CN103545389A - 一种多结聚光砷化镓太阳能电池及其制备方法 - Google Patents

一种多结聚光砷化镓太阳能电池及其制备方法 Download PDF

Info

Publication number
CN103545389A
CN103545389A CN201310508769.XA CN201310508769A CN103545389A CN 103545389 A CN103545389 A CN 103545389A CN 201310508769 A CN201310508769 A CN 201310508769A CN 103545389 A CN103545389 A CN 103545389A
Authority
CN
China
Prior art keywords
battery
atom
gaas
temperature
tmga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310508769.XA
Other languages
English (en)
Other versions
CN103545389B (zh
Inventor
吴作贵
杨翠柏
王智勇
吴步宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Guangdong Redsolar Photovoltaic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Redsolar Photovoltaic Technology Co ltd filed Critical Guangdong Redsolar Photovoltaic Technology Co ltd
Priority to CN201310508769.XA priority Critical patent/CN103545389B/zh
Publication of CN103545389A publication Critical patent/CN103545389A/zh
Application granted granted Critical
Publication of CN103545389B publication Critical patent/CN103545389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种多结聚光砷化镓太阳能电池及其制备方法,其电池是以P型碳化硅为衬底,自衬底表面起由下至上依次层叠排列着低温P-GaAs缓冲层、高温P-GaAs缓冲层、底电池、中电池、顶电池以及N++-GaAs接触层,所述的底电池与中电池以及中电池与顶电池之间分别设置有隧穿结连接结构。由于P型碳化硅衬底是宽带隙半导体材料,与锗衬底与砷化镓衬底相比具有高导热系数,因此该电池能够提高高倍聚光下的稳定性和长期可靠性。另外,该电池在碳化硅衬底与底电池之间采用P-GaAs缓冲层,从而能够有效解决碳化硅衬底与多结砷化镓电池晶格类型不同、晶格常数和热膨胀系数差别大带来的外延生长问题。

Description

一种多结聚光砷化镓太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池的技术领域,尤其是指一种多结聚光砷化镓太阳能电池及其制备方法。
背景技术
聚光三结砷化镓太阳电池具有全光谱吸收、高转换效率、耗材少、用地面积少等优点,通过聚光显著提高了电池电流输出,特别是在实现高倍聚光后,能够获得更高的输出功率,因此,聚光三结砷化镓太阳电池被广泛应用于地面光伏发电领域。
目前,三结聚光砷化镓太阳电池多采用在锗(Ge)衬底或者砷化镓(GaAs)衬底上外延生长而制得。为了进一步提高多结电池的光电转换效率,人们已从理论上设计了四结和五结的叠层电池,并给出了多结光伏电池的理论效率,但是近年来的研究进展缓慢。造成这一结果的一个重要原因是,Ge或者GaAs热导系数较小,在高倍聚光条件下,芯片内部产生的热不能及时传导出去,导致芯片温度升高,降低了电池效率,同时降低了电池稳定性和可靠性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种多结聚光砷化镓太阳能电池及其制备方法,该电池具有高光电转换效率、稳定性及可靠性。
为实现上述目的,本发明所提供的技术方案其多结聚光砷化镓太阳能电池,以P型碳化硅为衬底,自衬底表面起由下至上依次层叠排列着低温P-GaAs缓冲层、高温P-GaAs缓冲层、底电池、中电池、顶电池以及N++-GaAs接触层,其中,所述的底电池与中电池以及中电池与顶电池之间分别设置有隧穿结连接结构。
所述的低温P-GaAs缓冲层是在温度为500℃~540℃条件下制备得到的P-GaAs缓冲层,其厚度为20nm~30nm;所述的高温P-GaAs缓冲层是在温度为680℃~720℃条件下制备得到的P-GaAs缓冲层,其厚度为500nm~800nm。
所述的底电池由从下至上依次层叠排列的P-(AlxGa1-x)1-yInyAs底电池背场,其中0<x<1,0<y<1;P-GaxIn1-xAs底电池基底层,其中0<x<1;N-GaxIn1-xAs底电池发射层,其中0<x<1;N-GaxIn1-xP底电池窗口层,其中0<x<1组成。
所述的中电池由从下至上依次层叠排列的P-AlxGa1-xAs中电池背场,其中0<x<1;P-GaAs中电池基底层;N-GaAs中电池发射层;N-(AlxGa1-x)1-yInyP中电池窗口层,其中0<x<1,0<y<1组成。
所述的顶电池由从下至上依次层叠排列的P-(AlxGa1-x)1-yInyP顶电池背场,其中0<x<1,0<y<1;P-GaxIn1-xP顶电池基底层,其中0<x<1;N-GaxIn1-xP顶电池发射层,其中0<x<1;N-AlxIn1-xP顶电池窗口层,其中0<x<1组成。
所述的底电池与中电池之间的隧穿结连接结构由从下至上依次层叠排列的N-GaxIn1-xAs底中电池缓冲层,其中0<x<1;以及N++-GaAs/P++-GaAs底中电池遂穿结组成。
所述的中电池与顶电池之间的隧穿结连接结构是N++-GaxIn1-xP/P++-AlyGa1-yAs中顶电池遂穿结,其中0<x<1,0<y<1。
所述的高温P-GaAs缓冲层和底电池背场之间设置P-(AlxGa1-x)yIn1-yAs缓冲层,其中0<x<1,0<y<1。
本发明所述的制备方法,包括以下步骤:
步骤一、P型碳化硅衬底热处理:首先在温度为730℃~770℃、H2气氛条件下对P型碳化硅衬底进行热处理;
步骤二、低温P-GaAs缓冲层生长:将生长室温度降低到500℃~540℃,然后通入TMGa、DEZn和AsH3,在P型碳化硅衬底表面上生长低温P-GaAs缓冲层,停止生长后,将生长室的温度升温到680℃~720℃后退火,其中,所述低温P-GaAs缓冲层中的掺Zn量为1E18个原子/cm3~5E18个原子/cm3
步骤三、高温P-GaAs缓冲层生长:保持生长室温度在680℃~720℃,继续通入TMGa、DEZn和AsH3,在低温P-GaAs缓冲层表面上生长高温P-GaAs缓冲层,其中,所述高温P-GaAs缓冲层中的掺Zn量为1E18个原子/cm3~5E18个原子/cm3
步骤四、在高温P-GaAs缓冲层表面依次生长底电池,底电池与中电池间的隧穿结连接结构,中电池,中电池与顶电池间的隧穿结连接结构,顶电池以及N++-GaAs接触层。
在所述步骤四中,底电池的沉积方法包括如下步骤:
(1)将生长室温度降低到580℃~620℃,通入TMGa、TMAl、TMIn、DEZn和AsH3,在高温P-GaAs缓冲层表面生长P-(AlxGa1-x)1-yInyAs底电池背场,其中0<x<1,0<y<1,所述底电池背场中的掺Zn量为3E18个原子/cm3~8E18个原子/cm3
(2)保持生长室温度在580℃~620℃,通入TMGa、TMIn、DEZn和AsH3,在所述的底电池背场表面生长P-GaxIn1-xAs底电池基底层,其中0<x<1,所述底电池基底层中的掺Zn量为1E17个原子/cm3-5E17个原子/cm3
(3)保持生长室温度在580℃~620℃,通入TMGa、TMIn、Si2H6和AsH3,在所述的底电池基底层表面生长N-GaxIn1-xAs底电池发射层,其中0<x<1,所述底电池发射层中的掺Si量为1E18个原子/cm3~5E18个原子/cm3
(4)保持生长室温度在580℃~620℃,通入TMGa、TMIn、Si2H6和PH3,在所述的底电池发射层表面生长N-GaxIn1-xP底电池窗口层,其中0<x<1,所述底电池窗口层中的掺Si量为1E18个原子/cm3~5E18个原子/cm3
底电池与中电池间的隧穿结连接结构的生长方法包括如下步骤:
(1)保持生长室温度在580℃~620℃,通入TMGa、TMIn、Si2H6和AsH3,在所述的底电池窗口层表面生长N-GaxIn1-xAs底中电池缓冲层,其中0<x<1,所述底中电池缓冲层中的掺Si量为1E18个原子/cm3~5E18个原子/cm3
(2)保持生长室温度在580℃~620℃,先后通入TMGa、SeH2、AsH3和TMGa、CBr4、AsH3,在所述的底中电池缓冲层上先后生长N++-GaAs和P++-GaAs,从而形成N++-GaAs/P++-GaAs底中电池遂穿结,其中,所述底中电池遂穿结中掺Se量为1E19个原子/cm3~5E19个原子/cm3,掺C量为1E19个原子/cm3~5E19个原子/cm3
中电池的沉积方法包括如下步骤:
(1)将生长室温度升温至630℃~670℃,通入TMAl、TMGa、DEZn和AsH3,在N++-GaAs/P++-GaAs底中电池遂穿结表面生长P-AlxGa1-xAs中电池背场,其中0<x<1,所述中电池背场中掺Zn量为1E18个原子/cm3~5E18个原子/cm3
(2)保持生长室温度在630℃~670℃,通入TMGa、DEZn和AsH3,在所述的中电池背场表面生长P-GaAs中电池基底层,其中,所述中电池基底层中掺Zn量为1E17个原子/cm3~5E17个原子/cm3
(3)保持生长室温度在630℃~670℃,通入TMGa、Si2H6和AsH3,在所述的中电池基底层表面生长N-GaAs中电池发射层,其中,所述中电池发射层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
(4)N-AlGaInP中电池窗口层生长:保持生长室温度在630℃~670℃,然后通入TMGa、TMAl、TMIn、Si2H6和PH3,在N-GaAs中电池发射层表面生长N-(AlxGa1-x)1-yInyP中电池窗口层,其中0<x<1,0<y<1,所述中电池窗口层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
中电池与顶电池间的隧穿结连接结构的沉积方法如下:
保持生长室温度在630℃~670℃,先后通入TMGa、TMIn、SeH2、PH3和TMGa、TMAl、CBr4、AsH3在所述的中电池窗口层表面先后生长N++-GaxIn1-xP和P++-AlyGa1-yAs,其中0<x<1,0<y<1,从而形成N++-GaInP/P++-AlGaAs中顶电池遂穿结,其中,所述中顶电池遂穿结中掺Se量为1E19个原子/cm3~5E19个原子/cm3,掺C量为1E19个原子/cm3~5E19个原子/cm3
顶电池的沉积方法包括如下步骤:
(1)保持生长室温度在630℃~670℃,通入TMAl、TMGa、TMIn、DEZn和PH3,在所述的中顶电池遂穿结表面生长P-(AlxGa1-x)1-yInyP顶电池背场,其中0<x<1,0<y<1,所述顶电池背场中掺Zn量为1E18个原子/cm3~5E18个原子/cm3
(2)保持生长室温度在630℃~670℃,通入TMGa、TMIn、DEZn和PH3,在所述的顶电池背场表面生长P-GaxIn1-xP顶电池基底层,其中0<x<1,所述顶电池基底层中掺Zn量为1E17个原子/cm3~5E17个原子/cm3
(3)保持生长室温度在630℃~670℃,通入TMGa、TMIn、Si2H6和PH3,在所述的顶电池基底层表面生长N-GaxIn1-xP顶电池发射层,其中0<x<1,所述顶电池发射层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
(4)保持生长室温度在630℃~670℃,通入TMAl、TMIn、Si2H6和PH3,在N-GaInP顶电池发射层表面生长N-AlxIn1-xP顶电池窗口层,其中0<x<1,所述顶电池窗口层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
N++-GaAs接触层的沉积方法如下:
将生长室温度降低到450℃~550℃,通入TMGa、SeH2和AsH3,在N-AlInP顶电池窗口层表面生长N++-GaAs接触层,其中,所述N++-GaAs接触层中掺Se量为1E19个原子/cm3~5E19个原子/cm3
本发明与现有技术相比,具有如下优点与有益效果:
1、使用P型碳化硅作为多结聚光砷化镓太阳能电池外延生长衬底,由于P型碳化硅衬底是宽带隙半导体材料,其导热系数为490W/m·K,是锗衬底导热系数(55.9W/m·K)的8.8倍,是砷化镓衬底导热系数(44W/m·K)的11.1倍,因此,P型碳化硅是高导热性材料,故在太阳能电池中采用P型碳化硅作为衬底,可以极大地提高其高倍聚光下的稳定性和长期可靠性,提高其放大倍数以及其大电流工作能力,进而提高太阳能电池的使用寿命并降低了太阳能电池的发电成本;
2、在碳化硅衬底与底电池之间采用P-GaAs缓冲层(包括低温P-GaAs缓冲层与高温P-GaAs缓冲层),从而有效解决了碳化硅衬底与多结砷化镓电池晶格类型不同、晶格常数和热膨胀系数差别大带来的外延生长问题。
附图说明
图1为实施例中的三结聚光砷化镓太阳能电池的结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1所示,本实施例所述的多结聚光砷化镓太阳能电池具体为三结聚光砷化镓太阳能电池,当然也可以是四结、五结或六结聚光砷化镓太阳能电池,在本实施例中,所述的三结聚光砷化镓太阳能电池是以P型碳化硅(SiC)为衬底,自衬底表面起由下至上依次层叠排列着低温P-GaAs缓冲层、高温P-GaAs缓冲层、底电池、中电池、顶电池以及N++-GaAs接触层,其中,所述的底电池与中电池以及中电池与顶电池之间分别设置有隧穿结连接结构;所述的低温P-GaAs缓冲层是在温度为500℃~540℃条件下制备得到的P-GaAs缓冲层,其厚度优选为20nm~30nm;所述的高温P-GaAs缓冲层是在温度为680℃~720℃条件下制备得到的P-GaAs缓冲层,其厚度优选为500nm~800nm;所述的N++-GaAs接触层厚度优选为100nm~500nm;在本实施例中,所述的P-表示掺杂后,如掺Zn后形成的P型材料;N-表示掺杂后,如掺Si后形成的N型材料;P++-表示掺杂后,如掺C后形成的高掺杂P型材料;N++-表示掺杂后,如掺Se后形成的高掺杂N型材料。
所述的底电池由从下至上依次层叠排列的P-Al0.122Ga0.488In0.39As底电池背场(带隙宽度为1.102eV)、P-Ga0.61In0.39As底电池基底层(带隙宽度为0.932eV)、N-Ga0.61In0.39As底电池发射层(带隙宽度为0.932eV)、N-Ga0.1In0.9P底电池窗口层(带隙宽度为1.422eV)组成;所述的底电池背场厚度优选为50nm~100nm,其带隙宽度优选为1.0eV~1.2eV;所述的底电池基底层厚度优选为1000nm~2000nm,其带隙宽度优选为0.9eV~1.0eV;所述的底电池发射层厚度优选为100nm~200nm,其带隙宽度优选为0.9eV~1.0eV;所述的底电池窗口层厚度优选为50nm~100nm,其带隙宽度优选为1.4eV~1.5eV。
所述的中电池由从下至上依次层叠排列的P-Al0.3Ga0.7As中电池背场(带隙宽度为1.798eV)、P-GaAs中电池基底层、N-GaAs中电池发射层、N-Al0.05Ga0.45In0.5P中电池窗口层(带隙宽度为2.15eV)组成;所述的中电池背场厚度优选为50nm~100nm,其带隙宽度优选为1.7~1.9eV;所述的中电池基底层厚度优选为2500nm~3500nm,其带隙宽度优选为1.4~1.6eV;所述的中电池发射层厚度优选为500nm~1000nm,其带隙宽度优选为1.4~1.6eV;所述的中电池窗口层厚度优选为100nm~500nm,其带隙宽度优选为2.0~2.2eV。
所述的顶电池由从下至上依次层叠排列的P-Al0.105Ga0.421In0.474P顶电池背场(带隙宽度为2.235eV)、P-Ga0.526In0.474P顶电池基底层(带隙宽度为1.905eV)、N-Ga0.526In0.474P顶电池发射层(带隙宽度为1.905eV)、N-Al0.526In0.474P顶电池窗口层(带隙宽度为2.603eV)、N++-GaAs接触层组成;所述的顶电池背场厚度优选为50nm~100nm,其带隙宽度优选为2.2eV~2.4eV;所述的顶电池基底层厚度优选为500nm~1000nm,其带隙宽度优选为1.8eV~2.0eV;所述的顶电池发射层厚度优选为100nm~500nm,其带隙宽度优选为1.8eV~2.0eV;所述的顶电池窗口层厚度优选为50nm~100nm,其带隙宽度优选为2.5eV~2.7eV。
所述的高温P-GaAs缓冲层与底电池背场之间设置P-Al0.15Ga0.7In0.15As缓冲层(带隙宽度为1.38eV)。
所述的底电池与中电池之间的隧穿结连接结构由从下至上依次层叠排列的N-Ga0.85In0.15As底中电池缓冲层(带隙宽度为1.24eV),以及N++-GaAs/P++-GaAs底中电池遂穿结组成;所述的N++-GaAs/P++-GaAs底中电池遂穿结是在所述的底中电池缓冲层上先生长N++-GaAs,然后再生长P++-GaAs,从而形成的一种遂穿结结构;所述的底中电池缓冲层厚度优选为50nm~100nm,其带隙宽度优选为1.2eV~1.4eV;所述的底中电池遂穿结厚度优选为100nm~150nm。
所述的中电池与顶电池之间的隧穿结连接结构为N++-Ga0.526In0.474P/P++-Al0.3Ga0.7As中顶电池遂穿结,其中P++-Al0.3Ga0.7As带隙宽度为1.798eV,N++-Ga0.526In0.474P带隙宽度为1.905eV;所述的N++-Ga0.526In0.474P/P++-Al0.3Ga0.7As中顶电池遂穿结是在中电池表面上先生长N++-Ga0.526In0.474P,然后再生长P++-Al0.3Ga0.7As,从而形成的一种遂穿结结构;所述的中顶电池遂穿结厚度优选为100nm~150nm,其隙宽度优选为1.8eV~2.0eV。
本实施例中的三结聚光砷化镓太阳能电池采用金属有机化学气相沉积(MOCVD)法制备得到。具体采用金属有机化学气相沉积(MOCVD)设备,包括以下步骤:
(1)P型碳化硅衬底热处理:在730℃~770℃、H2气氛下对P型碳化硅衬底热处理10分钟~20分钟;
(2)低温P-GaAs缓冲层生长:将生长室温度降低到500℃~540℃,然后通入TMGa、DEZn和AsH3,在P型碳化硅衬底表面以1um/h的速率生长厚度为25nm的低温P-GaAs缓冲层,掺Zn量为2E18个原子/cm3,停止生长后,将生长室的温度升温到680℃~720℃退火5分钟~10分钟;
(3)高温P-GaAs缓冲层生长:保持生长室温度在680℃~720℃,继续通入TMGa、DEZn和AsH3,在低温P-GaAs缓冲层上以1um/h的速率生长厚度为600nm的高温P-GaAs缓冲层,掺Zn量为2E18个原子/cm3
(4)P-Al0.15Ga0.7In0.15As缓冲层生长:将生长室温度降低到580℃~620℃,然后通入TMGa、TMAl、TMIn、DEZn和AsH3,在高温P-GaAs缓冲层上以10um/h的速率生长厚度为50nm的P-Al0.15Ga0.7In0.15As缓冲层,掺Zn量为2E18个原子/cm3
(5)P-Al0.122Ga0.488In0.39As底电池背场生长:保持生长室温度在580℃~620℃,然后通入TMGa、TMAl、TMIn、DEZn和AsH3,在P-AlGaInAs缓冲层上以10um/h的速率生长厚度为100nm的P-Al0.122Ga0.488In0.39As底电池背场,掺Zn量为3E18个原子/cm3
(6)P-Ga0.61In0.39As底电池基底层生长:保持生长室温度在580℃~620℃,然后通入TMGa、TMIn、DEZn和AsH3,在所述的底电池背场上以10um/h的速率生长厚度为2000nm的P-Ga0.61In0.39As底电池基底层,掺Zn量为2E17个原子/cm3
(7)N-Ga0.61In0.39As底电池发射层生长:保持生长室温度在580℃~620℃,然后通入TMGa、TMIn、Si2H6和AsH3,在所述的底电池基底层上以10um/h的速率生长厚度为200nm的N-Ga0.61In0.39As底电池发射层,掺Si量为2E18个原子/cm3
(8)N-Ga0.1In0.9P底电池窗口层生长:保持生长室温度在580℃~620℃,然后通入TMGa、TMIn、Si2H6和PH3,在所述的底电池发射层上以2um/h的速率生长厚度为50nm的Ga0.1In0.9P底电池窗口层,掺Si量为3E18个原子/cm3
(9)N-Ga0.85In0.15As底中电池缓冲层生长:保持生长室温度在580℃~620℃,然后通入TMGa、TMIn、Si2H6和AsH3,在N-GaInP底电池窗口层上以10um/h的速率生长厚度为50nm的N-Ga0.85In0.15As底中电池缓冲层,掺Si量为1E18个原子/cm3
(10)P++-GaAs/N++-GaAs底中电池遂穿结生长:保持生长室温度在580℃~620℃,分别通入TMGa、SeH2、AsH3和TMGa、CBr4、AsH3,在N-GaInAs底中电池缓冲层上以1um/h的速率分别生长厚度为100nm的N++-GaAs和P++-GaAs,从而形成N++-GaAs/P++-GaAs底中电池遂穿结,掺Se和C的量均为2E19个原子/cm3
(11)P-Al0.3Ga0.7As中电池背场生长:将生长室温度升温至630℃~670℃,然后通入TMAl、TMGa、DEZn和AsH3,在N++-GaAs/P++-GaAs底中电池遂穿结上以1um/h的速率生长厚度为100nm的P-AlGaAs中电池背场,掺Zn量为1E18个原子/cm3
(12)P-GaAs中电池基底层生长:保持生长室温度在630℃~670℃,然后通入TMGa、DEZn和AsH3,在P-AlGaAs中电池背场上以10um/h的速率生长厚度为2500nm的P-GaAs中电池基底层,掺Zn量为1E17个原子/cm3
(13)N-GaAs中电池发射层生长:保持生长室温度在630℃~670℃,然后通入TMGa、Si2H6和AsH3,在P-GaAs中电池基底层上以10um/h的速率生长厚度为500nm的N-GaAs中电池发射层,掺Si量为2E18个原子/cm3
(14)N-Al0.05Ga0.45In0.5P中电池窗口层生长:保持生长室温度在630℃~670℃,然后通入TMGa、TMAl、TMIn、Si2H6和PH3,在N-GaAs中电池发射层上生长厚度为150nm的N-AlGaInP中电池窗口层,掺Si量为1E18个原子/cm3
(15)P++-Al0.3Ga0.7As/N++-Ga0.526In0.474P中顶电池遂穿结生长:保持生长室温度在630℃~670℃,分别通入TMGa、TMIn、SeH2、PH3和TMGa、TMAl、CBr4、AsH3在N-AlGaInP中电池窗口层上以1um/h的速率分别生长厚度为100nm的N++-GaInP和P++-AlGaAs,从而形成N++-GaInP/P++-AlGaAs中顶电池遂穿结,掺Se和C的量均为2E19个原子/cm3
(16)P-Al0.105Ga0.421In0.474P顶电池背场生长:保持生长室温度在630℃~670℃,然后通入TMAl、TMGa、TMIn、DEZn和PH3,在N++-GaInP/P++-AlGaAs中顶电池遂穿结上以2um/h的速率生长厚度为100nm的P-AlGaInP顶电池背场,掺Zn量为1E18个原子/cm3
(17)P-Ga0.526In0.474P顶电池基底层生长:保持生长室温度在630℃~670℃,然后通入TMGa、TMIn、DEZn和PH3,在P-AlGaInP顶电池背场上以2um/h的速率生长厚度为500nm的P-GaInP顶电池基底层,掺Zn量为1E17个原子/cm3
(18)N-Ga0.526In0.474P顶电池发射层生长:保持生长室温度在630℃~670℃,然后通入TMGa、TMIn、Si2H6和PH3,在P-GaInP顶电池基底层上以2um/h的速率生长厚度为100nm的N-GaInP顶电池发射层,掺Si量为2E18个原子/cm3
(19)N-Al0.526In0.474P顶电池窗口层生长:保持生长室温度在630℃~670℃,然后通入TMAl、TMIn、Si2H6和PH3,在N-GaInP顶电池发射层上以2um/h的速率生长厚度为50nm的N-AlInP顶电池窗口层,掺Si量为3E18个原子/cm3
(20)N++-GaAs接触层生长:将生长室温度降低到450℃~550℃,然后通入TMGa、SeH2和AsH3,在N-AlInP顶电池窗口层上以1um/h的速率生长厚度为200nm的N++-GaAs接触层,掺Se量为1E19个原子/cm3
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (10)

1.一种多结聚光砷化镓太阳能电池,其特征在于:以P型碳化硅为衬底,自衬底表面起由下至上依次层叠排列着低温P-GaAs缓冲层、高温P-GaAs缓冲层、底电池、中电池、顶电池以及N++-GaAs接触层,其中,所述的底电池与中电池以及中电池与顶电池之间分别设置有隧穿结连接结构。
2.根据权利要求1所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的低温P-GaAs缓冲层是在温度为500℃~540℃条件下制备得到的P-GaAs缓冲层,其厚度为20nm~30nm;所述的高温P-GaAs缓冲层是在温度为680℃~720℃条件下制备得到的P-GaAs缓冲层,其厚度为500nm~800nm。
3.根据权利要求1所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的底电池由从下至上依次层叠排列的P-(AlxGa1-x)1-yInyAs底电池背场,其中0<x<1,0<y<1;P-GaxIn1-xAs底电池基底层,其中0<x<1;N-GaxIn1-xAs底电池发射层,其中0<x<1;N-GaxIn1-xP底电池窗口层,其中0<x<1组成。
4.根据权利要求1所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的中电池由从下至上依次层叠排列的P-AlxGa1-xAs中电池背场,其中0<x<1;P-GaAs中电池基底层;N-GaAs中电池发射层;N-(AlxGa1-x)1-yInyP中电池窗口层,其中0<x<1,0<y<1组成。
5.根据权利要求1所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的顶电池由从下至上依次层叠排列的P-(AlxGa1-x)1-yInyP顶电池背场,其中0<x<1,0<y<1;P-GaxIn1-xP顶电池基底层,其中0<x<1;N-GaxIn1-xP顶电池发射层,其中0<x<1;N-AlxIn1-xP顶电池窗口层,其中0<x<1组成。
6.根据权利要求1所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的底电池与中电池之间的隧穿结连接结构由从下至上依次层叠排列的N-GaxIn1-xAs底中电池缓冲层,其中0<x<1;以及N++-GaAs/P++-GaAs底中电池遂穿结组成。
7.根据权利要求1所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的中电池与顶电池之间的隧穿结连接结构是N++-GaxIn1-xP/P++-AlyGa1-yAs中顶电池遂穿结,其中0<x<1,0<y<1。
8.根据权利要求3所述的一种多结聚光砷化镓太阳能电池,其特征在于:所述的高温P-GaAs缓冲层和底电池背场之间设置P-(AlxGa1-x)yIn1-yAs缓冲层,其中0<x<1,0<y<1。
9.一种权利要求1所述的多结聚光砷化镓太阳能电池的制备方法,其特征在于,包括以下步骤:
步骤一、P型碳化硅衬底热处理:首先在温度为730℃~770℃、H2气氛条件下对P型碳化硅衬底进行热处理;
步骤二、低温P-GaAs缓冲层生长:将生长室温度降低到500℃~540℃,然后通入TMGa、DEZn和AsH3,在P型碳化硅衬底表面上生长低温P-GaAs缓冲层,停止生长后,将生长室的温度升温到680℃~720℃后退火,其中,所述低温P-GaAs缓冲层中的掺Zn量为1E18个原子/cm3~5E18个原子/cm3
步骤三、高温P-GaAs缓冲层生长:保持生长室温度在680℃~720℃,继续通入TMGa、DEZn和AsH3,在低温P-GaAs缓冲层表面上生长高温P-GaAs缓冲层,其中,所述高温P-GaAs缓冲层中的掺Zn量为1E18个原子/cm3~5E18个原子/cm3
步骤四、在高温P-GaAs缓冲层表面依次生长底电池,底电池与中电池间的隧穿结连接结构,中电池,中电池与顶电池间的隧穿结连接结构,顶电池以及N++-GaAs接触层。
10.根据权利要求9所述的一种多结聚光砷化镓太阳能电池的制备方法,其特征在于,在所述步骤四中,底电池的沉积方法包括如下步骤:
(1)将生长室温度降低到580℃~620℃,通入TMGa、TMAl、TMIn、DEZn和AsH3,在高温P-GaAs缓冲层表面生长P-(AlxGa1-x)1-yInyAs底电池背场,其中0<x<1,0<y<1,所述底电池背场中的掺Zn量为3E18个原子/cm3~8E18个原子/cm3
(2)保持生长室温度在580℃~620℃,通入TMGa、TMIn、DEZn和AsH3,在所述的底电池背场表面生长P-GaxIn1-xAs底电池基底层,其中0<x<1,所述底电池基底层中的掺Zn量为1E17个原子/cm3-5E17个原子/cm3
(3)保持生长室温度在580℃~620℃,通入TMGa、TMIn、Si2H6和AsH3,在所述的底电池基底层表面生长N-GaxIn1-xAs底电池发射层,其中0<x<1,所述底电池发射层中的掺Si量为1E18个原子/cm3~5E18个原子/cm3
(4)保持生长室温度在580℃~620℃,通入TMGa、TMIn、Si2H6和PH3,在所述的底电池发射层表面生长N-GaxIn1-xP底电池窗口层,其中0<x<1,所述底电池窗口层中的掺Si量为1E18个原子/cm3~5E18个原子/cm3
底电池与中电池间的隧穿结连接结构的生长方法包括如下步骤:
(1)保持生长室温度在580℃~620℃,通入TMGa、TMIn、Si2H6和AsH3,在所述的底电池窗口层表面生长N-GaxIn1-xAs底中电池缓冲层,其中0<x<1,所述底中电池缓冲层中的掺Si量为1E18个原子/cm3~5E18个原子/cm3
(2)保持生长室温度在580℃~620℃,先后通入TMGa、SeH2、AsH3和TMGa、CBr4、AsH3,在所述的底中电池缓冲层上先后生长N++-GaAs和P++-GaAs,从而形成N++-GaAs/P++-GaAs底中电池遂穿结,其中,所述底中电池遂穿结中掺Se量为1E19个原子/cm3~5E19个原子/cm3,掺C量为1E19个原子/cm3~5E19个原子/cm3
中电池的沉积方法包括如下步骤:
(1)将生长室温度升温至630℃~670℃,通入TMAl、TMGa、DEZn和AsH3,在N++-GaAs/P++-GaAs底中电池遂穿结表面生长P-AlxGa1-xAs中电池背场,其中0<x<1,所述中电池背场中掺Zn量为1E18个原子/cm3~5E18个原子/cm3
(2)保持生长室温度在630℃~670℃,通入TMGa、DEZn和AsH3,在所述的中电池背场表面生长P-GaAs中电池基底层,其中,所述中电池基底层中掺Zn量为1E17个原子/cm3~5E17个原子/cm3
(3)保持生长室温度在630℃~670℃,通入TMGa、Si2H6和AsH3,在所述的中电池基底层表面生长N-GaAs中电池发射层,其中,所述中电池发射层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
(4)N-AlGaInP中电池窗口层生长:保持生长室温度在630℃~670℃,然后通入TMGa、TMAl、TMIn、Si2H6和PH3,在N-GaAs中电池发射层表面生长N-(AlxGa1-x)1-yInyP中电池窗口层,其中0<x<1,0<y<1,所述中电池窗口层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
中电池与顶电池间的隧穿结连接结构的沉积方法如下:
保持生长室温度在630℃~670℃,先后通入TMGa、TMIn、SeH2、PH3和TMGa、TMAl、CBr4、AsH3在所述的中电池窗口层表面先后生长N++-GaxIn1-xP和P++-AlyGa1-yAs,其中0<x<1,0<y<1,从而形成N++-GaInP/P++-AlGaAs中顶电池遂穿结,其中,所述中顶电池遂穿结中掺Se量为1E19个原子/cm3~5E19个原子/cm3,掺C量为1E19个原子/cm3~5E19个原子/cm3
顶电池的沉积方法包括如下步骤:
(1)保持生长室温度在630℃~670℃,通入TMAl、TMGa、TMIn、DEZn和PH3,在所述的中顶电池遂穿结表面生长P-(AlxGa1-x)1-yInyP顶电池背场,其中0<x<1,0<y<1,所述顶电池背场中掺Zn量为1E18个原子/cm3~5E18个原子/cm3
(2)保持生长室温度在630℃~670℃,通入TMGa、TMIn、DEZn和PH3,在所述的顶电池背场表面生长P-GaxIn1-xP顶电池基底层,其中0<x<1,所述顶电池基底层中掺Zn量为1E17个原子/cm3~5E17个原子/cm3
(3)保持生长室温度在630℃~670℃,通入TMGa、TMIn、Si2H6和PH3,在所述的顶电池基底层表面生长N-GaxIn1-xP顶电池发射层,其中0<x<1,所述顶电池发射层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
(4)保持生长室温度在630℃~670℃,通入TMAl、TMIn、Si2H6和PH3,在N-GaInP顶电池发射层表面生长N-AlxIn1-xP顶电池窗口层,其中0<x<1,所述顶电池窗口层中掺Si量为1E18个原子/cm3~5E18个原子/cm3
N++-GaAs接触层的沉积方法如下:
将生长室温度降低到450℃~550℃,通入TMGa、SeH2和AsH3,在N-AlInP顶电池窗口层表面生长N++-GaAs接触层,其中,所述N++-GaAs接触层中掺Se量为1E19个原子/cm3~5E19个原子/cm3
CN201310508769.XA 2013-10-24 2013-10-24 一种多结聚光砷化镓太阳能电池及其制备方法 Active CN103545389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310508769.XA CN103545389B (zh) 2013-10-24 2013-10-24 一种多结聚光砷化镓太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310508769.XA CN103545389B (zh) 2013-10-24 2013-10-24 一种多结聚光砷化镓太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN103545389A true CN103545389A (zh) 2014-01-29
CN103545389B CN103545389B (zh) 2016-03-30

Family

ID=49968654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310508769.XA Active CN103545389B (zh) 2013-10-24 2013-10-24 一种多结聚光砷化镓太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN103545389B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943712A (zh) * 2014-05-19 2014-07-23 上海空间电源研究所 一种超宽带隙隧穿结
US9972735B2 (en) 2015-06-12 2018-05-15 Azur Space Solar Power Gmbh Optocoupler having a semiconductor diode for each voltage source and a tunnel diode formed between each two successive voltage sources
TWI649891B (zh) * 2015-05-18 2019-02-01 艾澤太空太陽能公司 可擴展的電壓源
CN112349796A (zh) * 2019-08-06 2021-02-09 东泰高科装备科技有限公司 砷化镓电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200523A1 (en) * 2003-04-14 2004-10-14 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN102969387A (zh) * 2012-11-08 2013-03-13 王伟明 GaInP/GaAs/InGaAs三结太阳能电池外延结构
CN103000758A (zh) * 2012-10-08 2013-03-27 天津蓝天太阳科技有限公司 双面外延生长GaAs三结太阳能电池的制备方法
CN203536449U (zh) * 2013-10-24 2014-04-09 广东瑞德兴阳光伏科技有限公司 一种多结聚光砷化镓太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200523A1 (en) * 2003-04-14 2004-10-14 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN103000758A (zh) * 2012-10-08 2013-03-27 天津蓝天太阳科技有限公司 双面外延生长GaAs三结太阳能电池的制备方法
CN102969387A (zh) * 2012-11-08 2013-03-13 王伟明 GaInP/GaAs/InGaAs三结太阳能电池外延结构
CN203536449U (zh) * 2013-10-24 2014-04-09 广东瑞德兴阳光伏科技有限公司 一种多结聚光砷化镓太阳能电池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943712A (zh) * 2014-05-19 2014-07-23 上海空间电源研究所 一种超宽带隙隧穿结
TWI649891B (zh) * 2015-05-18 2019-02-01 艾澤太空太陽能公司 可擴展的電壓源
US10872887B2 (en) 2015-05-18 2020-12-22 Azur Space Solar Power Gmbh Scalable voltage source
US9972735B2 (en) 2015-06-12 2018-05-15 Azur Space Solar Power Gmbh Optocoupler having a semiconductor diode for each voltage source and a tunnel diode formed between each two successive voltage sources
TWI649892B (zh) * 2015-06-12 2019-02-01 艾澤太空太陽能公司 光電耦合器
CN112349796A (zh) * 2019-08-06 2021-02-09 东泰高科装备科技有限公司 砷化镓电池及其制备方法

Also Published As

Publication number Publication date
CN103545389B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN100573923C (zh) 硅基高效多结太阳电池及其制备方法
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
CN106653950B (zh) 一种砷化镓-硅多结高效太阳电池的制备方法
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN104300015B (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN101901854A (zh) 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN103545389B (zh) 一种多结聚光砷化镓太阳能电池及其制备方法
CN203536449U (zh) 一种多结聚光砷化镓太阳能电池
CN101533862A (zh) 一种电流匹配和晶格匹配的高效率三结太阳电池
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN104282795B (zh) GaInP/GaAs/InGaAs/Ge太阳能电池的制备方法
CN103000740B (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN102738292B (zh) 多结叠层电池及其制备方法
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
CN102386267A (zh) 太阳能电池及其制造方法
CN206584943U (zh) 一种正向生长的匹配四结太阳能电池
CN105938856B (zh) 一种Si衬底GaAs单结太阳能电池结构及其制备方法
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN204118094U (zh) 一种带隙结构优化的三结太阳电池
CN102779865A (zh) 一种以锗为隧穿结的硅基三结太阳能电池
CN103579388B (zh) 一种含有双背场结构的太阳电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 528437 Zhongshan Torch Development Zone, Guangdong, one of the torch Road, No. 22

Applicant after: REDSOLAR NEW ENERGY TECHNOLOGY CO., LTD.

Address before: 528437 Guangdong Torch Development Zone, Zhongshan Torch Road, No. 22 Ming Yang Industrial Park

Applicant before: Guangdong Ruide Xingyang Solar Technology Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: GUANGDONG RUIDE XINGYANG SOLAR TECHNOLOGY CO., LTD. TO: REDSOLAR NEW ENERGY TECHNOLOGY CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170327

Address after: 528437 layer 3-4, No. 22, Torch Road, Torch Development Zone, Zhongshan, Guangdong, China

Patentee after: ZHONGSHAN DEHUA CHIP TECHNOLOGY CO., LTD.

Address before: 528437 Zhongshan Torch Development Zone, Guangdong, one of the torch Road, No. 22

Patentee before: REDSOLAR NEW ENERGY TECHNOLOGY CO., LTD.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: The invention relates to a multi junction concentrating gallium arsenide solar cell and a preparation method thereof

Effective date of registration: 20210929

Granted publication date: 20160330

Pledgee: Industrial Bank Limited by Share Ltd. Zhongshan branch

Pledgor: ZHONGSHAN DEHUA CHIP TECHNOLOGY Co.,Ltd.

Registration number: Y2021980010236