CN106601400B - 一种大块钕铁硼制备方法 - Google Patents

一种大块钕铁硼制备方法 Download PDF

Info

Publication number
CN106601400B
CN106601400B CN201611134247.8A CN201611134247A CN106601400B CN 106601400 B CN106601400 B CN 106601400B CN 201611134247 A CN201611134247 A CN 201611134247A CN 106601400 B CN106601400 B CN 106601400B
Authority
CN
China
Prior art keywords
magnet
pressed compact
sintering
salient point
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611134247.8A
Other languages
English (en)
Other versions
CN106601400A (zh
Inventor
刘峰
吴亚平
郭锋
李井朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAOTOU YUNSHENG STRONG MAGNETIC MATERIAL Co Ltd
Ningbo Yunsheng Co Ltd
Original Assignee
BAOTOU YUNSHENG STRONG MAGNETIC MATERIAL Co Ltd
Ningbo Yunsheng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAOTOU YUNSHENG STRONG MAGNETIC MATERIAL Co Ltd, Ningbo Yunsheng Co Ltd filed Critical BAOTOU YUNSHENG STRONG MAGNETIC MATERIAL Co Ltd
Priority to CN201611134247.8A priority Critical patent/CN106601400B/zh
Publication of CN106601400A publication Critical patent/CN106601400A/zh
Application granted granted Critical
Publication of CN106601400B publication Critical patent/CN106601400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明涉及一种大块钕铁硼制备方法,其特征是:设计大块磁体的压坯时,在压坯的上压制面上设计多个按中心对称方式分布的凸点,设计模具时,在模具的与压坯上压制面对应的面上设计出与压坯上压制面上设计的凸点相对应的凹点,制作模具时凹点先采用电火花放电加工;安装模具,完成粉料称量、压制、封装,等静压,得到可入烧结炉的压坯;将压坯有凸点的面接触烧结盆,使磁体与烧结盆形成间隔,完成烧结。其优点是:通过在大块规格磁体表面增加凸点,从而在烧结过程中减少磁体与烧结盆的摩擦力,降低了磁体变形量;同时在烧结过程中实现了磁体顺利脱气,减少磁体中的碳和氢含量,从而改善磁体的脆性及提高磁体的磁性能。

Description

一种大块钕铁硼制备方法
技术领域
本发明涉及一种能够降低烧结钕铁硼大规格磁体变形和改善大规格磁体磁性能一致性的大块钕铁硼制备方法,属于烧结钕铁硼磁体制备方法技术领域。
背景技术
烧结钕铁硼磁体是当代磁性能最强的永磁体,它不仅具有高磁能积、高性价比等优势而且容易加工成各种尺寸。进入21世纪,稀土永磁材料产业成为中国最具有资源特殊的战略型新兴产业之一,在节能环保、风力发电、新能源汽车三大领域备受市场瞩目,其技术和规模均取得了长足的发展。国内以烧结钕铁硼为代表的稀土永磁材料产业成为稀土应用领域增长速度最快、规模最大的产业,2015年烧结钕铁硼产量接近15万吨,是我国为数不多的在国际上具有重要地位和较大影响力的产业之一。目前应用烧结钕铁硼于各种伺服电机和核磁共振成像设备,在航空、通讯、计算机、汽车、磁医疗等领域的应用十分广泛。
当前烧结钕铁硼市场需求还在扩大。然而烧结钕铁硼永磁材料最关键的原材料稀土金属受资源的限制,已经成为各工业国家的战略材料。为了突破稀土金属供需矛盾,提高材料磁性能,提高烧结钕铁硼永磁材料的加工利用率已成为研究的方向之一。
随着各烧结钕铁硼制造厂家的设备、工艺进步,产品良品率已经得到大幅提高,但因磁体外观缺陷导致的报废,仍然是目前制约大块产品材料利用率提高的主要因素。
大块烧结钕铁硼磁体由于其外形尺寸的特殊性和现有制备工艺的局限性,出现磁体变形大、边角外观缺陷、表面稀土损失多等问题,不但影响了产品性能还增加了磨削加工余量,而且无法满足高端产品对磁体内部各部位磁性能一致性的要求。
现有大块烧结钕铁硼磁体从粉料到烧结毛坯的制备方式为:先在模具模腔内部涂刷脱模剂,然后在氮气的保护下将称好的粉料投入模具模腔中,如遇单重超出2kg需多次称粉与倒粉,之后在压机高强磁场的作用下,磁粉完成取向,再由压机将粉料压制为压坯,随后反向施加较小的磁场将压坯退磁,取出压坯后真空封装。此时压坯密度大约为3.8-4.0g/cm3,再经过冷等静压压制后密度提升至4.5-4.7 g/cm3。随后烧结入炉时,在氮气保护的氛围下剥除真空封装袋,将磁体平放于烧结盆内,将烧结盆整齐摆放到真空烧结炉内,之后进行真空烧结、回火。
上述制备方式存在如下问题:
1.大块钕铁硼磁体因其单重与尺寸较大,相比常规500g左右的方块磁体,单重达到1-8kg,取向或模宽方向的尺寸在100mm以上,压坯在烧结过程中极易产生边角拉伤、缺角及角裂等缺陷,烧结过程中产生这些缺陷的主要原因是:成型后压坯存在密度不均匀的问题,等静压后压坯出现“缩腰”变形,压坯“缩腰”变形量在1-2mm之间,压坯摆盆后,压坯的自重集中在与烧结盆接触的两端,如图1所示,在烧结过程中,磁体收缩时易产生边角拉伤、缺角及角裂等缺陷。
2.在烧结过程中,大块钕铁硼磁体受烧结盆底面摩擦力及重力影响,烧结后磁体会出现梯形变形,如图2所示,磁体梯形变形量在0.5-2mm之间(磁体贴盆面尺寸比自由面尺寸大),同时磁体贴盆面与上自由面的密度存在差异,且梯形变形量及密度差异随磁体单重的增加而增加。
3.在烧结过程中,压坯会释放内应力,受其内应力作用,烧结后磁体出现弯曲变形,如图2所示,磁体弯曲变形量在0.5-2mm之间,如图2所示,这种变形随磁体尺寸长度的增加而增加(尤其是取向方向)。
4.多数厂家烧结过程用的烧结盆主要材质是石墨材料,石墨材料因为其内部为多孔结构,具有较强的吸附性,在烧结过程中会吸附磁体高温挥发的稀土金属颗粒。在磁体与石墨盆接触的一面,由于相互紧密接触,加重了钕铁硼稀土成分的挥发程度,导致磁体表层出现的稀土成分损失,从而影响磁体磁性能一致性;
5.由于钕铁硼制粉过程中加入的润滑剂、抗氧化剂等都需要在烧结过程升温中排气放出,如果气体排出过程中受到空间限制,尤其是贴盆面,气体放气通道就被阻塞,导致该部位附近出现残留气体偏多,烧结后磁体贴盆面表现为碳和氢含量较高,进而带来了磁性能和材料脆性差异,造成大块烧结磁体各部位性能一致性差。
以上问题一般有以下对应的解决方法:
1.解决磁体烧结过程中产生的边角拉伤、缺角及角裂等缺陷的办法是提高压坯密度,目前成型压坯的密度在3.8-4.0g/cm³,为减少成型充磁取向引起的压坯变形,需在成型阶段提高压坯的密度到4.5 g/cm³以上才可减小压坯变形,但由于目前国内设备技术水平低以及粉料流动性难以改善等因素限制,压坯密度想要达到4.5 g/cm³极其困难,尤其是大块磁体几乎无法实现;
2.减小磁体的梯形变形,可以在压坯底部放置圆棒辅助压坯收缩,但这种方式费时费力,生产效率低,在批量化生产中难以推行;
3.减小磁体的弯曲变形,需先将烧结之前压坯的内应力减小或消除,之后对烧结过程中压坯收缩释放的内应力加以限制。烧结之前压坯的内应力是压坯在压制过程中产生的,减小或消除内应力需通过成型压机的改良来实现,但目前成型压机的改良存在一些技术瓶颈,暂时难以实现;烧结过程中压坯收缩将会释放内应力,如不对压坯施加外力给予限制,任由其自由收缩,就会导致烧结后磁体出现弯曲变形的问题,但想在烧结过程中对压坯施加外力,目前还无合适的方案去实现;
4.磁体贴盆面稀土损失造成性能一致性差的问题,目前的解决方式是,烧结盆底部垫铁板或钼板来减少磁体贴盆面稀土损失,但由于铁板、钼板的反复使用,铁板和钼板会粘附很多杂质,这也会影响磁体贴盆面的性能;
5.为了烧结时可以全部脱净压坯中的氢和各种添加剂,可通过延长烧结脱气时间改善,也可将压坯架空烧结,让其六个面都可以参与放气,但目前并无合适的烧结盆结构实现压坯架空,即使实现架空,还会由于支撑点过少或不合适引发新的磁体变形问题。
发明内容
本发明的目的是提供一种制备大块磁体时能够降低变形量及改善大块磁体内部性能一致性的大块钕铁硼制备方法。
本发明中烧结钕铁硼大块规格磁体的制备技术,在于压坯设计及烧结摆盆方式,其粉料制备按常规的方式完成,即将钕铁硼所需原材料经抛丸、剪切等初级处理后,加入熔炼炉,制成合金片;合金片经氢碎炉氢气破碎后,形成0.1~5mm左右的粗粉颗粒;粗粉添加剂混合后由气流磨制粉得到3-5μm的粉料。
本发明的大块钕铁硼制备方法包括以下步骤:
(1)设计大块磁体的压坯,设计大块磁体的压坯时,在压坯的上压制面上设计多个按中心对称方式分布的凸点,凸点的高度0.1~10mm之间,单个凸点在压坯上压制面上所占面积4~100mm2,凸点数量应≥3个;
(2)设计模具并制作模具,在模具的与压坯上压制面对应的面上设计出与压坯上压制面上设计的凸点相对应的凹点,制作模具时凹点先采用电火花放电加工,之后对凹点进行研磨,要求凹点区域的表面粗糙度Ra达到0.2μm;
(3)安装模具,完成粉料称量、压制、封装,等静压,得到可入烧结炉的压坯;
(4)将压坯有凸点的面接触烧结盆,使磁体与烧结盆形成间隔,完成烧结。
所述压坯上压制面上的凸点形状为圆形、长条形或正方形。
本发明的有益效果如下:
本发明主要通过在大块规格磁体表面增加凸点和制定成型、烧结的工艺方案,从而在烧结过程中减少磁体与烧结盆的摩擦力,降低了磁体变形量;同时在烧结过程中实现了磁体顺利脱气,减少磁体中的碳和氢含量,从而改善磁体的脆性及提高磁体的磁性能;这样操作降低磁体烧结过程外观缺陷比率,可提高磁体外观合格率。应用本发明,磁体磨削余量减少,钕铁硼大块磁体的出材率明显提高,磁体性能一致性表现更好,提高了产品品质,且方法简便易行,适用于多个应用领域的大块规格磁体。
附图说明
图1为磁体等静压后变形示意图;
图2为磁体烧结后变形示意图;
图3为本发明磁体凸点示意图;
图4为磁体烧结摆盆示意图;
图5为磁体测试取样示意图。
图中:1、压坯,2、烧结盆,3、凸点,4、压坯自重集中部位,5、压坯弯曲变形面,6、压坯梯形变形面,7、压坯自由端头取样,8、压坯贴盆面端头取样,9、压坯自由面中心取样,10、压坯贴盆面中心取样,各图中的压坯之外箭头所指方向为充磁取向方向。
具体实施方式
实施例1:
(1)利用真空中频熔炼炉,将钕(Nd)、镨钕(PrNd)、纯铁(Fe)、硼铁(B-Fe)、钴(Co)等金属熔炼成合金液,使用速凝工艺将合金液甩成铸片,铸片成分Nd25Pr6Dy0.3Fe66.43Co0.5B1Ga0.1Cu0.12AL0.3Nb0.25(重量百分比),为抑制晶粒长大,成分中还可以适当加入一定量的锆(Zr);
(2)铸片装入氢碎炉,抽真空≤10pa后冲入氢气开始吸氢,吸氢压力控制在170-200kPa,吸氢饱和后加热至600±5℃进行脱氢,脱氢结束后充入Ar气进行置换氢气,最后风机冷却;
(3)将步骤2中粉料,使用400型气流磨进行磨粉,粉料平均粒度(D[3,2])为3.3-3.4微米;
(4)参见图3,压坯设计、模具设计及模具制作:压坯尺寸为55.8mmX53.2mmX158.5mm,在上压制面55.8mm X158.5mm的面上设计4个有序的凸点,凸点截面尺寸及高度为4mmX10mmX0.5mm;凸点取向方向间距为90mm和模宽方向间距为25mm分布,凸点距压坯两边的距离分别为13.4mm和29.25mm;之后进行模具的设计及制作。
(5)将模具安装在成型压机上,称取粉料为1950g,将粉料压制成55.8mmX53.2mmX158.5mm的方块,粉料200kg全部压完,成型时取向磁场为1-2T,压坯密度为4.1g/cm3压坯经等静压后,密度压制到4.6g/cm3
(6)将步骤5中压坯放入真空烧结炉,将有凸点的面向下摆放,经烧结炉烧结后检验5块磁体模宽、压制和取向各方向的变形量,检验5块磁体下压制面中心处碳含量和氢含量,检验并统计磁体贴盆面外观缺陷比率,检验2块磁体贴盆面和自由面的中心部位及一个端头部位切割D10X10mm样品磁性能,磁体的具体取样部位参见图5。
实施例2:
本实施例与实施例1在步骤上,(1)-(3)完全相同,且使用制备批次相同的一批粉料。(4)参见图3,压坯设计、模具设计及模具制作,压坯尺寸为55.8mmX53.2mmX158.5mm,在55.8mm X158.5mm的面上设计4个有序的凸点,凸点尺寸4mmX10mmX0.2mm;凸点取向方向间距为90mm和模宽方向间距为25mm分布,凸点距压坯两边的距离分别为13.4mm和29.25mm;之后进行模具的设计及制作;本实施例与实施例1相比,差异仅在凸点高度下调至0.2mm;粉料200kg全部压完,(5)-(6)完全相同。
对比例1:
本对比例与实施例1在步骤上,(1)-(3)完全相同,且使用制备批次相同的一批粉料,(4)在模具压头设计上为一个平面,无任何凸点,粉料200kg全部压完(5)-(6)完全相同。
通过实施例1、2,对比例1的参数比较可知,采用本发明的制备方法得到的烧结钕铁硼大块磁体有以下优点:
(1)对比表1可知,烧结钕铁硼大块磁体的变形量有明显的降低,在取向方向的变形减少更为明显,变形量平均值最大减少0.42mm;并且取向方向的收缩更大,收缩量平均值最大增加0.4mm,说明本发明减少了磁体与烧结盆的摩擦力,使磁体得到充分收缩;
(2)对比表2可知,烧结钕铁硼大块磁体的碳和氢含量有所降低,碳含量平均值最大下降96ppm,氢含量平均值最大下降1.6ppm;
(3)对比表3可知,烧结钕铁硼大块磁体的外观缺陷比率最大下降5.43个百分点;
(4)对比表4可知,烧结钕铁硼大块磁体的各部位性能一致性得到明显改善,由于贴盆面凸点使压坯与烧结盆形成间隔,贴盆面的稀土挥发减少,烧结脱气时压坯贴盆面与自由面趋于相同,磁体密度一致性得以提高,从而促使磁体各部位一致性进一步改善。
本发明采用在成型压坯上设计多个凸点,这些凸点分布有序,如图3所示。在烧结时可以将压坯凸点面与烧结盆面接触,使凸点作为压坯的支撑,如图4所示,压坯在烧结收缩时,摩擦力大幅减小,且由于有凸点作为支撑,压坯与盆底形成间隙,压坯内部杂质气体排出表面积增加,而且使压坯与烧结盆分离,减少烧结盆吸附导致磁体稀土成分损失,减少磁体烧结过程产生的边角拉伤、缺角、角裂等缺陷,减小磁体贴盆面与其它面的收缩差异,最终可以获得变形量更小的磁体,进而磁体各部位磁性能一致性也得到改善。该工艺适用于核磁类、风电类、磁选类等大块磁钢,具有良好的经济性,操作方式简便,效果良好,可满足磁体内部各处性能一致性的要求。

Claims (2)

1.一种大块钕铁硼制备方法,其特征是:包括以下步骤:
(1)设计大块磁体的压坯,设计大块磁体的压坯时,在压坯的上压制面上设计多个按中心对称方式分布的凸点,凸点的高度0.1~10mm之间,单个凸点在压坯上压制面上所占面积4~100mm2,凸点数量应≥3个;
(2)设计模具并制作模具,在模具的与压坯上压制面对应的面上设计出与压坯上压制面上设计的凸点相对应的凹点,制作模具时凹点先采用电火花放电加工,之后对凹点进行研磨,要求凹点区域的表面粗糙度Ra达到0.2μm;
(3)安装模具,完成粉料称量、压制、封装,等静压,得到可入烧结炉的压坯;
(4)将压坯有凸点的面接触烧结盆,使磁体与烧结盆形成间隔,完成烧结。
2.根据权利要求1所述的大块钕铁硼制备方法,其特征是:所述压坯上压制面上的凸点形状为圆形、长条形或正方形。
CN201611134247.8A 2016-12-10 2016-12-10 一种大块钕铁硼制备方法 Active CN106601400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611134247.8A CN106601400B (zh) 2016-12-10 2016-12-10 一种大块钕铁硼制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611134247.8A CN106601400B (zh) 2016-12-10 2016-12-10 一种大块钕铁硼制备方法

Publications (2)

Publication Number Publication Date
CN106601400A CN106601400A (zh) 2017-04-26
CN106601400B true CN106601400B (zh) 2018-04-24

Family

ID=58598190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611134247.8A Active CN106601400B (zh) 2016-12-10 2016-12-10 一种大块钕铁硼制备方法

Country Status (1)

Country Link
CN (1) CN106601400B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834116A (zh) * 2019-04-23 2020-10-27 西门子歌美飒可再生能源公司 制造具有减小的变形的烧结永磁体
CN112053843B (zh) * 2020-08-17 2022-04-29 包头韵升强磁材料有限公司 一种大尺寸烧结钕铁硼坯料的成型模压方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429035A (zh) * 2008-11-26 2009-05-13 宁波同创强磁材料有限公司 圆柱形钕铁硼磁体的烧结防缺角方法
CN102847939B (zh) * 2012-10-07 2014-11-19 江西金力永磁科技有限公司 具有不导磁隔离结构的磁性材料粉末成型模具
JP6251545B2 (ja) * 2013-11-13 2017-12-20 日東電工株式会社 加圧焼結装置及び加圧焼結方法
CN105185561A (zh) * 2015-08-26 2015-12-23 廊坊京磁精密材料有限公司 一种钕铁硼磁体的压制成型方法

Also Published As

Publication number Publication date
CN106601400A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN105489334B (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN104064346B (zh) 一种钕铁硼磁体及其制备方法
CN103117143B (zh) 一种用钕铁硼镀镍废料烧结而成的钕铁硼磁体
CN104051101B (zh) 一种稀土永磁体及其制备方法
CN102436889A (zh) 钛锆镓复合添加的低失重钕铁硼磁性材料及其制备方法
CN100407347C (zh) 辐射取向整体永磁环的制备方法
CN105321646A (zh) 高矫顽力纳米晶热变形稀土永磁体及其制备方法
CN104637643B (zh) 白云鄂博共伴生原矿混合稀土永磁材料及其制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN101552062A (zh) 钆钬复合添加的中高牌号钕铁硼磁体
CN101615461A (zh) 纳米Zn晶界改性的高耐蚀性烧结钕铁硼磁体及其制备方法
CN103151161B (zh) 热变形磁体定向破碎制备各向异性钕铁硼磁粉的方法
CN105702403B (zh) 一种烧结钕铁硼磁体及制备方法
CN104575905A (zh) 一种添加纳米铝粉制备烧结钕铁硼的方法
CN103680919A (zh) 一种高矫顽力高强韧高耐蚀烧结钕铁硼永磁体的制备方法
CN106601400B (zh) 一种大块钕铁硼制备方法
CN110153415B (zh) 一种钕铁硼磁体制备方法
CN101178962B (zh) 一种稀土-铁-硼烧结磁性材料的无压制备方法
CN109585109B (zh) 一种混合稀土永磁体及其制备方法
CN108447638A (zh) 一种新能源汽车电机用超高矫顽力钕铁硼永磁体及其制备方法
CN106531385B (zh) 一种梯度型烧结钕铁硼磁体及其制备方法
CN110993235B (zh) 一种高铁低铜型钐钴永磁材料及其制备方法
CN111554499A (zh) 一种降低烧结钕铁硼永磁体氧含量的方法
CN115831519A (zh) 一种烧结钕铁硼永磁体及其制备方法
CN108806911B (zh) 一种钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant