use in transition metal catalyzed organic transformations
Zheng et al. Synthesis of new dipyridinylamine and dipyridinylmethane ligands and their coordination chemistry with Mg (II) and Zn (II)
US20200369697A1 (en) Molybdenum oxo alkylidene compounds, methods of making the same and use thereof in metathesis reactions
Durand et al. Palladium chemistry of 2-ferrocenyl-1, 10-phenanthroline ligand
CN104744514B (zh) 一种手性磷烯配体、合成方法及其在不对称反应中的应用
CN106661063B (zh) N-取代的吡啶阳离子基膦类、它们的制备方法和用途
Jones et al. Synthesis and structure of dichloropalladium (II) complexes of heteroleptic N, S-and N, Se-donor ligands based on the 2-organochalcogenomethylpyridine motif, and Mizoroki–Heck catalysis mediated by complexes of N, S-donor ligands
CN107628950A (zh) 用于使醚羰基化而制备酯的方法
Davies et al. Tetraphenylcyclopentadienyl rhodium complexes in stoichiometric and catalytic CH functionalization
Mino et al. Synthesis and application of atropisomeric dihydrobenzofuran-based bisphosphine (BICMAP)
CA2551412A1 (en) Transition metal complexes of n-heterocyclic carbenes, method of preparation and use in transition metal catalyzed organic transformations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant