CN106601833A - 一种适于生产的低成本高稳定性太阳能电池及其制备方法 - Google Patents

一种适于生产的低成本高稳定性太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106601833A
CN106601833A CN201710085148.3A CN201710085148A CN106601833A CN 106601833 A CN106601833 A CN 106601833A CN 201710085148 A CN201710085148 A CN 201710085148A CN 106601833 A CN106601833 A CN 106601833A
Authority
CN
China
Prior art keywords
perovskite
absorption layer
layer
solar cell
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710085148.3A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang Pierre Nano Technology Co Ltd
Original Assignee
Zhenjiang Pierre Nano Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang Pierre Nano Technology Co Ltd filed Critical Zhenjiang Pierre Nano Technology Co Ltd
Priority to CN201710085148.3A priority Critical patent/CN106601833A/zh
Publication of CN106601833A publication Critical patent/CN106601833A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种适于生产的低成本高稳定性太阳能电池及其制备方法。该钙钛矿太阳能电池包括依次层叠的透光/透明电极层、吸光层、电子吸收层、空穴传输层和顶电极,其中:所述吸光层为具有钙钛矿结构的材料;所述电子吸收层是由富勒烯衍生物构成;所述空穴传输层由三元氧化物构成,所述顶电极由导电性能良好的材料构成。本发明有效地利用了钙钛矿材料的性能,将钙钛矿太阳能电池的光电转化效率提高到了16%以上,适于批量生产。

Description

一种适于生产的低成本高稳定性太阳能电池及其制备方法
技术领域
本发明属于钙钛矿太阳能电池领域,特别是一种适于生产的低成本高稳定性太阳能电池及其制备方法。
背景技术
目前,由于在商用太阳能电池市场上占主导地位的硅太阳能电池仍不能满足低成本的要求,人们一直在探索满足高效率和低成本要求的新型太阳能电池。自2009年以来,具有钙钛矿晶体结构的有机金属卤化物为吸光层的太阳能电池(钙钛矿太阳能电池)近年来获得了较快的发展,有希望成为具有市场潜力的高效率、低成本太阳能电池。
中国发明专利CN 104465994 A公开了一种基于全涂布工艺的钙钛矿太阳能电池的制备方法,涉及太阳能电池。提供可实现低成本、 高效率、产业化的一种基于全涂布工艺的钙钛矿 太阳能电池的制备方法。1) 在透明导电基底上采 用涂布工艺依次制备电子传输层、钙钛矿活性层、 空穴传输层 ;所述涂布工艺采用slot-die涂布或喷雾式涂布 ;2) 在空穴传输层上涂布顶电极,所 述涂布采用丝网印刷和刮刀涂布。解决了蒸镀以及印刷贵重金属电极的工艺及成本问题,还解决了涂布高温碳浆可能导致的对钙钛矿层的破坏。 采用一步退火的方法,即涂布完所有的功能层后 在 70 ~ 150°C下进行退火。该发明简化了制作工艺,不过并没有提及光电转化率。
钙钛矿太阳能电池最近备受关注。中国发明专利CN 104953031 A公开了一种钙钛矿型太阳能电池。该钙钛矿型太阳能电池在基板 (1) 上,包括 :第一电极 (2) ; 电子传输层 (3、4),含有电子传输性化合物,设在 上述第一电极 (2) 上 ;钙钛矿化合物层 (5),含有 钙钛矿化合物,设在上述电子传输层 (3、4) 上 ;空 穴传输层 (6),含有空穴传输化合物,设在上述钙 钛矿化合物层 (5) 上 ;以及第二电极 (7),设在上 述空穴传输层 (6)上 ;上述钙钛矿型太阳能电池 的特征在于 :上述钙钛矿化合物用化学式 XαYβMγ 表示,在上述化学式中,X 为卤素原子,Y 为烷基胺 化合物,M 为含有铅和锑的混合物,α ∶ β ∶γ 的比例为 3 ∶ 1 ∶ 1。
中国发明专利CN 104576932 A公开了一种双层纳米介孔电子传输层的 钙钛矿光伏电池及其制备方法。该电池由导电衬底、双层结构的电子传输层、钙钛矿吸光层、空穴传输层和金属电极组成。本发明的优点是:该钙钛矿光伏电池采用一步法低温生长的SnO2作为电子传输层,取代了两步法高温烧结的TiO2电子传输层,极大简化了制备流程。这种一步法低温制备的介孔钙钛矿光伏电池取得了13.82%的光电转换效率,同时有效的降低了制作成本。该钙钛矿光伏电池的介孔结构相比平面结构更易于钙钛矿吸光材料的附着,且 SnO2对钙钛矿吸光层的分解作用比TiO2较弱,提高了电池的性能与稳定性。该发明能够促进柔性太阳能电池的发展及推广,并进一步推进钙钛矿太阳能电池的工业化应用。
上述发明逐步将钙钛矿太阳能电池向产业化不断推进,不过,目前还不能大规模生产。作为一种可以量产的太阳能电池片,不仅要求制备简单、成本低,更重要的是其产出-也就是光电转化效率要高。并且,由于当前钙钛矿电池对氧气敏感、缺陷较易形成,导致钙钛矿电池稳定性较差,寻找更高稳定的钙钛矿太阳能电池结构是人们一致努力的目标。
发明内容
发明目的:为了充分利用钙钛矿材料的性质,本发明提供了一种适于生产的低成本高稳定性太阳能电池及其制备方法。采用本发明的电池材料及其结构,能够大幅提高太阳能电池对光子的吸收及其转化效率,从而提高太阳能电池的光电转化效率,改善器件性能。

本发明的技术方案如下:
1) 采用导电玻璃作为透光/透明电极层;
2) 制备吸光层:
a. 配制PbI2溶液, PbI2的浓度为0.5-3.0Mol/L, 溶剂为二甲基甲酰胺;
b.配制 CH3NH3I溶液:浓度5-10mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料 :先在电极上旋涂PbI2溶液,烘干后放入CH3NH3I 溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层,然后在5个大气压以下进行压片处理。通过控制PbI2与CH3NH3I反应溶液的浓度,控制钙钛矿的形貌与厚度,厚度控制在20-100nm之间;
3)制备电子吸收层:
采用富勒烯衍生物的氯苯溶液旋涂于吸光层,烘干,得到电子吸收层,控制溶液的浓度与涂布厚度,使电子吸收层的厚度在30-150nm之间;
4)制备空穴传输层:
将异丙氧基钛(或双 ( 乙酰丙酮基 ) 二异丙基钛酸酯前驱体溶液)与乙醇铌的混合,搅拌均匀,旋涂于电子吸收层上;
5)顶电极的制备:
采用真空热蒸镀、喷涂、沉积等方法,在器件上表面蒸镀50-300nm的导电金属层或碳层。
本发明的钙钛矿太阳能电池透光/透明电极层的材料为透明且能导电的材料组成,包括但不限于铟锡氧化物(ITO,Indium Tin Oxides)、氟锡氧化物(FTO,fluorinedoped tin oxide)、铝锌氧化物 (AZO,aluminium-doped zinc oxide)等常用的透明电极材料。吸光层为具有钙钛矿结构的材料,所采用的钙钛矿结构光伏材料为 ABX3 型晶体结构的有机无机杂化钙钛矿。 其中,B为铅、锡、锑,X为卤素元素。电子吸收层为富勒烯的衍生物,包含但不限于PCBM、PC71BM。空穴传输层由三元氧化物构成,包含Ti、Nb、O三种元素,且Nb/Ti的摩尔比介于1:30与1:10之间。顶电极为金属电极或导电碳材料电极,如银、金、铜、石墨、石墨烯等等。
有益的效果:采用本发明的材料与结构,能够充分利用钙钛矿材料的性能,并挖掘其潜能,形成P-I-N异质结,充分吸收太阳光能并提高其转化率,其转化效率可达16%以上。本发明主要采用工业上成熟的涂布法,适合产业化生产大尺寸、低成本、高效率、高稳定性能的太阳能电池的生产。然而,现有的钙钛矿太阳能电池尚未得到大面积可用于生产的样品,本发明解决了这一问题,所发明的技术适合于制备大面积、高效率的太阳能电池,其成本只有传统硅太阳能电池的三分之一。本发明对钙钛矿进行压片处理,提高其密度,能够获得致密的无针孔电池层,从而对氧气具备更好的阻隔性,从而提高电池的稳定性。目前,钙钛矿电池在湿度为55%的环境中20天后转化效率一般衰减50%以上,而本发明的电池的衰减率不到10%。
具体实施方式
下面通过结合实施例详细描述本发明的器件及其制备方法,但不构成对本发明的限制。
实施例1
1)采用氟锡氧化物(FTO,fluorine doped tin oxide)导电玻璃作为透光/透明电极层;
2)制备吸光层:
a.配制PbI2溶液, 浓度为3.0Mol/L, 溶剂为二甲基甲酰胺;
b.配制 CH3NH3I溶液: 浓度 5mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料 :先在电极上旋涂PbI2溶液,烘干后放入CH3NH3I 溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层;最后在5个大气压的作用下进行压片处理;厚度33nm;
3)制备电子吸收层
采用PCBM的氯苯溶液旋涂于吸光层之上,烘干,得到厚度147nm的电子吸收层;
4)制备空穴传输层:
将双 ( 乙酰丙酮基 ) 二异丙基钛酸酯前驱体溶液与乙醇铌的混合按10:1的比例的混合,搅拌均匀,旋涂于电子吸收层上,得到空穴传输层;
5)顶电极的制备:
采用真空热蒸镀的方法在空穴传输层上蒸镀226nm的银层。
实验过程中采用在 100mW/cm2 太阳能模拟器(Newport)AM1。5G 光照下进行,测得光电转化率为16.6%。在温度20摄氏度、湿度为55%的环境中保持20天后,测试其转化效率为15.2%。
实施例2
1)采用铝锌氧化物AZO导电玻璃作为透光/透明电极层;
2)制备吸光层:
a. 配制PbI2溶液, 浓度为0.5Mol/L, 溶剂为二甲基甲酰胺;
b. 配制 CH3NH3I溶液: 浓度 10mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料 :先在电极上旋涂PbI2溶液,烘干后放入CH3NH3I 溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层;最后在5个大气压的作用下进行压片处理;厚度93nm;
3)制备电子吸收层
采用PC71BM的氯苯溶液旋涂于吸光层,烘干,得到厚度31nm的电子吸收层;
4)制备空穴传输层:
将异丙氧基钛与乙醇铌按20:1的比例的混合,搅拌均匀,旋涂于电子吸收层上,得到空穴传输层;
5)顶电极的制备:
采用热蒸镀的方法在空穴传输层上蒸镀300nm的银层。
进行电池性能测试,实验过程中采用在 100mW/cm2 太阳能模拟器(Newport)AM1。5G 光照下进行,测得光电转化率为16.3%。在温度20摄氏度、湿度为55%的环境中保持20天后,测试其转化效率为15.1%。
实施例3
1)采用ITO(Indium Tin Oxides)导电玻璃作为透光/透明电极层;
2)制备吸光层:
a.配制PbI2溶液, 浓度为2.3Mol/L, 溶剂为二甲基甲酰胺;
b.配制 CH3NH3I溶液: 浓度7.5mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料 :先在电极上旋涂PbI2溶液,烘干后放入CH3NH3I 溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层;最后在5个大气压的作用下进行压片处理;厚度20nm;
3)制备电子吸收层
采用PCBM的氯苯溶液旋涂于吸光层,烘干,得到厚度68nm得电子吸收层;
4)制备空穴传输层:
将异丙氧基钛与乙醇铌按25:1的比例的混合,搅拌均匀,旋涂于电子吸收层上,得到空穴传输层;
5)顶电极的制备:
采用真空热蒸镀的方法在空穴传输层上蒸镀51nm的银层。
进行电池性能测试,采用在 100mW/cm2 太阳能模拟器(Newport)AM1.5G 光照下进行,测得光电转化率为17.8%。在温度20摄氏度、湿度为55%的环境中保持20天后,测试其转化效率为16.2%。
实施例4
1)采用铝锌氧化物AZO导电玻璃作为透光/透明电极层;
2)制备吸光层:
a.配制PbI2溶液, 浓度为2.0Mol/L, 溶剂为二甲基甲酰胺;
b.配制 CH3NH3I溶液: 浓度8mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料 :先在电极上旋涂PbI2溶液,烘干后放入CH3NH3I 溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层;最后在5个大气压的作用下进行压片处理;厚度78nm;
3)制备电子吸收层
采用PCBM的氯苯溶液旋涂于吸光层,烘干,得到厚度97nm得电子吸收层;
4)制备空穴传输层:
将异丙氧基钛与乙醇铌按10:1的比例的混合,搅拌均匀,旋涂于电子吸收层上,得到空穴传输层;
5)顶电极的制备:
采用化学沉积的方法在空穴传输层上蒸镀112nm的碳层。
进行电池性能测试,实验过程中采用在 100mW/cm2 太阳能模拟器(Newport)AM1。5G 光照下进行,测得光电转化率为16.1%。在温度20摄氏度、湿度为55%的环境中保持20天后,测试其转化效率为15.1%。
实施例5
1)采用ITO导电玻璃作为透光/透明电极层;
2)制备吸光层:
a. 配制PbI2溶液, 浓度为1.5Mol/L, 溶剂为二甲基甲酰胺;
b. 配制 CH3NH3I溶液: 浓度8.5mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料:先在电极上旋涂PbI2溶液,烘干后放入CH3NH3I 溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层;最后在5个大气压的作用下进行压片处理;厚度65nm;
3)制备电子吸收层
采用PCBM的氯苯溶液旋涂于吸光层,烘干,得到厚度82nm的电子吸收层;
4)制备空穴传输层:
将异丙氧基钛与乙醇铌按30:1的比例的混合,搅拌均匀,旋涂于电子吸收层上,得到空穴传输层;
5)顶电极的制备:
采用真空热蒸镀的方法在空穴传输层上蒸镀198nm的银层。
进行电池性能测试,实验过程中采用在 100mW/cm2 太阳能模拟器(Newport)AM1。5G 光照下进行,测得光电转化率为16.8%。在温度20摄氏度、湿度为55%的环境中保持20天后,测试其转化效率为15.7%。
以上所述仅是本发明实施方式的一些例子,应当指出:对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,例如,在透光/透明电极层外在加上一层玻璃类的透明材料加以保护,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种适于生产的低成本高稳定性太阳能电池及其制备方法,该电池包括依次层叠的透光/透明电极层、吸光层、电子吸收层、空穴传输层和顶电极,其中: 所述吸光层为具有钙钛矿结构的材料;所述电子吸收层是由富勒烯衍生物构成;所述空穴传输层由三元氧化物构成,所述顶电极由导电性能良好的材料构成。
2.一种如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述空穴传输层由Ti、Nb、O三种元素构成,且Nb/Ti的摩尔比介于1:30与1:10之间。
3.一种如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述吸光层厚度在20-100nm之间,所述电子吸收层厚度在30-150nm之间,所述顶电极厚度在50-300nm之间。
4.一种如权利要求1所述的太阳能电池,其特征在于,其制备方法包含以下步骤:
1)采用导电玻璃作为透光/透明电极层;
2)制备吸光层:
a. 配制PbI2溶液, PbI2的浓度为0.5-3.0Mol/L, 溶剂为二甲基甲酰胺;
b.配制 CH3NH3I溶液:浓度5-10mg/mL, 溶剂为异丙醇;
采用溶液法原位合成钙钛矿材料:先在电极层上旋涂PbI2溶液,烘干后放入CH3NH3I溶液中浸泡生长出钙钛矿材料,得到钙钛矿吸光层;然后在5个大气压的作用下进行压片处理;通过控制PbI2与CH3NH3I反应溶液的浓度,控制钙钛矿的形貌与厚度,厚度控制在20-100nm之间;
3)制备电子吸收层:
采用富勒烯衍生物的氯苯溶液旋涂于吸光层,烘干,得到电子吸收层,控制溶液的浓度与涂布厚度,使电子吸收层的厚度在30-150nm之间;最后在5个大气压的作用下进行压片处理;
4)制备空穴传输层:
将异丙氧基钛(或双 ( 乙酰丙酮基 ) 二异丙基钛酸酯前驱体溶液)与乙醇铌的混合,搅拌均匀,旋涂于电子吸收层上;
5)顶电极的制备:
采用真空热蒸镀、喷涂、沉积等方法,在器件上表面蒸镀50-300nm的导电金属层或碳层。
5.如权利要求 1 所述的钙钛矿太阳能电池,其特征在于,透明电极的材料为透明且能导电的材料组成,包括但不限于铟锡氧化物(ITO,Indium Tin Oxides)、氟锡氧化物(FTO,fluorine doped tin oxide)、铝锌氧化物 (AZO,aluminium-doped zinc oxide)等透明电极材料。
6.如权利要求 1 所述的钙钛矿太阳能电池,其特征在于,所述钙钛矿结构光伏材料为ABX3 型晶体结构的有机无机杂化钙钛矿; 其中,B为铅、锡、锑,X为卤素。
7.如权利要求 1 所述的钙钛矿太阳能电池,其特征在于,电子吸收层为富勒烯的衍生物,包含但不限于PCBM、PC71BM。
8.如权利要求 1 所述的钙钛矿太阳能电池,其特征在于,所述顶电极为金属电极或碳材料电极。
CN201710085148.3A 2017-02-17 2017-02-17 一种适于生产的低成本高稳定性太阳能电池及其制备方法 Pending CN106601833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710085148.3A CN106601833A (zh) 2017-02-17 2017-02-17 一种适于生产的低成本高稳定性太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710085148.3A CN106601833A (zh) 2017-02-17 2017-02-17 一种适于生产的低成本高稳定性太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN106601833A true CN106601833A (zh) 2017-04-26

Family

ID=58587692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710085148.3A Pending CN106601833A (zh) 2017-02-17 2017-02-17 一种适于生产的低成本高稳定性太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106601833A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195785A (zh) * 2017-05-23 2017-09-22 郑州大学 一种少Pb钙钛矿材料及其制备方法、和钙钛矿太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355790A (zh) * 2015-11-24 2016-02-24 杨秋香 适于生产的低成本钙钛矿太阳能电池
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
CN105870341A (zh) * 2016-04-20 2016-08-17 西安交通大学 一种提高钙钛矿晶体生长质量的方法及太阳能电池器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
CN105355790A (zh) * 2015-11-24 2016-02-24 杨秋香 适于生产的低成本钙钛矿太阳能电池
CN105870341A (zh) * 2016-04-20 2016-08-17 西安交通大学 一种提高钙钛矿晶体生长质量的方法及太阳能电池器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195785A (zh) * 2017-05-23 2017-09-22 郑州大学 一种少Pb钙钛矿材料及其制备方法、和钙钛矿太阳能电池

Similar Documents

Publication Publication Date Title
CN103456888B (zh) 一种Cs掺杂ZnO为电子传输层的杂化太阳能电池
CN104134711B (zh) 一种钙钛矿太阳能电池的制备方法
CN104505409B (zh) 一种SnO2多孔结构钙钛矿光伏电池及其制备方法
CN103474575B (zh) 一种以硫氧化锌为电子传输层的杂化太阳能电池及其制备
CN106025067B (zh) 一种溶液法生成钙钛矿薄膜的成膜方法及其器件应用
Hao et al. A novel semiconductor-sensitized solar cell based on P3HT@ CdS@ TiO2 core-shell nanotube array
CN109473554A (zh) 一种全无机钙钛矿太阳电池及其制备方法
CN105304820A (zh) 一种石墨烯增强的钙钛矿太阳能电池及其制备方法
CN106803536A (zh) 一种钙钛矿太阳能电池及其制备方法
CN109216557A (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
Bu Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells
CN107620052A (zh) 一种甲脒铯铅碘钙钛矿薄膜的化学气相沉积制备方法及基于其的光伏器件
CN105304819A (zh) 一种包含钙钛矿材料的太阳能电池及其制备方法
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
Hu et al. Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells
CN106098950B (zh) 前驱体溶液、ASnX3钙钛矿材料的制备方法及太阳能电池的制备方法
CN107706308A (zh) 一种钙钛矿太阳能电池及制备方法
Cho et al. The effect of a sol-gel formed TiO2 blocking layer on the efficiency of dye-sensitized solar cells
CN108346742A (zh) 基于聚苯乙烯界面层提高光伏性能的钙钛矿电池及其制备
Liu et al. Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells
CN103681901A (zh) 一种掺杂金属氧化物半导体太阳能电池及其制备方法
CN106299141A (zh) 一种复合电子传输层结构的钙钛矿太阳能电池的制造方法
CN105280822A (zh) 适于生产的低成本太阳能电池结构
CN105355790A (zh) 适于生产的低成本钙钛矿太阳能电池
Nonomura et al. Blocking the charge recombination with diiodide radicals by TiO2 compact layer in dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170426