CN106587176A - 溶液浸泡法制备超小氢氧化镍纳米片 - Google Patents
溶液浸泡法制备超小氢氧化镍纳米片 Download PDFInfo
- Publication number
- CN106587176A CN106587176A CN201611200940.0A CN201611200940A CN106587176A CN 106587176 A CN106587176 A CN 106587176A CN 201611200940 A CN201611200940 A CN 201611200940A CN 106587176 A CN106587176 A CN 106587176A
- Authority
- CN
- China
- Prior art keywords
- nickel hydroxide
- solution
- mentioned steps
- small nickel
- super
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000002135 nanosheet Substances 0.000 title abstract 8
- 238000007654 immersion Methods 0.000 title abstract 2
- 239000000243 solution Substances 0.000 claims description 25
- 239000011259 mixed solution Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- IYFXESRMJKRSNZ-UHFFFAOYSA-L hydrogen carbonate;nickel(2+) Chemical compound [Ni+2].OC([O-])=O.OC([O-])=O IYFXESRMJKRSNZ-UHFFFAOYSA-L 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 7
- 239000001099 ammonium carbonate Substances 0.000 claims description 7
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 7
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 6
- 239000012265 solid product Substances 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 4
- 238000013019 agitation Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 238000010792 warming Methods 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 abstract description 5
- 239000007772 electrode material Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 239000003792 electrolyte Substances 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910006650 β-Ni(OH)2 Inorganic materials 0.000 description 1
- 229910006630 β—Ni(OH)2 Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明属于氢氧化镍纳米材料的制备技术领域,涉及一种采用简单的溶液浸泡法制备高比表面的超小氢氧化镍纳米片的制备方法。本发明所提供的制备高比表面的超小氢氧化镍的方法,与现有技术相比,其优点在于,原料容易获取,而且价格低廉,制备方法简单,所制备的超小氢氧化镍片具有较大的比表面积,作为超级电容器的电极材料,利于电解液中的离子或电子的扩散;使得超小氢氧化镍片在充放电过程中的利用率得到提高,因此超小氢氧化镍片会展现优异的电化学性能。
Description
技术领域
本发明属于氢氧化镍纳米材料的制备技术领域,涉及一种采用简单的溶液浸泡法制备高比表面的超小氢氧化镍纳米片的制备方法。
背景技术
超级电容器作为一种新型储能装置以其充放电速度快、能量密度高、以及循环寿命长的特点,被视为本世纪最有希望的新型绿色能源,受到越来越多的关注。以碳材料为基础的双电层电容因其理论容量不高而发展受限,而过渡金属氧化物和氢氧化物因其具有高的理论容量引发了研究者们的兴趣,而其中氢氧化镍又以其廉价、无毒、环境友好等优点而备受青睐。
纳米尺寸的氢氧化镍一般具有高的比表面积和较短的传输路径,这有利于离子、电子在充放电过程中的传输,从而有利于电化学性能的提高。因此,近年来许多研究者通过多种方法制备了超小纳米尺寸的氢氧化镍。Mustafa Aghazadeh与其合作者通过阴极电沉积的方法制备了直径约为5 nm的纳米氢氧化镍颗粒(International Journal ofHydrogen Energy,2011, 36, 8674-8679);V. Lakshmi等人通过溶液沉淀法制备了底面直径为10-20 nm、长60-70 nm的一维结构纳米棒(Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014, 457,462-468),然而,电沉积制备纳米氢氧化镍的成本较高;溶液沉淀法制备纳米氢氧化镍,氨水的滴加速率直接影响到氢氧化镍的形貌和尺寸,不易控制;溶液浸泡法是一种绿色环保而又操作简单、经济而又可以量产的方法,所以以此来制备高比表面的超小纳米氢氧化镍片具有一定的应用价值。
发明内容
本发明要解决的具体技术问题是如何采用溶液浸泡法制备高比面积的超小氢氧化镍纳米片,可以用作超级电容器的电极材料,有较高的比电容和循环性能。
本发明是采用以下技术方案实现的:一种溶液浸泡法制备超小氢氧化镍纳米片,包括如下步骤:(1)将NiCl2•6H2O溶解在去离子水中配制成浓度为0.4-0.6 mol/L的溶液,备用;
(2)将碳酸铵溶解在去离子水中配制成浓度为0.065-0.265 mol/L的溶液,备用;其中碳酸铵与步骤(1)中NiCl2•6H2O的质量比为0.661;
(3)将上述步骤(2)中配制好的溶液在磁力搅拌的条件下加入到上述步骤(1)中的溶液中,搅拌均匀,获得混合溶液A;
(4)将上述步骤(3)的混合溶液A置于反应釜中密封,升温至90 - 180℃,恒温干燥8-12h,自然冷却至室温后,获得混合溶液B;
(5)将上述步骤(4)的混合溶液B进行离心,后用蒸馏水对离心后所得固体产物进行洗涤,再用无水乙醇洗涤,最后将产物置于60℃烘箱中干燥10 h,获得碳酸氢镍前驱体;
(6)将上述步骤(5)中的碳酸氢镍前驱体浸泡在6 M 的氢氧化钾溶液中12 h,之后将所得混合物进行离心,后用蒸馏水对固体产物进行洗涤,再用无水乙醇洗涤,最后将产物置于60℃烘箱中干燥10 h,获得超小氢氧化镍纳米片。
本发明所提供的制备高比表面的超小氢氧化镍的方法,与现有技术相比,其优点在于,原料容易获取,而且价格低廉,制备方法简单,所制备的超小氢氧化镍片具有较大的比表面积,作为超级电容器的电极材料,利于电解液中的离子或电子的扩散;使得超小氢氧化镍片在充放电过程中的利用率得到提高,因此超小氢氧化镍片会展现优异的电化学性能。
通过本方法制备了直径约为14.5 nm、比表面积约为192.2m2 g-1的氢氧化镍准六角片,有较高的比电容和循环性能,可以用作超级电容器的电极材料。由孔径分布图可知,该物质的孔径分布均一、集中在3.4 nm左右,该方法简单、绿色环保,具有十分广泛的应用前景。
附图说明
图 1是本发明中制备的碳酸氢镍前驱体的X射线衍射谱。
图 2是本发明中制备的超小氢氧化镍纳米片的X射线衍射谱。
图 3 是本发明中制备的超小氢氧化镍纳米片的透射电子显微镜照片。
图 4 是本发明中制备的超小氢氧化镍纳米片的N2吸附-脱附曲图以及孔径分布图。
具体实施方式
一种溶液浸泡法制备超小氢氧化镍纳米片,包括如下步骤:(1)将NiCl2•6H2O溶解在去离子水中配制成浓度为0.4-0.6 mol/L(可选择0.4 mol/L、0.5 mol/L、0.6 mol/L)的溶液,备用;
(2)将碳酸铵溶解在去离子水中配制成浓度为0.065-0.265 mol/L(可选择0.065 mol/L、0.100 mol/L、0.150 mol/L、0.200 mol/L、0.240 mol/L、0.265 mol/L)的溶液,备用;其中碳酸铵与步骤(1)中NiCl2•6H2O的质量比为0.661;
(3)将上述步骤(2)中配制好的溶液在磁力搅拌的条件下加入到上述步骤(1)中的溶液中,搅拌均匀,获得混合溶液A;
(4)将上述步骤(3)的混合溶液A置于反应釜中密封,升温至90 - 180℃,恒温干燥8-12h,自然冷却至室温后,获得混合溶液B;
(5)将上述步骤(4)的混合溶液B进行离心,后用蒸馏水对离心后所得固体产物进行洗涤,再用无水乙醇洗涤,最后将产物置于60℃烘箱中干燥10 h,获得碳酸氢镍前驱体;
(6)将上述步骤(5)中的碳酸氢镍前驱体浸泡在6 M 的氢氧化钾溶液中12 h,之后将所得混合物进行离心,后用蒸馏水对固体产物进行洗涤,再用无水乙醇洗涤,最后将产物置于60℃烘箱中干燥10 h,获得超小氢氧化镍纳米片。
以下结合附图对本发明的具体实施方式做出进一步地说明。
制备一种超小氢氧化镍纳米片,制备方法如下:
(1) 将1.18 g的NiCl2•6H2O溶解在10 mL去离子水中配制成溶液,备用;
(2) 将0.78 g的碳酸铵溶解在30mL去离子水中配制成溶液,备用;
(3) 将上述步骤(2)中配制好的溶液在磁力搅拌的条件下加入到上述步骤(1)中的溶液中,搅拌均匀,获得混合溶液A;
(4) 将上述步骤(3)的混合溶液A置于反应釜中密封,升温至90~180 ℃,恒温干燥8 -12 h,自然冷却至室温后,获得混合溶液B;
(5) 将上述步骤(4)的混合溶液B进行离心,后用蒸馏水进行洗涤,再用无水乙醇洗涤,最后将产物置于60 ℃烘箱中干燥10 h,获得碳酸氢镍前驱体;
(6) 将上述步骤(5)中的碳酸氢镍前驱体浸泡在6 M 的氢氧化钾溶液中12 h, 之后将所得混合物进行离心,后用蒸馏水进行洗涤,再用无水乙醇洗涤,最后将产物置于60 ℃烘箱中干燥10 h,获得超小氢氧化镍纳米片。
上述实验中获得的碳酸氢镍前驱体和超小氢氧化镍纳米片经过XRD和TEM表征结果如下:
如附图 1 是制备的碳酸氢镍前驱体的XRD图,所有的衍射峰可以全部指标碳酸氢镍。
如附图 2 是制备的超小氢氧化镍纳米片的XRD图,所有的衍射峰可以全部指标β-Ni(OH)2。
如附图 3 是制得的超小氢氧化镍纳米片的TEM图片。从图中可以看出,制备的超小氢氧化镍纳米片,为准六角片形状,粒径比较均匀,直径约为14.5 nm。
如附图 4 是制得的超小氢氧化镍纳米片的N2吸附-脱附曲图以及孔径分布图。从图中可以看出这条等温曲线可以归为第IV类等温曲线,说明该β-Ni(OH)2属于介孔结构,通过BET计算得知其比表面积为192.2 m2 g-1;由孔径分布图可知,该物质的孔径分布均一、集中在3.4 nm左右。
Claims (1)
1.一种溶液浸泡法制备超小氢氧化镍纳米片,其特征在于,包括如下步骤:(1)将NiCl2•6H2O溶解在去离子水中配制成浓度为0.4-0.6 mol/L的溶液,备用;
(2)将碳酸铵溶解在去离子水中配制成浓度为0.065-0.265 mol/L的溶液,备用;其中碳酸铵与步骤(1)中NiCl2•6H2O的质量比为0.661;
(3)将上述步骤(2)中配制好的溶液在磁力搅拌的条件下加入到上述步骤(1)中的溶液中,搅拌均匀,获得混合溶液A;
(4)将上述步骤(3)的混合溶液A置于反应釜中密封,升温至90 - 180℃,恒温干燥8-12h,自然冷却至室温后,获得混合溶液B;
(5)将上述步骤(4)的混合溶液B进行离心,后用蒸馏水对离心后所得固体产物进行洗涤,再用无水乙醇洗涤,最后将产物置于60℃烘箱中干燥10 h,获得碳酸氢镍前驱体;
(6)将上述步骤(5)中的碳酸氢镍前驱体浸泡在6 M 的氢氧化钾溶液中12 h,之后将所得混合物进行离心,后用蒸馏水对固体产物进行洗涤,再用无水乙醇洗涤,最后将产物置于60℃烘箱中干燥10 h,获得超小氢氧化镍纳米片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611200940.0A CN106587176A (zh) | 2016-12-22 | 2016-12-22 | 溶液浸泡法制备超小氢氧化镍纳米片 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611200940.0A CN106587176A (zh) | 2016-12-22 | 2016-12-22 | 溶液浸泡法制备超小氢氧化镍纳米片 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106587176A true CN106587176A (zh) | 2017-04-26 |
Family
ID=58602868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611200940.0A Pending CN106587176A (zh) | 2016-12-22 | 2016-12-22 | 溶液浸泡法制备超小氢氧化镍纳米片 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106587176A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109537053A (zh) * | 2018-11-21 | 2019-03-29 | 湖南大学 | 一种超薄单晶NiCl2纳米片及其制备方法和应用 |
CN114360927A (zh) * | 2022-01-21 | 2022-04-15 | 重庆源皓科技有限责任公司 | 一种氢氧化镍电极材料的制备方法 |
CN117160459A (zh) * | 2023-07-20 | 2023-12-05 | 淮安中顺环保科技有限公司 | 金属纳米材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101525160A (zh) * | 2009-04-08 | 2009-09-09 | 广东工业大学 | 一种纳米氢氧化镍及其复合电极的制备方法和用途 |
CN101624215A (zh) * | 2008-07-10 | 2010-01-13 | 中国石油化工股份有限公司 | 纳米氧化镍的制备方法 |
CN103482712A (zh) * | 2013-09-06 | 2014-01-01 | 浙江大学 | 一种制备β-Ni(OH)2花状微球的方法 |
-
2016
- 2016-12-22 CN CN201611200940.0A patent/CN106587176A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101624215A (zh) * | 2008-07-10 | 2010-01-13 | 中国石油化工股份有限公司 | 纳米氧化镍的制备方法 |
CN101525160A (zh) * | 2009-04-08 | 2009-09-09 | 广东工业大学 | 一种纳米氢氧化镍及其复合电极的制备方法和用途 |
CN103482712A (zh) * | 2013-09-06 | 2014-01-01 | 浙江大学 | 一种制备β-Ni(OH)2花状微球的方法 |
Non-Patent Citations (1)
Title |
---|
YUQIONG MAO ET AL.: "Cycling stability of ultrafineβ-Ni(OH)2 nanosheets for high capacity energy storage device via a multilayer nickel foam electrode", 《ELECTROCHIMICA ACTA》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109537053A (zh) * | 2018-11-21 | 2019-03-29 | 湖南大学 | 一种超薄单晶NiCl2纳米片及其制备方法和应用 |
CN109537053B (zh) * | 2018-11-21 | 2020-04-17 | 湖南大学 | 一种超薄单晶NiCl2纳米片及其制备方法和应用 |
CN114360927A (zh) * | 2022-01-21 | 2022-04-15 | 重庆源皓科技有限责任公司 | 一种氢氧化镍电极材料的制备方法 |
CN114360927B (zh) * | 2022-01-21 | 2022-09-09 | 重庆源皓科技有限责任公司 | 一种氢氧化镍电极材料的制备方法 |
CN117160459A (zh) * | 2023-07-20 | 2023-12-05 | 淮安中顺环保科技有限公司 | 金属纳米材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104299797B (zh) | 一种基于NiCo2S4及其复合材料的水系不对称型超级电容器 | |
CN103915613B (zh) | 水热耦合喷雾热解MnO2/石墨烯电极材料的制备方法 | |
CN106876682B (zh) | 一种具有多孔结构的氧化锰/镍微米球及其制备和应用 | |
CN110350184B (zh) | 一种用于电池正极材料的高容量NiMoO4储能材料的制备方法 | |
CN108922790A (zh) | 一种钠离子嵌入的二氧化锰/氮掺杂多孔碳复合材料的制备方法和应用 | |
CN106340633A (zh) | 一种高性能锂离子电池用复合纳米材料及其制备方法 | |
CN104993116B (zh) | 一种自组装锂离子电池正极材料v2o5的制备方法 | |
CN108711518A (zh) | 氮氧共掺杂多孔碳纳米带及其制备方法和应用 | |
CN108417786A (zh) | 一种棒状多层微孔草酸亚铁锂离子电池负极材料制备方法 | |
CN107706003B (zh) | 一种水热法制备石墨烯/CaTi2O4(OH)2复合粉体的方法及其制得的产品 | |
CN106058182B (zh) | 一种倍率性能良好的钛酸锂/聚苯胺复合材料的制备方法 | |
CN104860348A (zh) | 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用 | |
CN105405675B (zh) | 一种Ag/Co(OH)2纳米阵列薄膜超级电容器电极材料及其制备方法 | |
CN106887572A (zh) | 一种锑‑碳复合材料及其制备方法和应用 | |
CN103078120A (zh) | 一种具有等级结构的硅酸亚铁锂锂离子电池正极材料及制备方法 | |
CN106587176A (zh) | 溶液浸泡法制备超小氢氧化镍纳米片 | |
CN106449136A (zh) | α‑氢氧化镍钴电极材料及其制备方法与应用 | |
CN109671574B (zh) | 一种MnCo2O4纳米球颗粒及其制备方法和在超级电容器中的应用 | |
CN104934590A (zh) | 一种锰酸锌/石墨烯复合材料的制备方法 | |
CN106920932A (zh) | 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法 | |
CN114243007A (zh) | 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 | |
CN106847552B (zh) | 一种Fe3O4/C3N4复合材料及其制备方法 | |
CN108933261A (zh) | 一种铈掺杂的镍钴铝酸锂/石墨烯复合正极材料的制备方法 | |
CN105529194B (zh) | 一种MnO2@石墨烯胶囊@MnO2复合材料的制备方法 | |
CN104779386B (zh) | 制备钴酸锰纳米八面体材料及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |
|
RJ01 | Rejection of invention patent application after publication |