CN106650179A - 一种基于cma‑es优化算法设计声学超材料单元的方法 - Google Patents

一种基于cma‑es优化算法设计声学超材料单元的方法 Download PDF

Info

Publication number
CN106650179A
CN106650179A CN201710050942.4A CN201710050942A CN106650179A CN 106650179 A CN106650179 A CN 106650179A CN 201710050942 A CN201710050942 A CN 201710050942A CN 106650179 A CN106650179 A CN 106650179A
Authority
CN
China
Prior art keywords
cma
acoustic metamaterial
acoustic
particle
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710050942.4A
Other languages
English (en)
Other versions
CN106650179B (zh
Inventor
程强
黄蓓
宋刚永
崔铁军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710050942.4A priority Critical patent/CN106650179B/zh
Publication of CN106650179A publication Critical patent/CN106650179A/zh
Application granted granted Critical
Publication of CN106650179B publication Critical patent/CN106650179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Building Environments (AREA)

Abstract

本发明公开了一种基于CMA‑ES优化算法设计声学超材料单元的方法,该方法将CMA‑ES优化算法和有限元分析方法集合,CMA‑ES优化算法可以对0‑1排布的阵列进行优化,每一个尺寸维度的0‑1阵列,都对应一种声学超材料单元结构,其中,0和1分别代表由空气或光敏树脂构成的声学单元结构的子单元;在优化过程中,每一个声学超材料单元结构的等效折射率和阻抗值可以通过有限元分析方法分析提取,作为CMA‑ES优化算法中适应度函数的变量;通过对适应度函数的值进行优化,最终可以得到最优的、满足设计要求的声学超材料单元结构。该方法可设计出具有较高折射率的声学超材料单元,其折射率远高于现有的二维声学超材料单元,且其阻抗匹配也较理想。

Description

一种基于CMA-ES优化算法设计声学超材料单元的方法
技术领域
本发明涉及一种声学超材料单元的设计方法,特别涉及一种基于协方差矩阵自适应进化策略优化算法设计声学超材料单元的方法。
背景技术
新型人工声学材料是一种由不同弹性模量和质量密度的材料构成的周期性人工复合结构,具有自然界媒质所不具备的性质,可以实现负的等效弹性模量或负的等效质量密度。通过改变单元结构及其空间排列来改变声波传播路径上空间的声压,从而实现人工调控声波。声学超材料由于其非常的参数特性,因此具有许多新颖的声学传播效应,如负折射效应、平面聚焦、声隐身、超透镜效应等。
等效折射率是衡量声学超材料单元性能的重要指标,实现大折射声学单元可以将透镜做薄或者实现聚焦透镜的短焦距,大折射率在超薄声学隐身斗篷上也有很好的应用前景。在声学超材料单元领域,目前主要利用分形和卷曲空间达到增加折射率的目的,且现阶段二维声学超材料单元的等效折射率最高只能达到5左右,因此,寻求大折射率单元已成为许多学者关注的问题。
协方差矩阵自适应进化策略优化算法(简称“CMA-ES”优化算法)是启发式演化算法中的一种,它与所求问题只存在唯一的衔接点——问题的适应度值,这一特点使得算法能够在解决问题的可靠性和消耗的时间这两个量之间进行权衡,能够更加高效快速的解决问题。简单地说,CMA-ES算法就是对问题的参数空间进行高斯采样,并根据一定的选择机制对样本空间的高斯分布进行更新,继而获得新的样本空间,直至迭代次数达到预先设置的最大值或达到其他能够使算法停止运行的预设条件。CMA-ES算法在电磁优化领域有很多的应用案例,得到很多满足特殊性能的电磁超材料结构或阵列,但是在声学超材料领域却几乎没有应用,发明人将CMA-ES算法用于声学领域,形成了本发明内容。
发明内容
发明目的:本发明的目的在于提供一种基于CMA-ES优化算法设计声学超材料单元的方法,该方法可设计出具有较高的折射率的声学超材料单元,且其阻抗失配也较小。
技术方案:本发明所述的一种基于CMA-ES优化算法设计声学超材料单元的方法,包括如下步骤:
(1)根据声学超材料单元的设计尺寸确定各个粒子的维度及取值空间,得出样本空间的初始分布,从中选择若干粒子构成父系种群;
(2)父系种群中的每个粒子均是0-1分布的阵列,根据阵列分布在仿真软件中将每个粒子均构建成一个声学单元物理模型,其中,0和1分别代表由空气或光敏树脂构成的声学单元结构的子单元;
(3)对父系种群中的每个声学单元物理模型进行提参,得到其等效折射率和阻抗值,将该值作为适应度函数的变量求得适应度函数值,根据适应度函数值判断父系种群中是否存在满足目标条件的粒子;如存在,算法停止,如不存在,更新种群,进行迭代算法,直至达到预设的停止条件;
(4)最终停止时得到满足条件的粒子,其对应的声学单元物理模型即为符合设计要求的声学超材料单元模型结构。
上述步骤(3)中,适应度函数值为满足阻抗取值范围的每个粒子的等效折射率最大值。
其中,适应度函数的表达式为:
Cost=max(n(Xi))&(ξ(Xi)<ξupper);
对于父系种群中的粒子Xi,如果其阻抗值ξ(Xi)满足ξ(Xi)<ξupper,那么其折射率n(Xi)在一定频段内的最大值max(n(Xi))即为其适应度函数值;如果其阻抗值ξ(Xi)不满足ξ(Xi)<ξupper,那么这个粒子的适应度函数值为0。
较优的,步骤(3)中,先通过有限元分析方法对种群中的每个声学单元模型结构进行仿真,得到其反射系数和透射系数,然后由反射系数和透射系数求得其等效折射率和阻抗。
进一步的,等效折射率n根据下式确定:
式中,m为分支选择数,R、T分别为声学超材料单元结构的反射系数和透射系数,d为声学超材料单元在声波传播方向上的厚度;k=2πf/c0,其中f为频率,c0为环境媒质中的声速。
具体的,步骤(3)中,当父系种群中不存在满足目标条件的粒子时,从父系种群中选取若干个最优的粒子构成子孙种群,得出这个种群的初始分布,获得新的满足高斯分布的样本空间并重复前述步骤、直至达到预设的停止条件。
优选的,采用八分之一对称优化算法设计声学超材料单元结构,即将预设计的声学超材料单元结构划分为八部分,通过CMA-ES优化算法优化得到其中一部分的单元结构,将该部分的单元结构翻折对称得到其余结构。采用八分之一对称优化,可只对一个单元的八分之一部分进行优化,可大大缩短优化算法的运行时间,高效的寻找到符合要求的声学单元结构。
与现有技术相比,本发明的显著优点为:(1)本发明的声学超材料单元设计方法可设计出具有较高折射率的声学超材料单元,其折射率远高于现有的二维声学超材料单元;(2)本发明的设计方法设计出的声学超材料单元结构,在工作频点上不仅折射率较高,其阻抗匹配也较理想;(3)本发明提供的设计方法基于协方差矩阵自适应进化策略优化算法,只需预设尺寸维度,即能得到预设计的声学超材料单元,制备方法智能高效;(4)本发明提供的设计方法同时具有可拓展性,能够进一步的实现具有其他参数特性的声学单元。
附图说明
图1为本发明的基于CMA-ES优化算法设计声学超材料单元的方法流程图;
图2为基于八分之一对称算法将声学超材料单元分为呈翻转对称的八部分的结构示意图,图中,标示“I”的部分代表空气,标示“II”的部分代表光敏树脂材料;
图3(a)为本发明中制得的声学超材料单元的结构示意图;
图3(b)为图3(a)的声学超材料单元的简化结构示意图;
图3(c)为图3(a)和图3(b)的声学超材料单元结构的等效折射率曲线;
图3(d)为图3(a)和图3(b)的声学超材料单元结构的等效阻抗曲线;
图4为入射波垂直打入本发明中设计的45°三棱台的声场分布图;
图5(a)为本发明中设计的离散偏折透镜在不同位置处的折射率分布曲线及1530Hz时对应的声学超材料单元结构的伸缩率;
图5(b)为本发明中设计的离散偏折透镜的原型示意图;
图6(a)为声波垂直入射在本发明设计的理想偏折透镜上形成的声场分布图;
图6(b)为声波垂直入射在本发明设计的离散偏折透镜上形成的声场分布图。
具体实施方式
下面结合附图对本发明的技术方案做进一步说明。
本发明的声学超材料单元的设计方法是基于协方差矩阵自适应进化策略(CMA-ES)优化算法设计实现的。声学超材料单元结构一般由若干子单元构成,这些子单元构成了一个阵列整体单元结构;每个子单元由光敏树脂或者空气构成,可以用数字“1”和“0”表示子单元填充或者不填充材料,在设计中,利用CMA-ES优化算法可以对0-1排布的阵列进行优化,每一个尺寸维度的0-1阵列,都可以对应一种声学超材料单元结构,因此可利用CMA-ES优化算法进行编码优化来设计得到声学超材料单元的结构。
在优化过程中,每一个声学超材料单元结构的参数特性可以通过有限元分析方法计算提取出来,作为优化算法中适应度函数的变量;通过对适应度函数的值进行优化,最终可以得到最优的、满足设计要求的声学超材料单元结构。
具体的,如图1,本发明的基于CMA-ES优化算法设计声学超材料单元的方法,包括如下步骤:
(A)根据声学超材料单元的具体尺寸确定各个粒子的维度和各个维度的取值空间,从而计算出样本空间的初始分布(或者直接给出样本的初始分布);
以设计尺寸为15mm*15mm的声学超材料单元为例,每个子单元为大小为0.5mm*0.5mm的正方形,使用的材料光敏树脂的密度为1300kg/m3,声速为716m/s;同时,空气的密度和声速分别为1.29kg/m3和343m/s。
由于优化设计的时间与单元结构的维数,即子单元的个数正相关,因此减少一个单元结构的维数可以有效的降低仿真运算时间,因此,优选采用八分之一对称优化算法,在确定每个粒子的维数时,八分之一算法可以将一个粒子的维数缩小为原来的八分之一左右,减少程序运行时间。如图2,左上角加粗三角形内的部分即为需要优化的部分,剩下部分的结构均可通过该三角形内的结构翻折对称得到。本设计采用八分之一对称优化算法,此时一个粒子的维数为120,每个粒子的每一维的取值为0或1。
给定粒子的维数和每一维度取值范围后,可以计算出这个种群的初始分布,即期望值X和方差σ。
(B)在满足高斯分布的初始样本空间中随机选择一定数量的粒子(λ个粒子,用Xi表示,i=1,2,…,λ),其中反映高斯分布幅度的方差由各个维度的协方差矩阵构成,这些粒子构成父系种群,父系种群的粒子期望值和方差满足初始分布给定的X,σ;
(C)父系种群中的每个粒子均是0-1分布的阵列,每个0-1阵列均对应着一个声学超材料单元的结构,在仿真软件中根据每个粒子的阵列分布构建对应的声学单元物理模型;其中,0代表由空气构成的声学超材料的子单元,1代表由光敏树脂构成的子单元;
(D)对种群中的每一个物理模型求其反射系数和透射系数,由反射系数和透射系数得到其等效折射率和阻抗;
具体的,每个粒子对应的声学超材料单元的等效折射率n由下式确定:
其中,m为分支选择数,R为声学超材料单元结构的反射系数,T为声学超材料单元结构的透射系数,k=2πf/c0,其中f为频率,c0为环境媒质中的声速,在本设计中,环境为空气,空气中的声速c0为343m/s,d为声学超材料单元在声波传播方向上的厚度,在本设计中为15mm。
每个粒子对应的声学超材料单元的阻抗
(E)将每个粒子的等效折射率和阻抗值作为适应度函数的变量,根据适应度函数值判断种群中是否存在粒子的适应度值满足目标条件,由判断结果决定是否进行下一步的迭代,若不需要迭代算法停止;
在本发明中,适应度函数为Cost=max(n(Xi))&(ξ(Xi)<ξupper),即父系种群中满足阻抗取值范围的每个粒子的折射率的最大值。对于父子种群中的粒子Xi,如果其阻抗值ξ(Xi)满足ξ(Xi)<ξupper,那么其折射率n(Xi)在一定频段内的最大值max(n(Xi))则作为是适应度函数值;如果其阻抗ξ(Xi)不满足ξ(Xi)<ξupper,那么这个粒子的适应度函数值为0。
设置本设计中该算法的停止条件为适应度函数值达到7,即如果存在阻抗小于ξupper,折射率的最大值max(n)>7,那么算法停止,这个满足条件的粒子则作为最优解,对应的声学超材料单元即为本设计所需的单元。
(F)若需要迭代,从父系种群中选取前面若干个相对最优的粒子构成子孙种群,得出新的期望值与方差,获得新的满足高斯分布的样本空间并重复上述过程至最终达到预设的停止条件;
(G)算法停止运行。
经过优化设计,最终得到的声学超材料单元的结构如图3(a),其中,空白部分代表空气,阴影部分代表光敏树脂材料部分,经测试,该单元结构的等效折射率在1530Hz时达到7.46。
为了美观和阻抗匹配,将这个结构简化,在简化单元结构的过程中,秉持折射率基本不变,阻抗值尽量降低的原则。首先将图3(a)中四个拐角处离散的子单元删除,再提取它的等效折射率和阻抗,等效折射率的最大值从7.42降低到7.37,和图3(a)中的单元结构相比降低了0.7%;再者,考虑到加工上的工艺和美观的效果,将图3(a)中间离散杂乱的子单元用一个正方形环状结构代替,此时折射率的最大值达到7.56,比原始结构的折射率增加了1.9%;最后,将光敏树脂材料和空气的交界面上的毛刺去除,即采用平滑的弧形代替原来的梯形边界,这时折射率的最大值为7.46,和原始结构的最大折射率相比,差值不到0.6%,而其等效阻抗值却在工作频率1530Hz时降低了很多。
经过简化,最终得到图3(b)中的声学超材料单元结构,图中,“I”代表空气部分,“II”代表光敏树脂材料部分;简化后的声学超材料单元结构的尺寸为:a=15mm,a0=14.5mm,L1=3.5mm,L2=6.4mm,L3=3mm,W=1.5mm,R=5.2mm;其中,a为一个声学超材料单元的厚度,a0为一个声学超材料单元中光敏树脂材料的最大长度,L1为声学超材料单元中间空气方环的内正方形长度,L2为声学超材料单元中间空气方环的外正方形长度,L3为声学超材料单元中光敏树脂材料在四边的中点处挖除的长方形的长,W为声学超材料单元中光敏树脂材料在四边的中点处挖除的长方形的宽,R为光敏树脂和空气的分界面处弧形边界的半径。
对图3(a)和图3(b)的单元结构进行等效折射率和阻抗测试,如图3(c)和3(d),可以看出,简化后的声学超材料单元结构的等效折射率与简化前无限接近,在1530Hz时折射率达到7.46;可以证明,简化后的单元结构完全具备原单元结构的折射性能,满足设计要求,而且在工作频点1530Hz时,简化后的单元结构的阻抗失配性较原单元结构小很多。
为进一步验证设计的正确性,本发明设计了两个实验。
实验一:本发明设计了一个45°的劈尖三角形,其以图3(b)中简化后的声学超材料单元结构组成,如图4,入射声波从左边垂直入射到三角形的直角边上,通过结构折射到介质环境中,介质环境设置为等效折射率为7.46的理想媒质,可以看到,声波在三角形的斜面上没有发生偏折,间接地证明了图3(b)的声学超材料单元的等效折射率在工作频点上是7.46。
实验二:本发明设计了一个离散的偏析透镜,如图5(a),根据设计的偏析透镜在不同位置处的折射率分布,确定不同位置处对应的声学超材料单元结构的伸缩率,然后在透镜的不同位置处按照对应的折射率大小放置对应伸缩率的声学超材料单元结构,那么即可构成所需要的偏折30度的偏折透镜,如图5(b);分别对得到的离散偏析透镜和理想的偏析透镜进行测试,入射声波从左面入射,垂直入射到偏折透镜上,在透镜与空气的交界面上偏折30°,如图6(a)和6(b),比较理想透镜和离散透镜的仿真图,两者在误差允许的范围内一致,这也说明本发明的声学大折射率超材料单元的设计的正确性。

Claims (7)

1.一种基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于,包括如下步骤:
(1)根据声学超材料单元的设计尺寸确定各个粒子的维度及取值空间,得出样本空间的初始分布,从中选择若干粒子构成父系种群;
(2)父系种群中的每个粒子均是0-1分布的阵列,根据阵列分布在仿真软件中将每个粒子均构建成一个声学单元物理模型,其中,0和1分别代表由空气或光敏树脂构成的声学单元结构的子单元;
(3)对父系种群中的每个声学单元物理模型进行提参,得到其等效折射率和阻抗值,将该值作为适应度函数的变量求得适应度函数值,根据适应度函数值判断父系种群中是否存在满足目标条件的粒子;如存在,算法停止,如不存在,更新种群,进行迭代算法,直至达到预设的停止条件;
(4)最终停止时得到满足条件的粒子,其对应的声学单元物理模型即为符合设计要求的声学超材料单元模型结构。
2.根据权利要求1所述的基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于,步骤(3)中,所述适应度函数值为满足阻抗取值范围的每个粒子的等效折射率最大值。
3.根据权利要求2所述的基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于,步骤(3)中,所述适应度函数的表达式为:
Cost=max(n(Xi))&(ξ(Xi)<ξupper);
对于父系种群中的粒子Xi,如果其阻抗值ξ(Xi)满足ξ(Xi)<ξupper,那么其折射率n(Xi)在一定频段内的最大值max(n(Xi))即为其适应度函数值;如果其阻抗值ξ(Xi)不满足ξ(Xi)<ξupper,那么这个粒子的适应度函数值为0。
4.根据权利1所述的基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于:步骤(3)中,先通过有限元分析方法对种群中的每个声学单元模型结构进行仿真,得到其反射系数和透射系数,然后由反射系数和透射系数求得其等效折射率和阻抗。
5.根据权利4所述的基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于,所述等效折射率n根据下式确定:
n = ± cos - 1 ( 1 2 T [ 1 - ( R 2 - T 2 ) ] ) k d + 2 π m k d ,
式中,m为分支选择数,R、T分别为声学超材料单元结构的反射系数和透射系数,d为声学超材料单元在声波传播方向上的厚度;k=2πf/c0,其中f为频率,c0为环境媒质中的声速。
6.根据权利1所述的基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于,步骤(3)中,当父系种群中不存在满足目标条件的粒子时,从父系种群中选取若干个最优的粒子构成子孙种群,得出这个种群的初始分布,获得新的满足高斯分布的样本空间并重复前述步骤、直至达到预设的停止条件。
7.根据权利要求1所述的基于CMA-ES优化算法设计声学超材料单元的方法,其特征在于,采用八分之一对称优化算法设计声学超材料单元结构:将预设计的声学超材料单元结构划分为八部分,通过CMA-ES优化算法优化得到其中一部分的单元结构,将该部分的单元结构翻折对称得到其余结构。
CN201710050942.4A 2017-01-23 2017-01-23 一种基于cma-es优化算法设计声学超材料单元的方法 Active CN106650179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710050942.4A CN106650179B (zh) 2017-01-23 2017-01-23 一种基于cma-es优化算法设计声学超材料单元的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710050942.4A CN106650179B (zh) 2017-01-23 2017-01-23 一种基于cma-es优化算法设计声学超材料单元的方法

Publications (2)

Publication Number Publication Date
CN106650179A true CN106650179A (zh) 2017-05-10
CN106650179B CN106650179B (zh) 2019-11-12

Family

ID=58841109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710050942.4A Active CN106650179B (zh) 2017-01-23 2017-01-23 一种基于cma-es优化算法设计声学超材料单元的方法

Country Status (1)

Country Link
CN (1) CN106650179B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117578A (zh) * 2018-08-30 2019-01-01 中国科学院电工研究所 一种用于变压器降噪的声学超材料屏障设计方法
CN109148123A (zh) * 2018-08-30 2019-01-04 中国科学院电工研究所 针对变压器噪声空间分布特性的声学超材料屏障系统
GB2565159A (en) * 2017-07-19 2019-02-06 Bae Systems Plc Electroacoustic transducer
CN111524496A (zh) * 2020-04-30 2020-08-11 南京大学 基于阻抗匹配效应的声学超材料及声学器件
CN112244894A (zh) * 2020-10-19 2021-01-22 浙江大学 基于宽频带声学超材料的超声无创穿颅成像方法及系统
CN112820264A (zh) * 2021-01-07 2021-05-18 深圳市航天新材科技有限公司 一种装配式声学超构体及声障板
WO2022087770A1 (zh) * 2020-10-26 2022-05-05 大连理工大学 一种基于非梯度拓扑优化的声学超材料设计方法
CN115925400A (zh) * 2022-11-30 2023-04-07 中国科学院金属研究所 光固化陶瓷浆料的设计方法、陶瓷浆料及空心涡轮叶片
CN116432330A (zh) * 2022-12-23 2023-07-14 华中科技大学 功能梯度拉胀超材料填充的多尺度壳体设计方法及设备
CN116666990A (zh) * 2023-07-26 2023-08-29 南京理工大学 可重构超表面吸波器的特征模式设计方法及超表面吸波器
US11800295B2 (en) 2016-12-08 2023-10-24 Bae Systems Plc Electroacoustic transducer
WO2024043215A1 (ja) * 2022-08-24 2024-02-29 国立大学法人 東京大学 光素子の設計方法、光素子の製造方法及び光素子の設計プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761962A (zh) * 2014-01-20 2014-04-30 黑龙江大学 基于声学超流体棱镜的单向负折射装置
CN105895074A (zh) * 2016-04-11 2016-08-24 南京大学 一种声学单向超表面
CN106228971A (zh) * 2016-07-25 2016-12-14 东南大学 基于分形声学超材料的宽带声聚焦透镜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761962A (zh) * 2014-01-20 2014-04-30 黑龙江大学 基于声学超流体棱镜的单向负折射装置
CN105895074A (zh) * 2016-04-11 2016-08-24 南京大学 一种声学单向超表面
CN106228971A (zh) * 2016-07-25 2016-12-14 东南大学 基于分形声学超材料的宽带声聚焦透镜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANGYONGSONG,ETC: "Broadband Focusing Acoustic Lens Based on Fractal Metamaterials", 《SCIENTIFIC REPORTS》 *
GANGYONGSONG,ETC: "Broadband Fractal Acoustic Metamaterials", 《2016 PROGRESS IN ELECTROMAGNETIC RESEARCH SYMPOSIUM》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11800295B2 (en) 2016-12-08 2023-10-24 Bae Systems Plc Electroacoustic transducer
GB2565159A (en) * 2017-07-19 2019-02-06 Bae Systems Plc Electroacoustic transducer
GB2565159B (en) * 2017-07-19 2021-12-01 Bae Systems Plc Electroacoustic transducer
CN109148123A (zh) * 2018-08-30 2019-01-04 中国科学院电工研究所 针对变压器噪声空间分布特性的声学超材料屏障系统
CN109148123B (zh) * 2018-08-30 2020-09-18 中国科学院电工研究所 针对变压器噪声空间分布特性的声学超材料屏障系统
CN109117578A (zh) * 2018-08-30 2019-01-01 中国科学院电工研究所 一种用于变压器降噪的声学超材料屏障设计方法
CN109117578B (zh) * 2018-08-30 2023-04-07 中国科学院电工研究所 一种用于变压器降噪的声学超材料屏障设计方法
CN111524496B (zh) * 2020-04-30 2023-09-01 南京大学 基于阻抗匹配效应的声学超材料及声学器件
CN111524496A (zh) * 2020-04-30 2020-08-11 南京大学 基于阻抗匹配效应的声学超材料及声学器件
CN112244894A (zh) * 2020-10-19 2021-01-22 浙江大学 基于宽频带声学超材料的超声无创穿颅成像方法及系统
WO2022087770A1 (zh) * 2020-10-26 2022-05-05 大连理工大学 一种基于非梯度拓扑优化的声学超材料设计方法
CN112820264B (zh) * 2021-01-07 2023-10-20 深圳市航天新材科技有限公司 一种装配式声学超构体及声障板
CN112820264A (zh) * 2021-01-07 2021-05-18 深圳市航天新材科技有限公司 一种装配式声学超构体及声障板
WO2024043215A1 (ja) * 2022-08-24 2024-02-29 国立大学法人 東京大学 光素子の設計方法、光素子の製造方法及び光素子の設計プログラム
CN115925400A (zh) * 2022-11-30 2023-04-07 中国科学院金属研究所 光固化陶瓷浆料的设计方法、陶瓷浆料及空心涡轮叶片
CN116432330A (zh) * 2022-12-23 2023-07-14 华中科技大学 功能梯度拉胀超材料填充的多尺度壳体设计方法及设备
CN116432330B (zh) * 2022-12-23 2024-03-19 华中科技大学 功能梯度拉胀超材料填充的多尺度壳体设计方法及设备
CN116666990A (zh) * 2023-07-26 2023-08-29 南京理工大学 可重构超表面吸波器的特征模式设计方法及超表面吸波器
CN116666990B (zh) * 2023-07-26 2023-10-31 南京理工大学 可重构超表面吸波器的特征模式设计方法及超表面吸波器

Also Published As

Publication number Publication date
CN106650179B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN106650179A (zh) 一种基于cma‑es优化算法设计声学超材料单元的方法
WO2021004366A1 (zh) 基于结构化剪枝和低比特量化的神经网络加速器及方法
Shi et al. Empirical study of particle swarm optimization
US6961916B2 (en) Placement method for integrated circuit design using topo-clustering
US6516309B1 (en) Method and apparatus for evolving a neural network
CN112530157B (zh) 基于知识图谱和Conv1D-LSTM-D的道路交通拥堵传播预测方法
CN103675799A (zh) 一种相控阵声纳系统换能器稀疏面阵优化方法
Long et al. Q-pim: A genetic algorithm based flexible dnn quantization method and application to processing-in-memory platform
CN111324980A (zh) 一种汽车结构轻量化分级优化设计方法
CN108121206A (zh) 基于高效改进型差分进化算法的复合自适应内模控制优化方法
JPS6014359B2 (ja) 吸音パネル及び吸音構造体
CN103324786B (zh) 基于遗传算法的二维固相声子晶体xy模带隙优化方法
Serra et al. Optimization of the profile and distribution of absorption material in sonic black holes
CN112183001B (zh) 一种基于超图的集成电路的多级聚类方法
CN107046180A (zh) 一种基于准保角变换的二维声学平面龙伯透镜设计方法
CN114741977A (zh) 声学超材料微结构最大加工误差设计方法
Eid et al. Adaptive feature selection and classification using modified whale optimization algorithm
JP7488375B2 (ja) ニューラルネットワークの生成方法、機器及びコンピュータ可読記憶媒体
Campbell et al. Inverse design of engineered materials for extreme optical devices
JP2002062905A (ja) 連続した複雑系システムの頂点ベースでの最適化において動的に制約条件を取り扱うシステムの最適化方法
Esbensen et al. An MCM/IC timing-driven placement algorithm featuring explicit design space exploration
CN103246807B (zh) 一种二维固‑固声子晶体混合模态带隙优化方法
KR102363140B1 (ko) 주파수 선택 표면 필터 설계 방법과 컴퓨터 프로그램을 저장하는 저장 매체
CN106844835A (zh) 一种热防护结构的一体化设计方法及装置
Jayashri et al. Memory based architecture to implement simplified block LMS algorithm on FPGA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant