CN106653925A - 一种两结激光电池外延层及其制备方法 - Google Patents

一种两结激光电池外延层及其制备方法 Download PDF

Info

Publication number
CN106653925A
CN106653925A CN201611235022.1A CN201611235022A CN106653925A CN 106653925 A CN106653925 A CN 106653925A CN 201611235022 A CN201611235022 A CN 201611235022A CN 106653925 A CN106653925 A CN 106653925A
Authority
CN
China
Prior art keywords
gaas
layers
doping
thickness
type dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611235022.1A
Other languages
English (en)
Inventor
唐悦
张启明
高鹏
王宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201611235022.1A priority Critical patent/CN106653925A/zh
Publication of CN106653925A publication Critical patent/CN106653925A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种两结激光电池外延层及其制备方法,包括从下至上依次设置在GaAs衬底上的GaAs缓冲层、第一隧道结、第一GaAs电池、第二隧道结、第二GaAs电池和cap层,其制备方法包括:采用金属有机化学气相沉积技术在GaAs衬底上沉积GaAs缓冲层;在GaAs缓冲层上依次生长第一隧道结、第一GaAs子电池、第二隧道结、第二GaAs子电池和cap层。该两结激光电池采用两个子电池串联减小总电流,可以减小串联电阻引起的功率损失,提高转换效率,该电池的制备方法采用金属有机化学气相沉积技术,生长过程可以得到精确控制,形成的晶体质量好。

Description

一种两结激光电池外延层及其制备方法
技术领域
本发明属于太阳能电池领域,尤其是涉及一种两结激光电池外延层及其制备方法。
背景技术
目前,激光电池在空间无线能量传输领域有很大的应用前景,适合在空间无线传输中(高轨的空间飞行器太阳电池阵实现太阳能转换为电能,电能再转换为激光,借助激光电池实现激光对地面激光电池阵供能、激光对临近空间的无人机供能、激光对低轨的空间飞行器供能),作为能量接收器使用或信号接收器使用。然而目前国内还没有任何公司或者研究所研究出相关的商用产品,对多结激光电池的研究尚属空白。
以GaAs为代表的III-V族化合物具有许多优点,例如它具有直接带隙的能带结构,光吸收系数大,还具有良好的抗辐照性能和较小的温度系数,是作为激光电池的理想材料。对于功率较高的激光来说,采用多结的GaAs太阳电池可以减小总电流,从而可以减小串联电阻引起的功率损失,提高转换效率。
发明内容
本发明要解决的问题是提供一种两结激光电池外延层及其制备方法,其晶体质量较好,稳定性强,易于制作,并可在将来作为完整的电池直接应用。
为解决上述技术问题,本发明采用的技术方案是:一种两结激光电池外延层,包括从下至上依次设置在GaAs衬底上的GaAs缓冲层、第一隧道结、第一GaAs电池、第二隧道结、第二GaAs电池和cap层。
技术方案中,优选的,GaAs缓冲层使用n型掺杂剂,掺杂剂的掺杂浓度为1×1017-1×1019cm-3,GaAs缓冲层的厚度为100nm-4000nm。
技术方案中,优选的,第一隧道结包括依次设置的n型掺杂剂掺杂的n+-GaInP层和p型掺杂剂掺杂的p+-AlGaAs层,n+-GaInP层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3,p+-AlGaAs层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3
技术方案中,优选的,第一GaAs电池包括依次设置的n型掺杂剂掺杂的n-GaAs发射区层和p型掺杂剂掺杂的p-GaAs基区层,发射区层的厚度为50nm-1000nm,掺杂浓度为1×1017-1×1019cm-3,基区层的厚度为500nm-5000nm,掺杂浓度为1×1015-1×1018cm-3
技术方案中,优选的,第二隧道结包括依次设置的n型掺杂剂掺杂的n+-GaInP层和p型掺杂剂掺杂的p+-AlGaAs层,n+-GaInP层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3,p+-AlGaAs层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3
技术方案中,优选的,第二GaAs电池包括依次设置的n型掺杂剂掺杂的n-GaAs发射区层和p型掺杂剂掺杂的p-GaAs基区层,发射区层的厚度为50nm-1000nm,掺杂浓度为1×1017-1×1019cm-3,基区层的厚度为500nm-5000nm,掺杂浓度为1×1015-1×1018cm-3
技术方案中,优选的,cap层为n型掺杂剂掺杂的n+-Ga1-xInxAs,其中0.01≤x≤0.4,掺杂浓度为1×1018-1×1021cm-3,厚度为50nm-1000nm。
技术方案中,优选的,p型掺杂剂为Zn、Mg或C。
技术方案中,优选的,n型掺杂剂为Si、Se或Te。
一种制备两结激光电池外延层的方法,包括以下步骤:采用金属有机化学气相沉积技术在GaAs衬底上沉积GaAs缓冲层;在GaAs缓冲层上依次生长第一隧道结、第一GaAs子电池、第二隧道结、第二GaAs子电池和cap层。
本发明具有的优点和积极效果是:
1、该两结激光电池采用两个子电池串联减小总电流,从而可以减小串联电阻引起的功率损失,提高转换效率。
2、本发明的一种两结激光电池外延层的制备方法,采用金属有机化学气相沉积技术,生长过程可以得到精确控制,形成的晶体质量好。
3、本发明的两结激光电池外延层易于生长,后续工艺流程成熟,产品电池稳定性好,具有大批生产的潜力。
附图说明
图1为本发明一种两结激光太阳电池结构示意图。
图中:
1、GaAs衬底 2、GaInAs缓冲层 3、第一隧道结
4、GaAs子电池 5、第二隧道结 6、GaAs子电池
7、cap层
具体实施方式
下面结合附图对本发明实施例做进一步描述:
一种两结激光太阳电池,包括砷化镓衬底,从下至上依次为GaAs缓冲层、第一隧道结、(AlGa)1-xInxAs渐变缓冲层、GaAs电池、第二隧道结、GaAs电池和cap层。其制作过程为:
1.采用金属有机化学气相沉积技术(MOCVD)在砷化镓衬底上面沉积GaAs缓冲层;
GaAs缓冲层,其n型掺杂剂为Si、Se或Te,掺杂浓度为1×1017-1×1019cm-3,反应室压力为50-200mbar,生长温度为600–700℃,厚度范围为100-4000nm;
2.在GaAs缓冲层上生长第一隧道结,包括依次生长n型掺杂的n+-GaInP层和p型掺杂的p+-AlGaAs层,其中n+-GaInP层的掺杂剂为Si、Se或Te,掺杂浓度为1×1018-1×1021cm-3,厚度范围为10nm-100nm,生长温度为550–650℃;其中p+-AlGaAs层的掺杂剂为Zn、Mg或C,掺杂浓度为1×1018-1×1021cm-3,厚度范围为10nm-100nm,生长温度为550–650℃;
3.在第一隧道结上生长第一GaAs子电池,包括依次生长n型掺杂的n-GaAs发射区层和p型掺杂的p-GaAs基区层,其中n-GaAs发射区层的掺杂剂为Si、Se或Te,掺杂浓度为1×1017-1×1019cm-3,厚度范围为50nm-1000nm,生长温度为600–700℃;其中p-GaAs基区层的掺杂剂为Zn、Mg或C,掺杂浓度为1×1015-1×1018cm-3,厚度范围为500nm-5000nm,生长温度为600–700℃;
4.在第一GaAs子电池上生长第二隧道结,包括依次生长n型掺杂的n+-GaInP层和p型掺杂的p+-AlGaAs层,其中n+-GaInP层的掺杂剂为Si、Se或Te,掺杂浓度为1×1018-1×1021cm-3,厚度范围为10nm-100nm,生长温度为550–650℃;其中p+-AlGaAs层的掺杂剂为Zn、Mg或C,掺杂浓度为1×1018-1×1021cm-3,厚度范围为10nm-100nm,生长温度为550–650℃;
5.在第二隧道结上生长第二GaAs子电池,包括依次生长n型掺杂的n-GaAs发射区层和p型掺杂的p-GaAs基区层,其中n-GaAs发射区层的掺杂剂为Si、Se或Te,掺杂浓度为1×1017-1×1019cm-3,厚度范围为50nm-1000nm,生长温度为600–700℃;其中p-GaAs基区层的掺杂剂为Zn、Mg或C,掺杂浓度为1×1015-1×1018cm-3,厚度范围为500nm-5000nm,生长温度为600–700℃;
6.在第二子电池上生长cap层;
帽层为n型掺杂的n+-Ga1-xInxAs,其中0.01≤x≤0.4,掺杂剂为Si、Se或Te,掺杂浓度为1×1018-1×1021cm-3,厚度范围为50nm-1000nm,生长温度为550–700℃。
上述各层材料生长之后,总时间为1-3小时,之后的器件工序和正向匹配三结太阳电池完全相同,是公知的技术。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (10)

1.一种两结激光电池外延层,其特征在于:包括从下至上依次设置在GaAs衬底上的GaAs缓冲层、第一隧道结、第一GaAs电池、第二隧道结、第二GaAs电池和cap层。
2.根据权利要求1所述的两结激光电池外延层,其特征在于:所述GaAs缓冲层使用n型掺杂剂,所述掺杂剂的掺杂浓度为1×1017-1×1019cm-3,所述GaAs缓冲层的厚度为100nm-4000nm。
3.根据权利要求1所述的两结激光电池外延层,其特征在于:所述第一隧道结包括依次设置的n型掺杂剂掺杂的n+-GaInP层和p型掺杂剂掺杂的p+-AlGaAs层,所述n+-GaInP层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3,所述p+-AlGaAs层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3
4.根据权利要求1所述的两结激光电池外延层,其特征在于:所述第一GaAs电池包括依次设置的n型掺杂剂掺杂的n-GaAs发射区层和p型掺杂剂掺杂的p-GaAs基区层,所述发射区层的厚度为50nm-1000nm,掺杂浓度为1×1017-1×1019cm-3,所述基区层的厚度为500nm-5000nm,掺杂浓度为1×1015-1×1018cm-3
5.根据权利要求1所述的两结激光电池外延层,其特征在于:所述第二隧道结包括依次设置的n型掺杂剂掺杂的n+-GaInP层和p型掺杂剂掺杂的p+-AlGaAs层,所述n+-GaInP层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3,所述p+-AlGaAs层的厚度为10nm-100nm,掺杂浓度为1×1018-1×1021cm-3
6.根据权利要求1所述的两结激光电池外延层,其特征在于:所述第二GaAs电池包括依次设置的n型掺杂剂掺杂的n-GaAs发射区层和p型掺杂剂掺杂的p-GaAs基区层,所述发射区层的厚度为50nm-1000nm,掺杂浓度为1×1017-1×1019cm-3,所述基区层的厚度为500nm-5000nm,掺杂浓度为1×1015-1×1018cm-3
7.根据权利要求1所述的两结激光电池外延层,其特征在于:所述cap层为n型掺杂剂掺杂的n+-Ga1-xInxAs,其中0.01≤x≤0.4,掺杂浓度为1×1018-1×1021cm-3,厚度为50nm-1000nm。
8.根据权利要求2-6任一所述的两结激光电池外延层,其特征在于:所述p型掺杂剂为Zn、Mg或C。
9.根据权利要求3-7任一所述的两结激光电池外延层,其特征在于:所述n型掺杂剂为Si、Se或Te。
10.一种制备如权利要求1-7任一所述两结激光电池外延层的方法,其特征是包括以下步骤:采用金属有机化学气相沉积技术在所述GaAs衬底上沉积所述GaAs缓冲层;在所述GaAs缓冲层上依次生长所述第一隧道结、所述第一GaAs子电池、所述第二隧道结、所述第二GaAs子电池和所述cap层。
CN201611235022.1A 2016-12-28 2016-12-28 一种两结激光电池外延层及其制备方法 Pending CN106653925A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611235022.1A CN106653925A (zh) 2016-12-28 2016-12-28 一种两结激光电池外延层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611235022.1A CN106653925A (zh) 2016-12-28 2016-12-28 一种两结激光电池外延层及其制备方法

Publications (1)

Publication Number Publication Date
CN106653925A true CN106653925A (zh) 2017-05-10

Family

ID=58832140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611235022.1A Pending CN106653925A (zh) 2016-12-28 2016-12-28 一种两结激光电池外延层及其制备方法

Country Status (1)

Country Link
CN (1) CN106653925A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768103A (zh) * 2018-12-26 2019-05-17 中国电子科技集团公司第十八研究所 一种GaInAs激光电池外延层及其制备方法
CN112531051A (zh) * 2020-12-04 2021-03-19 苏州长光华芯光电技术股份有限公司 一种隧道结结构及其形成方法、隧道结器件
CN112614914A (zh) * 2020-12-15 2021-04-06 中国电子科技集团公司第十八研究所 一种基于砷化镓材料的激光电池制备方法及电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651420A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 双结GaAs叠层激光光伏电池及其制备方法
CN103000758A (zh) * 2012-10-08 2013-03-27 天津蓝天太阳科技有限公司 双面外延生长GaAs三结太阳能电池的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651420A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 双结GaAs叠层激光光伏电池及其制备方法
CN103000758A (zh) * 2012-10-08 2013-03-27 天津蓝天太阳科技有限公司 双面外延生长GaAs三结太阳能电池的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768103A (zh) * 2018-12-26 2019-05-17 中国电子科技集团公司第十八研究所 一种GaInAs激光电池外延层及其制备方法
CN112531051A (zh) * 2020-12-04 2021-03-19 苏州长光华芯光电技术股份有限公司 一种隧道结结构及其形成方法、隧道结器件
CN112614914A (zh) * 2020-12-15 2021-04-06 中国电子科技集团公司第十八研究所 一种基于砷化镓材料的激光电池制备方法及电池
CN112614914B (zh) * 2020-12-15 2022-03-04 中国电子科技集团公司第十八研究所 一种基于砷化镓材料的激光电池制备方法及电池

Similar Documents

Publication Publication Date Title
CN102569475A (zh) 一种四结四元化合物太阳能电池及其制备方法
CN105762208A (zh) 一种正向失配四结级联砷化镓太阳电池及其制备方法
CN107527967A (zh) 一种具有抗辐照结构的高效三结级联砷化镓太阳电池及其制造方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN104465843A (zh) 一种双面生长的GaAs四结太阳电池
CN106653925A (zh) 一种两结激光电池外延层及其制备方法
CN103000759A (zh) 砷化镓薄膜多结叠层太阳电池的制备方法
CN102254918A (zh) 一种叠层式太阳能电池及制作方法
CN102751389A (zh) 一种高效多结太阳能电池的制备方法
CN104300015A (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN102637775A (zh) 三结太阳能电池及其制备方法
CN101859814A (zh) 在硅衬底上生长InGaP/GaAs/Ge三结太阳能电池的方法
CN105355670A (zh) 一种含dbr结构的五结太阳能电池
CN105576068B (zh) 一种双面生长的InP五结太阳电池
CN207320146U (zh) 一种具有抗辐照结构的高效三结级联砷化镓太阳电池
CN109148621A (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN103077983A (zh) 多结太阳能电池及其制备方法
CN106409958B (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN104282795A (zh) GaInP/GaAs/InGaAs/Ge太阳能电池的制备方法
CN204315590U (zh) 一种双面生长的硅基四结太阳电池
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN103545389A (zh) 一种多结聚光砷化镓太阳能电池及其制备方法
CN206584943U (zh) 一种正向生长的匹配四结太阳能电池
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication