CN106623967A - 一种黑磷‑金属纳米复合材料及其合成方法和应用 - Google Patents

一种黑磷‑金属纳米复合材料及其合成方法和应用 Download PDF

Info

Publication number
CN106623967A
CN106623967A CN201610928015.3A CN201610928015A CN106623967A CN 106623967 A CN106623967 A CN 106623967A CN 201610928015 A CN201610928015 A CN 201610928015A CN 106623967 A CN106623967 A CN 106623967A
Authority
CN
China
Prior art keywords
black phosphorus
composite material
synthetic method
nano
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610928015.3A
Other languages
English (en)
Other versions
CN106623967B (zh
Inventor
刘智明
郭周义
黄汉传
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Hills Laser Medical Technology Co Ltd
Original Assignee
Guangdong Hills Laser Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Hills Laser Medical Technology Co Ltd filed Critical Guangdong Hills Laser Medical Technology Co Ltd
Priority to CN201610928015.3A priority Critical patent/CN106623967B/zh
Publication of CN106623967A publication Critical patent/CN106623967A/zh
Application granted granted Critical
Publication of CN106623967B publication Critical patent/CN106623967B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Abstract

本发明公开了一种黑磷‑金属纳米复合材料的合成方法,包括以下步骤:(1)取黑磷BP晶体分散于N‑甲基吡咯烷酮中,然后进行破碎处理,得破碎液;(2)将破碎液进行超声处理,离心,取沉淀,将沉淀重悬于N‑甲基吡咯烷酮中,再次离心,收集上清,得BP纳米片悬液;(3)将BP纳米片悬液加入煮沸的水中,接着加入氯金酸溶液或硝酸银溶液继续沸腾反应,反应结束后冷却,离心,收集沉淀,得黑磷‑金属纳米复合材料。该方法利用BP本身的还原性将吸附在BP表面的金属离子还原成元素金属,生成黑磷‑金属纳米复合物,简便、易操作,制成的黑磷‑金属纳米复合材料可以在光热效应方面应用以及作为活性基底在表面增强拉曼散射SERS中的应用。

Description

一种黑磷-金属纳米复合材料及其合成方法和应用
技术领域
本发明属于黑磷技术领域,具体涉及一种黑磷-金属纳米复合材料及其合成方法和应用。
背景技术
黑磷(BP,Black Phosphorus)二维纳米材料是近一两年发现的新型片状材料。作为二维材料家族的新成员,BP具有直接、可调的带隙,有望成为可取代石墨烯的下一代二维纳米材料,运用在光电子学、纳米电子学、光催化、生物传感器、可循环电池及生物成像等众多领域中。比如:Woomer等测量出了双层BP片的带隙可达1.88±0.24eV,远高于其他二维材料,可作为一种理想的光电子材料(ACS Nano,2015,9,8869);在生物医学领域,BP被发现具有很好的光致发光性质、近红外光热吸收特性和光动力治疗潜质,有望成为良好的纳米试剂用于肿瘤的治疗(Small 2016,12,214;J.Am.Chem.Soc.2015,137,11376;Angew.Chem.Int.Ed.2015,54,11526)。
BP纳米片的制备也很方便,与石墨烯一样,是目前仅有的两种可通过机械剥离而稳定存在的二维材料之一。目前常用的方法是采用超声辅助液相剥离法从黑磷晶体中分离出单层和少数几层的BP纳米片(ACS Nano 2014,8,4033)。BP也适合与金属(金属氧化物)复合,构建出BP-金属纳米复合物。Lee等合成了稳定的BP和二氧化钛(BP-TiO2)纳米复合材料,表现出了很好的在UV-Vis区域的光催化活性和广谱抗菌活性,成功实现了对染料的高效光催化降解和对革兰氏阳性和阴性细菌的杀伤;并且与其单一组分(BP或TiO2)相比,BP-TiO2的这种光催化能力和抗菌活性要高出很多(Sci Rep2015,5,8691)。这一结果表明,在复合结构中金属组分能够显著地增强BP纳米片的物理化学特性,表现出更强的应用潜能。
现有的关于黑磷的专利主要是针对单层或少数几层黑磷纳米片或黑磷量子点的制备方法,如CN201510553085.0、CN201510968976.2、CN201510379948.7、CN201610063652.9、等等,所涉及的技术均是在液相机械剥离的方法上进行的改良。
发明内容
本发明的第一个目的在于提供一种黑磷-金属纳米复合材料的合成方法,该合成方法首次发现黑磷(BP)纳米片具有很好的化学还原性,在此基础上,利用BP本身的还原性将吸附在BP表面的金属离子还原成元素金属,生成黑磷-金属(BP-Metal)纳米复合物,该方法简洁,无需额外的还原剂可获得黑磷-金属纳米复合材料即BP-Metal纳米复合材料。
本发明的第二个目的在于提供利用上述黑磷-金属纳米复合材料的合成方法获得的黑磷-金属纳米复合材料。
本发明的第三个目的在于提供上述黑磷-金属纳米复合材料作为活性基底在表面增强拉曼散射SERS中的应用。
本发明的第一个目的是通过如下技术方案来实现的:一种黑磷-金属纳米复合材料的合成方法,包括以下步骤:
(1)取黑磷BP晶体分散于N-甲基吡咯烷酮NMP中,将分散有黑磷BP晶体的N-甲基吡咯烷酮NMP溶液进行破碎处理,得破碎液;
(2)将破碎液进行超声处理,离心,取沉淀,将沉淀重悬于N-甲基吡咯烷酮NMP中,再次离心,收集上清,得黑磷BP纳米片悬液;
(3)将黑磷BP纳米片悬液加入煮沸的水中,接着加入氯金酸HAuCl4或硝酸银AgNO3溶液继续沸腾反应,反应结束后冷却,离心,收集沉淀,得黑磷-金属纳米复合材料。
在上述黑磷-金属纳米复合材料的合成方法中:
步骤(1)中将分散有黑磷BP晶体的N-甲基吡咯烷酮NMP溶液优选置于超声波细胞破碎仪中进行破碎处理,所述超声波细胞破碎仪的功率优选调整为500~600W,破碎处理时间优选为5~6h。
步骤(2)中将破碎液优选移入超声波清洗机中继续超声,所述超声波清洗机的功率优选调整为150~200W,超声时间为10~12h。
步骤(1)中破碎处理和步骤(2)中超声处理时温度优选保持在20℃以下。
步骤(2)中离心时离心机转速优选为7000~8000rpm,离心时间优选为15~20min,再次离心时转速优选为1500~2000rpm,再次离心时间优选为10~15min。
步骤(3)中所述黑磷BP纳米片悬液的浓度优选为4~5mg/mL,所述水优选为超纯水,所述黑磷BP纳米片悬液与所述超纯水的体积比优选为0.05~0.1:20。
步骤(3)中所述黑磷BP纳米片悬液的浓度优选为4~5mg/mL,所述氯金酸HAuCl4溶液或硝酸银AgNO3溶液的浓度优选为5~10mmol·L,所述黑磷BP纳米片悬液与所述氯金酸HAuCl4溶液或硝酸银AgNO3溶液的体积比优选为1~2:1~4。
步骤(3)中加入氯金酸HAuCl4溶液或硝酸银AgNO3溶液继续沸腾反应优选1~10min,离心时离心机转速优选为5000~6000rpm,离心时间优选为10~15min。
本发明的第二个技术目的是通过以下技术方案来实现的:采用上述的黑磷-金属纳米复合材料的合成方法获得的黑磷-金属纳米复合材料。
本发明的第三个技术目的是通过以下技术方案来实现的:上述的黑磷-金属纳米复合材料在光热效应方面的应用以及作为活性基底在表面增强拉曼散射SERS中的应用。
与现有技术相比,本发明具有如下优点:
(1)采用本发明方法第一次制备成功BP-Metal纳米复合物;
(2)本发明方法无需额外的还原剂,利用BP本身的还原性即可实现BP-Metal复合材料的装配,简便、易操作;
(3)除了BP-Au的还原合成,其他可通过还原法制备的金属纳米粒子亦适用于该法制备得到BP-Metal复合材料(如:BP-Ag纳米复合物);
(4)本发明方法制成的黑磷-金属纳米复合材料可以在光热效应方面的应用以及作为活性基底在表面增强拉曼散射SERS中的应用。
附图说明
图1是实施例1中BP-Au纳米复合物的投射电镜(TEM)图(a)、拉曼谱(b)和紫外-可见(UV-Vis)吸收光谱(c);
图2是实施例2中BP-Au纳米复合物的SERS效应,其中1为染料IR-780的正常拉曼谱线,2为相同浓度IR-780的SERS谱线;
图3是实施例2中BP-Au纳米复合物对四种抗生素的SERS检测;
图4是实施例3中BP-Au纳米复合物的光热效应,其中1为纯水的光热效果,2为BP-Au纳米复合物的光热效应曲线;
图5是实施例7中BP-Au纳米复合物对癌细胞的SERS效应。
具体实施方式
实施例1
将30mg的BP晶体分散在30mL的N-甲基吡咯烷酮NMP中,置于细胞超声波破碎仪(600W)中破碎6h,然后将破碎液移入超声清洗机(200W)中继续超声10h。在整个超声过程中需将温度保持在20℃以下,超声结束后将分散液以7000rpm的转数离心20min,取沉淀重悬至N-甲基吡咯烷酮NMP中,继续以1500rpm的转数离心10min,收集上清,即为BP纳米片悬液;调整BP纳米片悬液的浓度至5mg/mL,随后进行BP-Metal纳米复合物的制备,先将50μL BP悬液加入至20mL煮沸的超纯水中,接着迅速加入150μL HAuCl4(10mmol·L)继续沸腾1min,反应结束后,待液体冷却后以5000rpm的转数离心10min,收集沉淀,即为BP-Au纳米复合物。
本实施例制备获得的纳米材料的表征情况可见图1。
透射电镜(TEM)图中可以很明显地看到呈片状的BP-Au二维纳米复合物,在BP片层上遍布了大小不一的Au颗粒,二维杂合体系的大小约为几百纳米。
拉曼光谱表征可以检测出BP的三个特征峰(360cm-1,437cm-1和466cm-1),同时在UV-Vis谱中Au的吸收峰也很明显,证明了复合物中BP和Au两种成分的存在。
实施例2
将实施例1制备得到的BP-Au纳米复合物用于染料分子的SERS检测。具体步骤为:将0.2mM BP-Au纳米复合物与染料分子1:1混合后,吸取少量样品至于拉曼光谱仪下检测。仪器选用雷尼绍invia型显微拉曼光谱系统,选择785nm激光激发,功率0.1mW,中心波长1200cm-1,曝光时间5s。
图2是BP-Au纳米复合物对IR-780染料(5×10-8M)的SERS效应图,可见在浓度为5×10-8M下,IR-780的正常拉曼光谱没有任何光谱信息出现;用BP-Au作为SERS基底后,IR-780(5×10-8M)的拉曼信号得到显著地增强,其中1207cm-1峰的SERS信号极为明显。
另外,利用BP-Au的高SERS活性,将之用于抗生素的检测。将BP-Au与四种低浓度的抗生素混合后,置于拉曼光谱仪下扫描,从图3中可以观察到四条谱峰清晰、信号非常明显的SERS谱线,分别归属于环丙沙星、恩诺沙星、氯霉素和呋喃它酮等四种抗生素的。结果表明,BP-Au有望作为一种新型的拉曼活性底物用于各种抗生素及农药残留物或者一些食品非法添加剂的极限SERS检测。
实施例3
将实施例1制备得到的BP-Au纳米复合物用于光热效应检测。具体步骤为:将BP-Au纳米复合物稀释成浓度为0.1mM的悬浊液,移至1.5mL的EP管中;然后用波长为785nm的激光(功率为2W)对该悬浊液进行照射,每隔30s用红外热像仪对悬浊液进行温度探测,记录液体的温度。
图4显示了BP-Au纳米复合物的光热效应,可以看出在持续10min的激光照射下,BP-Au悬浊液的温度持续上升,并在10min后上升至53℃;而空白对照组溶液的温度则升高不多。
实施例4
将一定量的BP晶体分散在NMP中(浓度约为1mg/mL),置于细胞超声波破碎仪(500W)中破碎5h,然后将破碎液移入超声清洗机(150W)中继续超声12h,在整个超声过程中需将温度保持在20℃以下,超声结束后将分散液以8000rpm的转数离心15min,取沉淀重悬至NMP中,继续以2000rpm的转数离心15min,收集上清,即为BP纳米片悬液;调整BP纳米片悬液的浓度至4mg/mL,随后进行BP-Metal纳米复合物的制备,先将100μL BP悬液加入至20mL煮沸的超纯水中,接着迅速加入400μL HAuCl4(5mM)继续沸腾10min,反应结束后,待液体冷却后以6000rpm的转数离心15min,收集沉淀,即为BP-Au纳米复合物。
实施例5
将一定量的BP晶体分散在NMP中(浓度约为1mg/mL),置于细胞超声波破碎仪(600W)中破碎6h,然后将破碎液移入超声清洗机(150W)中继续超声10h,在整个超声过程中需将温度保持在20℃以下,超声结束后将分散液以7000rpm的转数离心20min,取沉淀重悬至NMP中,继续以1500rpm的转数离心10min,收集上清,即为BP纳米片;调整BP纳米片的浓度至5mg/mL,随后进行BP-Metal纳米复合物的制备,先将80μL BP悬液加入至20mL煮沸的超纯水中,接着迅速加入200μL HAuCl4(10mM)继续沸腾5min,反应结束后,待液体冷却后以5000rpm的转数离心10min,收集沉淀,即为BP-Au纳米复合物。
实施例6
将一定量的BP晶体分散在NMP中(浓度约为1mg/mL),置于细胞超声波破碎仪(600W)中破碎6h,然后将破碎液移入超声清洗机(150W)中继续超声10h,在整个超声过程中需将温度保持在20℃以下,超声结束后将分散液以7000rpm的转数离心20min,取沉淀重悬至NMP中,继续以1500rpm的转数离心15min,收集上清,即为BP纳米片;调整BP纳米片的浓度至5mg/mL,随后进行BP-Metal纳米复合物的制备,先将100μL BP悬液加入至20mL煮沸的超纯水中,接着迅速加入200μL AgNO3(10mM)继续沸腾5min,反应结束后,待液体冷却后以5000rpm的转数离心10min,收集沉淀,即为BP-Ag纳米复合物。
实施例7
将实施例1制备得到的BP-Au纳米复合物用于细胞的SERS检测。具体步骤为:首先,将细胞接种至拉曼衬底上,培养至70%融合后,加入BP-Au(100μM)与细胞共孵育4h后,取出拉曼衬底,PBS清洗5遍后,将细胞置于显微拉曼光谱仪下扫描(785nm激发光)。
图5是BP-Au纳米复合物对人肝癌(Hep G2)细胞的SERS效应图,可见在与BP-Au共孵育的情况下,癌细胞的拉曼信息得到了显著的增强。表明,BP-Au有望作为一种新型的拉曼活性底物用于生物样品的SERS检测。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围。

Claims (10)

1.一种黑磷-金属纳米复合材料的合成方法,其特征是包括以下步骤:
(1)取黑磷BP晶体分散于N-甲基吡咯烷酮NMP中,将分散有黑磷BP晶体的N-甲基吡咯烷酮NMP溶液进行破碎处理,得破碎液;
(2)将破碎液进行超声处理,离心,取沉淀,将沉淀重悬于N-甲基吡咯烷酮NMP中,再次离心,收集上清,得BP纳米片悬液;
(3)将黑磷BP纳米片悬液加入煮沸的水中,接着加入氯金酸HAuCl4或硝酸银AgNO3溶液继续沸腾反应,反应结束后冷却,离心,收集沉淀,得黑磷-金属纳米复合材料。
2.根据权利要求1所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(1)中将分散有黑磷BP晶体的N-甲基吡咯烷酮NMP溶液置于超声波细胞破碎仪中进行破碎处理,所述超声波细胞破碎仪的功率调整为500~600W,破碎处理时间为5~6h。
3.根据权利要求1所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(2)中将破碎液移入超声波清洗机中继续超声,所述超声波清洗机的功率调整为150~200W,超声时间为10~12h。
4.根据权利要求4所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(1)中破碎处理和步骤(2)中超声处理时温度保持在20℃以下。
5.根据权利要求1所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(2)中离心时离心机转速为7000~8000rpm,离心时间为15~20min,再次离心时转速为1500~2000rpm,再次离心时间为10~15min。
6.根据权利要求1所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(3)中所述黑磷BP纳米片悬液的浓度为4~5mg/mL,所述水为超纯水,所述黑磷BP纳米片悬液与所述超纯水的体积比为0.05~0.1:20。
7.根据权利要求1所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(3)中所述黑磷BP纳米片悬液的浓度为4~5mg/mL,所述氯金酸HAuCl4溶液或硝酸银AgNO3溶液的浓度为5~10mmol·L,所述黑磷BP纳米片悬液与所述氯金酸HAuCl4溶液或硝酸银AgNO3溶液的体积比为1~2:1~4。
8.根据权利要求1所述的黑磷-金属纳米复合材料的合成方法,其特征是:步骤(3)中加入氯金酸HAuCl4溶液或硝酸银AgNO3溶液继续沸腾反应1~10min,离心时离心机转速为5000~6000rpm,离心时间为10~15min。
9.采用权利要求1-8任一项所述的黑磷-金属纳米复合材料的合成方法获得的黑磷-金属纳米复合材料。
10.权利要求9任一项所述的黑磷-金属纳米复合材料在光热效应方面的应用以及作为活性基底在表面增强拉曼散射SERS中的应用。
CN201610928015.3A 2016-10-31 2016-10-31 一种黑磷-金属纳米复合材料及其合成方法和应用 Expired - Fee Related CN106623967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610928015.3A CN106623967B (zh) 2016-10-31 2016-10-31 一种黑磷-金属纳米复合材料及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610928015.3A CN106623967B (zh) 2016-10-31 2016-10-31 一种黑磷-金属纳米复合材料及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN106623967A true CN106623967A (zh) 2017-05-10
CN106623967B CN106623967B (zh) 2019-07-05

Family

ID=58820355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610928015.3A Expired - Fee Related CN106623967B (zh) 2016-10-31 2016-10-31 一种黑磷-金属纳米复合材料及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN106623967B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469843A (zh) * 2017-09-20 2017-12-15 深圳大学 一种可响应可见光和近红外光的光催化剂及其制备方法
CN107496451A (zh) * 2017-09-20 2017-12-22 深圳大学 一种黑磷纳米片负载银簇的纳米复合物及制备方法、应用
CN107598150A (zh) * 2017-08-15 2018-01-19 西北大学 一种纳米金属/红磷复合材料及其制备方法
CN107802835A (zh) * 2017-12-04 2018-03-16 中南大学 一种黑磷纳米片/铂纳米粒子复合材料及其制备方法和应用
CN108144059A (zh) * 2017-11-30 2018-06-12 中南大学 一种二维黑磷纳米片负载纳米银复合材料及其制备方法和作为抗菌试剂的应用
CN108514887A (zh) * 2018-04-04 2018-09-11 中山大学 一种空心纳米颗粒二氧化钛/黑磷烯光热催化剂及其制备方法与应用
WO2019024146A1 (zh) * 2017-08-04 2019-02-07 深圳先进技术研究院 一种黑磷/贵金属复合材料、其制备方法以及应用
CN109647449A (zh) * 2019-01-21 2019-04-19 合肥工业大学 一种纳米银修饰二维黑磷复合材料的制备及其高效光催化降解抗生素污染物的应用
CN109975269A (zh) * 2019-03-05 2019-07-05 深圳先进技术研究院 一种sers芯片及其制备方法和应用
CN110755616A (zh) * 2019-11-21 2020-02-07 福州大学 一种黑磷纳米片包裹单宁酸金属螯合物及其制备方法
CN110975896A (zh) * 2019-12-20 2020-04-10 湘潭大学 一种Au/BP异质结复合材料及其制备方法和应用
CN111334284A (zh) * 2020-04-08 2020-06-26 青岛大学 高稳定性强荧光发射的铁离子配位黑磷量子点的制备方法
WO2020155751A1 (zh) * 2019-01-28 2020-08-06 深圳大学 一种基于二维材料的拉曼增强基底及其制备方法和应用
CN111961916A (zh) * 2020-08-07 2020-11-20 顺科新能源技术股份有限公司 一种钛合金
CN112047313A (zh) * 2020-09-21 2020-12-08 东北大学 一种钙元素掺杂改性二维黑磷纳米片的制备与储氢方法
CN112315977A (zh) * 2020-11-30 2021-02-05 南京大学 一种用于骨质疏松的氧化黑磷纳米材料
CN112795380A (zh) * 2020-12-17 2021-05-14 中山大学 一种无干扰生物成像的sers探针及其合成方法与应用
CN114180543A (zh) * 2021-12-29 2022-03-15 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN114344561A (zh) * 2022-01-13 2022-04-15 中国矿业大学 一种亚稳β钛合金智能系统材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961113A (zh) * 2015-07-01 2015-10-07 北京石油化工学院 一种制备磷烯的方法
CN105236366A (zh) * 2015-09-01 2016-01-13 东南大学 一种黑磷烯纳米片的制备方法
CN105535971A (zh) * 2015-12-22 2016-05-04 苏州大学 一种具有生物相容性的黒磷纳米颗粒及其制备方法和应用
CN105600760A (zh) * 2015-12-25 2016-05-25 中国科学院深圳先进技术研究院 一种小尺寸黑磷片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961113A (zh) * 2015-07-01 2015-10-07 北京石油化工学院 一种制备磷烯的方法
CN105236366A (zh) * 2015-09-01 2016-01-13 东南大学 一种黑磷烯纳米片的制备方法
CN105535971A (zh) * 2015-12-22 2016-05-04 苏州大学 一种具有生物相容性的黒磷纳米颗粒及其制备方法和应用
CN105600760A (zh) * 2015-12-25 2016-05-25 中国科学院深圳先进技术研究院 一种小尺寸黑磷片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANYING LEI ET AL.: "Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids", 《ACS CATALYSIS》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024146A1 (zh) * 2017-08-04 2019-02-07 深圳先进技术研究院 一种黑磷/贵金属复合材料、其制备方法以及应用
CN107598150B (zh) * 2017-08-15 2019-08-16 西北大学 一种纳米金属/红磷复合材料及其制备方法
CN107598150A (zh) * 2017-08-15 2018-01-19 西北大学 一种纳米金属/红磷复合材料及其制备方法
CN107469843A (zh) * 2017-09-20 2017-12-15 深圳大学 一种可响应可见光和近红外光的光催化剂及其制备方法
CN107496451A (zh) * 2017-09-20 2017-12-22 深圳大学 一种黑磷纳米片负载银簇的纳米复合物及制备方法、应用
CN108144059A (zh) * 2017-11-30 2018-06-12 中南大学 一种二维黑磷纳米片负载纳米银复合材料及其制备方法和作为抗菌试剂的应用
CN107802835A (zh) * 2017-12-04 2018-03-16 中南大学 一种黑磷纳米片/铂纳米粒子复合材料及其制备方法和应用
CN107802835B (zh) * 2017-12-04 2020-12-08 中南大学 一种黑磷纳米片/铂纳米粒子复合材料及其制备方法和应用
CN108514887A (zh) * 2018-04-04 2018-09-11 中山大学 一种空心纳米颗粒二氧化钛/黑磷烯光热催化剂及其制备方法与应用
CN108514887B (zh) * 2018-04-04 2021-01-22 中山大学 一种空心纳米颗粒二氧化钛/黑磷烯光热催化剂及其制备方法与应用
CN109647449A (zh) * 2019-01-21 2019-04-19 合肥工业大学 一种纳米银修饰二维黑磷复合材料的制备及其高效光催化降解抗生素污染物的应用
WO2020155751A1 (zh) * 2019-01-28 2020-08-06 深圳大学 一种基于二维材料的拉曼增强基底及其制备方法和应用
CN109975269A (zh) * 2019-03-05 2019-07-05 深圳先进技术研究院 一种sers芯片及其制备方法和应用
CN110755616A (zh) * 2019-11-21 2020-02-07 福州大学 一种黑磷纳米片包裹单宁酸金属螯合物及其制备方法
CN110975896A (zh) * 2019-12-20 2020-04-10 湘潭大学 一种Au/BP异质结复合材料及其制备方法和应用
CN111334284A (zh) * 2020-04-08 2020-06-26 青岛大学 高稳定性强荧光发射的铁离子配位黑磷量子点的制备方法
WO2021203567A1 (zh) * 2020-04-08 2021-10-14 青岛大学 高稳定性强荧光发射的铁离子配位黑磷量子点的制备方法
CN111961916A (zh) * 2020-08-07 2020-11-20 顺科新能源技术股份有限公司 一种钛合金
CN112047313A (zh) * 2020-09-21 2020-12-08 东北大学 一种钙元素掺杂改性二维黑磷纳米片的制备与储氢方法
CN112047313B (zh) * 2020-09-21 2022-03-29 东北大学 一种钙元素掺杂改性二维黑磷纳米片的制备与储氢方法
CN112315977A (zh) * 2020-11-30 2021-02-05 南京大学 一种用于骨质疏松的氧化黑磷纳米材料
CN112795380A (zh) * 2020-12-17 2021-05-14 中山大学 一种无干扰生物成像的sers探针及其合成方法与应用
CN114180543A (zh) * 2021-12-29 2022-03-15 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN114180543B (zh) * 2021-12-29 2023-12-26 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN114344561A (zh) * 2022-01-13 2022-04-15 中国矿业大学 一种亚稳β钛合金智能系统材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106623967B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN106623967A (zh) 一种黑磷‑金属纳米复合材料及其合成方法和应用
He et al. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction
Yu et al. Plasmon-enhanced light–matter interactions and applications
Su et al. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds
Guo et al. Photothermal ablation cancer therapy using homogeneous Cs x WO 3 nanorods with broad near-infra-red absorption
Gondal et al. Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation in liquids
Jia et al. A simple method to synthesize triangular silver nanoparticles by light irradiation
Ranjbar-Karimi et al. Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles
Ruchi et al. Synthesis of titania/silica nanocomposite for enhanced photodegradation of methylene blue and methyl orange dyes under uv and mercury lights
TW201247548A (en) Hexagonal-plate-shaped zinc oxide particles, production method therefor, and cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition having same blended therein
CN107688015B (zh) 增强拉曼散射光强的透明介电微球柔性薄膜的制备方法
Zhang et al. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy
Rao et al. Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures
Dhas et al. Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi
Yuan et al. Sensitive development of latent fingerprints using Rhodamine B-diatomaceous earth composites and principle of efficient image enhancement behind their fluorescence characteristics
Saitow et al. Fractal of gold nanoparticles controlled by ambient dielectricity: synthesis by laser ablation as a function of permittivity
CN110974960A (zh) 一种哑铃结构的复合纳米探针及其制备方法和应用
Chen et al. Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates
WO2022016741A1 (zh) 一种尺寸可调的金纳米粒子的制备方法
Najjar et al. Green and efficient synthesis of carbon quantum dots from Cordia myxa L. and their application in photocatalytic degradation of organic dyes
Deepthi et al. Nanostructured stannic oxides for white light emitting diodes provides authentication for latent fingerprints visualization under diverse environmental conditions
Long et al. Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G
CN111299606B (zh) 一种纳米金咖啡环的制备方法及其在sers检测中的应用
Kanodarwala et al. Novel upconverting nanoparticles for fingermark detection
Khanzadeh et al. Improvement of nonlinear optical properties of graphene oxide in mixed with Ag2S@ ZnS core-shells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190705

Termination date: 20211031

CF01 Termination of patent right due to non-payment of annual fee