CN106653612B - 一种采用化学机械抛光技术制造ldmos器件的方法 - Google Patents

一种采用化学机械抛光技术制造ldmos器件的方法 Download PDF

Info

Publication number
CN106653612B
CN106653612B CN201611243257.5A CN201611243257A CN106653612B CN 106653612 B CN106653612 B CN 106653612B CN 201611243257 A CN201611243257 A CN 201611243257A CN 106653612 B CN106653612 B CN 106653612B
Authority
CN
China
Prior art keywords
layer
window
region
polysilicon
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611243257.5A
Other languages
English (en)
Other versions
CN106653612A (zh
Inventor
柳志亨
姚泽强
肖德明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Publication of CN106653612A publication Critical patent/CN106653612A/zh
Application granted granted Critical
Publication of CN106653612B publication Critical patent/CN106653612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/66583Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66689Lateral DMOS transistors, i.e. LDMOS transistors with a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出了一种制造位于半导体衬底中的阱区内的LDMOS器件的方法,包括:通过体区窗口,对半导体衬底中的阱区之上的多晶硅层进行刻蚀;通过体区窗口,向阱区内注入具有第二掺杂类型的杂质,形成体区;在刻蚀后所形成的多晶硅层窗口内侧的侧壁处形成间隔,以定义源极区在体区内的位置。源极区宽度由间隔的厚度决定。本发明采用间隔和化学机械抛光技术形成较窄的N+/P+/N+源极/体区,从而减小源极区,并且有效降低了制造LDMOS的成本。

Description

一种采用化学机械抛光技术制造LDMOS器件的方法
技术领域
本发明涉及半导体器件,更具体地说,本发明涉及制造横向扩散型金属氧化物半导体(LDMOS,Laterally Diffused Metal Oxide Semiconductor)器件的方法。
背景技术
LDMOS器件因其高击穿电压、大电流及良好的温度特性而广泛应用于笔记本电脑、服务器和DC/DC电压转换电路。
如图1所示,LDMOS器件包括阱区16、漏极接触区11、源极区12、栅极13、体区14以及体接触区15。本领域普通技术人员应该知道,阱区16也称作漏极漂移区。出于对性能和成本的考虑,现在许多应用场合都要求封装更小的功率器件。为了得到更小的功率器件,大量的研究关注于减小漏极区尺寸的工艺,例如降低表面电场RESURF(Reduced Surface Field)及梯度掺杂漏极(Graded Dope Drain)等。而有一部分研究则关注于减小源极区的工艺。如图1所示,源极/体区内包括位于中心的体接触区15和分布在体接触区两边的源极区12,从而形成一个N+/P+/N+区域,减小该N+/P+/N+区域可减小源极区。但N+/P+/N+的最小面积通常会受到光掩模设备性能的限制。
发明内容
本发明的目的是提供一种工艺,该工艺采用侧壁间隔和化学机械抛光技术替代光掩模工序来定义N+/P+/N+区域,以得到更小的源极区。同时,本发明采用的一道掩膜工序中,形成了自对准的源极区和体接触区。因此,本发明减小了LDMOS器件的源极区,并且有效降低了制造LDMOS器件的成本。
本发明的实施例旨在提供一种制造LDMOS器件的工艺流程,其中该LDMOS器件位于半导体衬底中的具有第一掺杂类型的阱区,包括:在阱区上形成薄栅氧层;在薄栅氧层上形成多晶硅层;在多晶硅层上形成阻隔层,该阻隔层的刻蚀速度比薄栅氧层的刻蚀速度快;通过在阻隔层之上的第一掩膜层的体区窗口,对阻隔层和多晶硅层进行刻蚀,暴露出一个通向阱区的窗口;通过第一掩膜层的体区窗口,向阱区注入具有第二掺杂类型的杂质,形成体区;形成间隔,该间隔包裹刻蚀后所形成的多晶硅层窗口内侧的侧壁;通过间隔所形成的体接触区窗口,向体区注入具有第二掺杂型的杂质,形成体接触区;将多晶硅淀积于间隔所形成的体接触区窗口之内,形成多晶硅区块;进行化学机械抛光,暴露出位于多晶硅区块和多晶硅层之间的间隔;通过刻蚀移除间隔和阻隔层;通过经刻蚀移除间隔后所暴露出的源极区窗口,向体区注入具有第一掺杂类型的杂质,形成源极区;通过刻蚀移除多晶硅区块;通过第二掩膜层的窗口,对多晶硅层进行刻蚀,形成栅极;以及通过第三掩膜层的窗口,向阱区注入具有第一掺杂类型的杂质,形成漏极接触区。
本发明的实施例旨在描述一种制造LDMOS器件的方法,包括:通过定义体区的窗口,对半导体衬底中的阱区之上的多晶硅层进行刻蚀;通过定义体区的窗口,向阱区内注入具有第二掺杂类型的杂质,形成体区;以及在刻蚀后所形成的多晶硅层窗口内侧的侧壁处形成间隔,以定义源极区在体区内的位置。
本发明的实施例旨在进一步描述一种制造LDMOS器件的工艺流程,包括:在半导体衬底内形成阱区;在阱区上形成薄栅氧层;在薄栅氧层上形成多晶硅层;在多晶硅层上按顺序依次形成栅极密封层、氮化硅层和第一掩膜层,其中第一掩膜层包括至少一个通向氮化硅层表面的窗口;通过第一掩膜层的窗口,对氮化硅层、栅极密封层和多晶硅层进行刻蚀,暴露出阱区中对应于体区的窗口;通过对应于体区的窗口,向阱区注入P型杂质,在阱区内形成体区,并移除第一掩膜层;对刻蚀多晶硅层后所形成的多晶硅窗口内侧的侧壁进行氧化;在多晶硅层被氧化的侧壁处形成间隔;将多晶硅填充进间隔所形成的窗口内,形成多晶硅区块;进行化学机械抛光,暴露出位于多晶硅区块和多晶硅层之间的间隔;通过刻蚀移除氮化硅层和间隔,暴露出对应于源极区的窗口;通过源极区窗口,向阱区注入N型杂质,形成源极区;通过刻蚀移除多晶硅区块;在栅极密封层上形成第二掩膜层,其中第二掩膜层具有位置预定的窗口;通过第二掩膜层的窗口,对栅极密封层和多晶硅层进行刻蚀,形成栅极,随后移除第二掩膜层;在栅极和薄栅氧层上形成第三掩膜层,该第三掩膜层包含对应于漏极接触区的窗口;以及通过第三掩膜层的窗口,向阱区注入N型杂质,形成漏极接触区,随后移除第三掩膜层。
附图说明
为了更好的理解本发明,将根据以下附图对本发明的实施例进行描述。这些附图仅用于示意说明,相似的部分具有相似的数字标号。附图仅示出器件的部分特征,并且不一定按照比例进行绘制,附图的尺寸和比例可能与实际的尺寸和比例不一致。
图1示出了现有的LDMOS器件的剖面图;
图2示出了现有的制造LDMOS器件的工艺流程概要图;
图3a-3j示出了根据本发明一实施例的制造具有小源极区的LDMOS器件的制程;
图4示出了根据本发明一实施例的用于制造图3a-3j所示出的LDMOS器件的工艺流程概要图。
具体实施方式
下面将详细描述本发明的具体实施例。应当理解的是,这些实施例只用于举例说明,并不用于限制本发明。相反地,本发明应当涵盖替代、修改和等效等方式,这些方式可能在附加的权利要求所定义的精神和范围之内。另外,在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的电路、材料或方法。
说明书和权利要求书中表示方位的用语,例如“左““右”“里”“外”“前”“后”“上”“下”“顶部”“底部”“正上方”“正下方”等,只用于描述,并不意味着这些相对位置是永久不变的。应当理解的是,以上术语在适当的情况下是可以互换的,从而使得相应的实施例可以在其它方向上正常工作。
图2示出了现有的制造LDMOS器件的工艺流程概要图。该现有工艺可能包括以下步骤:前端工序、薄栅氧层形成、多晶硅层淀积、栅极区掩膜工序、多晶硅层刻蚀、掩膜层移除、多晶硅栅氧化、体区掩膜工序、体区注入、掩膜层移除、N+区掩膜工序、源极/漏极区注入、掩膜层移除、P+区掩膜工序、体接触区注入、掩膜层移除和后端工序。前端工序可包括:准备初始衬底、形成N型埋层、生长外延层和定义有源区。在一些应用中,前端工序还包括形成厚栅氧层。后端工序可包括:形成源极区电极、形成漏极区电极、形成体接触区电极、形成栅极电极和分布金属层。本领域普通技术人员应当知道,掩膜工序(例如“栅极区掩膜工序”),意味着形成具有若干窗口的掩膜层,这些窗口对应于半导体衬底上表面的特定区域。例如,体区掩膜工序包括以下步骤:在半导体衬底的上表面形成掩膜层;对掩膜层进行显影,暴露出通向体区的窗口。掩膜可包括光刻胶。
由图2可知,体区、体接触区和源极/漏极区通过传统的光掩模和离子注入工艺形成。因此,源极/体区的窗口大小,即图1中所示出的N+/P+/N+区显然会受到光掩膜设备性能的限制。
图3a-3j示出了根据本发明一实施例的制造具有小源极区的LDMOS器件的制程。
图3a示出了半导体衬底301。所述半导体衬底301包括初始衬底318、N型埋层(NBL)319、外延层320和阱区321,其中阱区321也被称作漏极漂移区。初始衬底318可以为N型、P型或本征半导体材料;N型埋层319可以用其他结构替代;外延层320可以为N型、P型或本征半导体材料。阱区321可以是轻掺杂的高压阱区。所述LDMOS器件形成于阱区321之内。半导体衬底301还可能集成其他电路、器件或系统。例如,在BCD(Bipolar-CMOS-DMOS)工艺中,双极型晶体管(BJT,Bipolar Junction Transistor)、互补型金属氧化物半导体器件(CMOS,Complementary Metal Oxide Semiconductor)等其他多种器件会与LDMOS器件一起集成于同一衬底内。在一些实施例中,半导体衬底301可能具有其他构造,或不具有上述的部分区域。
图3a中,薄栅氧层302形成于半导体衬底301的上表面。随后,多晶硅层303通过淀积形成于薄栅氧层302之上。在后续工序中,该多晶硅层303将被刻蚀成LDMOS器件的多晶硅栅。接下来,在多晶硅层303的上表面进行氧化工序或氧化物淀积工序,形成栅极密封层304的一部分。随后,氮化硅层305通过淀积形成于栅极密封层304之上。接下来,第一掩膜层306通过掩膜工序形成于氮化硅层305之上。第一掩膜层306包括至少一个通向氮化硅层305的窗口OP1,该窗口可通过对第一掩膜层306进行曝光后溶解第一掩膜层306上特定的区域而形成。窗口OP1也被称作源极/体区窗口或者体区窗口。在一个实施例中,窗口OP1的宽度d1为0.3微米到0.5微米。
薄栅氧层302被用作介电层,而多晶硅层303被用作LDMOS器件的栅极的导电层。本领域普通技术人员应当知道,薄栅氧层302和多晶硅层303可用其他合适的材料替代。
在图3b至图3j中,为清晰起见,初始衬底318、N型埋层319和外延层320未被示出。
图3b中,窗口OP1下的氮化硅层305、栅极密封层304和多晶硅303层被刻蚀,从而暴露出由薄栅氧层302所覆盖着的阱区321中对应源极/体区的区域表面。接下来,P型杂质通过窗口OP1注入至阱区321,形成体区307。随后,第一掩膜层306被移除。
图3c中,氧化工序被实施以形成栅极密封侧壁303S,来包裹窗口OP1内侧裸露的多晶硅层303的侧壁。栅极密封侧壁303S构成了栅极密封层304的一部分。
图3d中,形成氮化硅间隔308,以包裹栅极密封侧壁303S。氮化硅间隔308定义了源极区在体区307内的位置,即氮化硅间隔308正下方的区域。另外,间隔308构成窗口OP2,用于在体区307中定义体接触区309,窗口OP2也被称作体接触区窗口。P型杂质通过窗口OP2注入至体区307,在体区307内形成体接触区309。在此过程中,氮化硅层305和间隔308被用作P型杂质注入的掩膜层。P型杂质以高能量和高浓度注入至体区307形成体接触区309。因此,体接触区309具有比体区307更高的掺杂浓度。
在图3d所示的实施例中,由于氮化硅层305和间隔308被用作掩膜层,故形成体接触区309不再需要额外的掩膜层,例如光刻胶层。氮化硅层305也称作阻隔层。在一些实施例中,其他刻蚀速度比薄栅氧层302的刻蚀速度更快的材料可用来替代氮化硅形成阻隔层305。
在一个实施例中,如图3d所示出的每个间隔308的厚度d2的范围为0.1微米到0.15微米。
图3e中,多晶硅淀积于LDMOS器件所在的整片晶圆上,以填充窗口OP2。
图3f中,化学机械抛光工序被用于抛光晶圆。氮化硅层305和间隔308被用作化学机械抛光的阻层。在经过化学机械抛光工序之后,间隔308的顶部、填充窗口OP2的多晶硅的顶部及氮化硅层305的顶部被暴露出来。如图3f所示,填充窗口OP2的多晶硅形成了一个多晶硅区块310。
图3g中,间隔308和氮化硅层305被刻蚀以暴露出窗口OP3,来定义体区307中的源极区311。窗口OP3也称作源极区窗口。随后,N型杂质通过窗口OP3注入至体区307,形成源极区311。在一个实施例中,窗口OP3的宽度范围为0.1微米到0.15微米。
图3h中,多晶硅区块310被刻蚀移除,形成包括体区307、源极区311和体接触区309在内的源极/体区。
图3i中,第二掩膜层312通过掩膜工序形成于栅极密封层304之上。该第二掩膜层312包含特定的窗口,用于定义栅极的位置。第二掩膜层312的窗口下的多晶硅层被刻蚀后形成栅极322。随后,第二掩膜层312被移除。之后,额外的氧化工序可能会被实施以形成完整的栅极密封层304。
图3j中,第三掩膜层313通过掩膜工序形成于栅极322和薄栅氧层302之上,该第三掩膜层313包含特定的窗口OP4,以定义漏极区314的位置。第三掩膜层313也可同时被用于制作NMOS的N+源极区和漏极区,以及其他N+层,例如NPN双极晶体管的射极区和集极区。N型杂质通过窗口OP4注入至阱区321,形成漏极接触区314。随后,第三掩膜层313被移除。
图4示出了根据本发明一实施例的用于制造图3a-3j所示出的LDMOS器件的工艺流程概要图。相较于图2所示出的现有技术,本发明实施例在源极/体区窗口内侧的多晶硅层侧壁形成间隔,以定义源极区。在一些实施例中,该间隔厚度d2的范围为0.1微米到0.15微米。因此源极区宽度的范围可被控制在0.1微米到0.15微米,远小于依现有工艺所制造的LDMOS器件源极区的宽度。本发明采用间隔和化学机械抛光技术形成较窄的N+/P+/N+源极/体区,这是传统的光掩膜设备所无法实现的。
本领域普通技术人员应当知道,每个区域的掺杂类型可以替换,例如N型掺杂区可以用P型掺杂区替代,与此同时P型掺杂区用N型掺杂区替代。在如权利要求书所述的一个实施例中,第一掺杂类型为N型而第二掺杂类型为P型。在另一个实施例中,第一掺杂类型为P型而第二掺杂类型为N型。
N型杂质可在以下物质中择一:氮、磷、砷、锑、铋以及它们的组合。同时,P型杂质可在以下物质中择一:硼、铝、镓、铟、铊以及它们的组合。
根据以上教导,本发明的许多更改和变型方式显然也是可行的。因此,应当理解的是,在权利要求所限定的范围内,本发明可以不用按照上述特定的描述来实施。同样应当理解的是,上述公开只涉及到本发明一些优选实施例,在不脱离本发明权利要求所限定的精神和范围的前提下,可以对本发明作出更改。当只有一个优选实施例被公开,本领域普通技术人员不难想到改型并将其付诸于实施,而不脱离于本发明权利要求所限定的精神与范围。

Claims (8)

1.一种制造LDMOS器件的工艺流程,其中该LDMOS器件位于半导体衬底中的具有第一掺杂类型的阱区,包括:
在阱区上形成薄栅氧层;
在薄栅氧层上形成多晶硅层;
在多晶硅层上形成阻隔层,该阻隔层的刻蚀速度比薄栅氧层的刻蚀速度快;
通过在阻隔层之上的第一掩膜层的体区窗口,对阻隔层和多晶硅层进行刻蚀,暴露出一个通向阱区的窗口;
通过第一掩膜层的体区窗口,向阱区注入具有第二掺杂类型的杂质,形成体区;
形成间隔,该间隔包裹刻蚀后所形成的多晶硅层窗口内侧的侧壁;
通过间隔所形成的体接触区窗口,向体区注入具有第二掺杂型的杂质,形成体接触区;
将多晶硅淀积于间隔所形成的体接触区窗口之内,形成多晶硅区块;
进行化学机械抛光,暴露出位于多晶硅区块和多晶硅层之间的间隔;
通过刻蚀移除间隔和阻隔层;
通过经刻蚀移除间隔后所暴露出的源极区窗口,向体区注入具有第一掺杂类型的杂质,形成源极区;
通过刻蚀移除多晶硅区块;
通过第二掩膜层的窗口,对多晶硅层进行刻蚀,形成栅极;以及
通过第三掩膜层的窗口,向阱区注入具有第一掺杂类型的杂质,形成漏极接触区。
2.如权利要求1所述的制造LDMOS器件的工艺流程,其中间隔的材料和阻隔层的材料具有相同的刻蚀速度。
3.如权利要求1所述的制造LDMOS器件的工艺流程,其中间隔和阻隔层材料为氮化硅。
4.如权利要求1所述的制造LDMOS器件的工艺流程,其中,还包括在形成间隔之前,对多晶硅层窗口内侧的侧壁进行氧化。
5.如权利要求1所述的制造LDMOS器件的工艺流程,其中每个间隔的厚度范围为0.1微米到0.15微米。
6.如权利要求1所述的制造LDMOS器件的工艺流程,其中第一掩膜层的窗口宽度为0.3微米到0.5微米。
7.一种制造LDMOS器件的方法,包括:
通过定义体区的窗口,对半导体衬底中的阱区之上的多晶硅层进行刻蚀;
通过定义体区的窗口,向阱区内注入具有第二掺杂类型的杂质,形成体区;
在刻蚀后所形成的多晶硅层窗口内侧的侧壁处形成间隔,以定义源极区在体区内的位置;
将多晶硅填充进间隔所形成的窗口内,形成多晶硅区块;
对位于多晶硅区块和多晶硅层之间的间隔的上表面以及多晶硅区块的上表面进行化学机械抛光,以暴露出间隔;
通过刻蚀移除位于多晶硅区块和多晶硅层之间的间隔,暴露出对应于源极区的窗口;以及
通过经刻蚀移除间隔后所暴露出的对应于源极区的窗口,向阱区注入具有第一掺杂类型的杂质,形成源极区。
8.一种制造LDMOS器件的工艺流程,包括:
在半导体衬底内形成阱区;
在阱区上形成薄栅氧层;
在薄栅氧层上形成多晶硅层;
在多晶硅层上按顺序依次形成栅极密封层、氮化硅层和第一掩膜层,其中第一掩膜层包括至少一个通向氮化硅层表面的窗口;
通过第一掩膜层的窗口,对氮化硅层、栅极密封层和多晶硅层进行刻蚀,暴露出阱区中对应于体区的窗口;
通过对应于体区的窗口,向阱区注入P型杂质,在阱区内形成体区,并移除第一掩膜层;
对刻蚀多晶硅层后所形成的多晶硅窗口内侧的侧壁进行氧化;
在多晶硅层被氧化的侧壁处形成间隔;
将多晶硅填充进间隔所形成的窗口内,形成多晶硅区块;
进行化学机械抛光,暴露出位于多晶硅区块和多晶硅层之间的间隔;
通过刻蚀移除氮化硅层和间隔,暴露出对应于源极区的窗口;
通过源极区窗口,向阱区注入N型杂质,形成源极区;
通过刻蚀移除多晶硅区块;
在栅极密封层上形成第二掩膜层,其中第二掩膜层具有位置预定的窗口;
通过第二掩膜层的窗口,对栅极密封层和多晶硅层进行刻蚀,形成栅极,随后移除第二掩膜层;
在栅极和薄栅氧层上形成第三掩膜层,该第三掩膜层包含对应于漏极接触区的窗口;以及
通过第三掩膜层的窗口,向阱区注入N型杂质,形成漏极接触区,随后移除第三掩膜层。
CN201611243257.5A 2016-11-18 2016-12-28 一种采用化学机械抛光技术制造ldmos器件的方法 Active CN106653612B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/356,516 2016-11-18
US15/356,516 US9935176B1 (en) 2016-11-18 2016-11-18 Method for fabricating LDMOS using CMP technology

Publications (2)

Publication Number Publication Date
CN106653612A CN106653612A (zh) 2017-05-10
CN106653612B true CN106653612B (zh) 2019-12-06

Family

ID=58835560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611243257.5A Active CN106653612B (zh) 2016-11-18 2016-12-28 一种采用化学机械抛光技术制造ldmos器件的方法

Country Status (2)

Country Link
US (1) US9935176B1 (zh)
CN (1) CN106653612B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090409B2 (en) * 2016-09-28 2018-10-02 Monolithic Power Systems, Inc. Method for fabricating LDMOS with self-aligned body
US9941171B1 (en) * 2016-11-18 2018-04-10 Monolithic Power Systems, Inc. Method for fabricating LDMOS with reduced source region
US11069777B1 (en) 2020-06-09 2021-07-20 Monolithic Power Systems, Inc. Manufacturing method of self-aligned DMOS body pickup
CN111755337A (zh) * 2020-07-14 2020-10-09 杰华特微电子(杭州)有限公司 横向双扩散晶体管的制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299998A (zh) * 2013-09-26 2015-01-21 成都芯源系统有限公司 一种ldmos器件及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736766A (en) * 1994-12-12 1998-04-07 Texas Instruments Incorporated Medium voltage LDMOS device and method of fabrication
US6252278B1 (en) 1998-05-18 2001-06-26 Monolithic Power Systems, Inc. Self-aligned lateral DMOS with spacer drift region
US6552389B2 (en) * 2000-12-14 2003-04-22 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
US7301185B2 (en) * 2004-11-29 2007-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. High-voltage transistor device having an interlayer dielectric etch stop layer for preventing leakage and improving breakdown voltage
US8546879B2 (en) * 2011-08-18 2013-10-01 Monolithic Power Systems, Inc. High density lateral DMOS with recessed source contact
US9159795B2 (en) 2013-06-28 2015-10-13 Monolithic Power Systems, Inc. High side DMOS and the method for forming thereof
US9502251B1 (en) 2015-09-29 2016-11-22 Monolithic Power Systems, Inc. Method for fabricating low-cost isolated resurf LDMOS and associated BCD manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299998A (zh) * 2013-09-26 2015-01-21 成都芯源系统有限公司 一种ldmos器件及其制作方法

Also Published As

Publication number Publication date
CN106653612A (zh) 2017-05-10
US9935176B1 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
US7361558B2 (en) Method of manufacturing a closed cell trench MOSFET
US7544558B2 (en) Method for integrating DMOS into sub-micron CMOS process
US20150255456A1 (en) Replacement fin insolation in a semiconductor device
CN107634001B (zh) 一种ldmos器件的制造方法
US9893170B1 (en) Manufacturing method of selectively etched DMOS body pickup
CN106653612B (zh) 一种采用化学机械抛光技术制造ldmos器件的方法
US9490363B2 (en) Tunneling field effect transistor having a three-side source and fabrication method thereof
CN106558614B (zh) 半导体结构及其形成方法
US4497107A (en) Method of making self-aligned high-frequency static induction transistor
CN105448916A (zh) 晶体管及其形成方法
EP3255654A1 (en) Semiconductor device and fabrication method thereof
CN113594039A (zh) 半导体结构及其形成方法
CN105428241A (zh) 具有屏蔽栅的沟槽栅功率器件的制造方法
CN112397591B (zh) 包含ldmos晶体管的半导体器件及制作方法
US10217828B1 (en) Transistors with field plates on fully depleted silicon-on-insulator platform and method of making the same
US11658239B2 (en) Semiconductor device and fabrication method thereof
CN211700291U (zh) 自对准的沟槽式场效应晶体管
CN105977285A (zh) 半导体器件及其制造方法
WO2006082618A1 (ja) 半導体装置およびその製造方法
US6989306B2 (en) Termination structure of DMOS device and method of forming the same
CN113764502B (zh) 一种ldmos半导体器件及其制造方法
EP1298719A2 (en) Method for manufacturing and structure of semiconductor device with shallow trench collector contact region
US20200135918A1 (en) Semiconductor device and fabrication method thereof
CN109004030B (zh) 一种沟槽型mos器件结构及其制造方法
US11069777B1 (en) Manufacturing method of self-aligned DMOS body pickup

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant