CN106558713A - 一种燃料电池低温启动系统及运行方法 - Google Patents

一种燃料电池低温启动系统及运行方法 Download PDF

Info

Publication number
CN106558713A
CN106558713A CN201510600125.2A CN201510600125A CN106558713A CN 106558713 A CN106558713 A CN 106558713A CN 201510600125 A CN201510600125 A CN 201510600125A CN 106558713 A CN106558713 A CN 106558713A
Authority
CN
China
Prior art keywords
hydrogen
coolant
heat exchanger
fuel cell
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510600125.2A
Other languages
English (en)
Other versions
CN106558713B (zh
Inventor
甘全全
荣瑞
刘然
周鹏飞
曹宏宇
张国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sinohytec Co Ltd
Original Assignee
Beijing Sinohytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinohytec Co Ltd filed Critical Beijing Sinohytec Co Ltd
Priority to CN201510600125.2A priority Critical patent/CN106558713B/zh
Publication of CN106558713A publication Critical patent/CN106558713A/zh
Application granted granted Critical
Publication of CN106558713B publication Critical patent/CN106558713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供一种燃料电池低温启动系统及运行方法,低温启动系统包括:燃料电池系统和冷却液循环系统;冷却液循环系统包括:依次连接并形成环路的空气‑冷却液换热器、氢气‑冷却液换热器、氢气催化燃烧换热器、水泵、散热器;空气‑冷却液换热器位于燃料电池系统的空气输送管路上;氢气‑冷却液换热器位于氢气输送管路上;氢气催化燃烧换热器用于使冷却液循环系统中循环的冷却液升温并通过第一氢气输送支路连通所述燃料电池系统的氢气源;经由氢气催化燃烧换热器的冷却液通过水泵在冷却液循环系统中循环。上述低温启动系统能够实现低温环境下燃料电池的快速启动,且保证低温下燃料电池运行寿命,可有效降低燃料电池的低温运行故障率。

Description

一种燃料电池低温启动系统及运行方法
技术领域
本发明涉及一种车载燃料电池技术,尤其涉及一种燃料电池低温启动系统及运行方法。
背景技术
燃料电池的应用中,低温启动和低温运行成为其必然面对的课题。车载燃料电池必须具有良好的冷启动(即低温启动)特性。而冷启动最大的问题在于低温下水生成冰,阻碍了氢气和空气在质子交换膜内部的扩散和质子交换膜燃料电池阴极生成水的排除,从而造成冷启动的失败。
目前,质子交换膜燃料电池要想产生电能,需要对其增湿,在水的作用下质子方能穿越膜电极而产生电流。然而,在温度低于0℃时,燃料电池内部的水会结晶成冰。现有技术中可通过吹扫等处理减少燃料电池内部的冰,但是燃料电池内部仍会有微量的冰晶存在,影响传质和质子的传递,使燃料电池无法启动或者启动过慢。
进一步地,若上述低温环境下水生成冰的过程若发生在燃料电池电堆内的催化表面附近,则会影响进一步电化学反应甚至导致质子交换膜电极剥离损坏。
为此,现有技术中提供有多个燃料电池系统的低温启动方法,能够有效实现燃料电池的快速启动,但是却无法保证低温下燃料电池的有效运行。
发明内容
针对现有技术中的缺陷,本发明提供一种燃料电池低温启动系统及运行方法,能够实现低温环境下燃料电池的快速启动,且保证低温下燃料电池运行寿命,有效降低燃料电池的低温运行故障率。
第一方面,本发明提供一种燃料电池低温启动系统,包括:燃料电池系统和冷却液循环系统;
所述冷却液循环系统包括:依次连接并形成环路的空气-冷却液换热器、氢气-冷却液换热器、氢气催化燃烧换热器、水泵、散热器;
其中,所述空气-冷却液换热器位于燃料电池系统的空气输送管路上,用于与待进入燃料电池电堆的空气换热;
所述氢气-冷却液换热器位于燃料电池系统的氢气输送管路上,用于与待进入燃料电池电堆的氢气换热;
所述氢气催化燃烧换热器用于使冷却液循环系统中循环的冷却液升温,该氢气催化燃烧换热器通过第一氢气输送支路连通所述燃料电池系统的氢气源;
经由所述氢气催化燃烧换热器的冷却液通过水泵在所述冷却液循环系统中循环。
可选地,所述水泵连接散热器的一端还连接所述燃料电池系统的节温器;
所述散热器为所述燃料电池系统的散热器;
所述散热器远离所述水泵的一端连接节温器的一端,所述节温器的另一端连接所述空气-冷却液换热器,形成冷却液的循环环路;
和/或,
所述氢气催化燃烧换热器通过第二氢气输送支路连通所述燃料电池系统的氢气排放装置。
可选地,所述空气-冷却液换热器为板式换热器、翅片式换热器、管壳式换热器中的一种;
和/或,
所述氢气-冷却液换热器为板式换热器、翅片式换热器、管壳式换热器中的一种;
和/或,
所述氢气催化燃烧换热器为板式换热器、翅片式换热器、管壳式换热器中的一种。
可选地,所述空气-冷却液换热器、氢气-冷却液换热器、氢气催化燃烧换热器中的一个或多个上设有电辅助加热设备;
每一电辅助加热设备均连接燃烧电池系统的电源。
可选地,所述电辅助加热设备包括下述的一种或多种:电阻丝、PTC贴片、红外设备或激光设备。
可选地,所述冷却液循环系统还包括:用于监测冷却液温度的冷却液温度传感器;
所述冷却液温度传感器连接所述燃料电池系统的控制器,该控制器连接所述燃料电池系统的空气压缩机、所有的电磁阀、节温器、散热器,以及连接所述冷却液循环系统的水泵;
所述控制器根据所述冷却液温度传感器检测的冷却液温度控制所述水泵的启动,以及控制燃料电池系统中空气输送管路、氢气输送管路的通断。
可选地,所述燃料电池系统的空气输送管路上设置有用于监测空气温度的空气温度传感器,所述空气温度传感器连接所述控制器。
第二方面,本发明还提供一种基于上述任一所述的燃料电池低温启动系统的燃料电池低温运行方法,包括:
在燃料电池系统的环境温度低于0℃时,通过冷却液循环系统的氢气催化燃烧换热器加热冷却液循环系统中的冷却液;以及
通过冷却液循环系统的水泵使加热的冷却液在冷却液循环系统中循环,进而燃料电池系统的空气输送管路中空气、氢气输送管路中氢气分别通过各自的换热器与冷却液换热;
若冷却液的温度超过第一预设温度,则分别向燃料电池系统的燃料电池电堆中通入换热后的空气和氢气。
可选地,通过冷却液循环系统的氢气催化燃烧换热器加热冷却液循环系统中的冷却液,包括:
打开第一氢气输送支路,使氢气源向氢气催化燃烧换热器输送用于产热的氢气,以加热冷却液循环系统中的冷却液;
相应地,所述方法还包括:
在所述燃料电池系统的氢气排放装置中排放的氢气温度超过第二预设温度时,打开第二氢气输送支路,关闭第一氢气输送支路,使氢气排放装置的排放氢气催化加热氢气催化燃烧换热器中的冷却液。
可选地,所述方法还包括:
在所述冷却液的温度超过第三预设温度时,停止加热氢气催化燃烧换热器中的冷却液。
由上述技术方案可知,本发明的一种燃料电池低温启动系统及运行方法,通过在燃料电池系统中增加冷却液循环系统,使得冷却液循环系统中的空气-冷却液换热器可与空气输送管路中的空气换热,以及氢气-冷却液换热器可与氢气输送管路中的氢气换热,保证在燃料电池系统的环境温度低于0℃时,燃料电池系统可以正常启动,且保证正常运行,进而实现低温环境下燃料电池的快速启动,且保证低温下燃料电池运行寿命,可有效降低燃料电池的低温运行故障率。
附图说明
图1为本发明一实施例提供的燃料电池低温启动系统的结构示意图;
图2为本发明另一实施例提供的燃料电池低温启动系统的结构示意图;
图3为本发明一实施例提供的燃料电池低温运行方法的流程示意图。
附图中:
空气-冷却液换热器11、氢气-冷却液换热器12、氢气催化燃烧换热器13、水泵14、散热器15、第一氢气输送支路16、第二氢气输送支路17、冷却液温度传感器18;
空气输送管路21、氢气输送管路22、燃料电池电堆23、氢气源24、节温器25、氢气排放装置26、空气温度传感器27。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
图1示出了本发明一实施例提供的燃料电池低温启动系统的结构示意图,如图1所示,本实施例的燃料电池低温启动系统包括:燃料电池系统和冷却液循环系统。
本实施例的燃料电池系统可为现有技术中的燃料电池系统,该燃料电池系统包括:空气压缩机、氢气源、增湿器、燃料电池电堆、氢气排放装置、节温器、散热器、多个电磁阀等。燃料电池系统中各部件的连接关系和现有技术中燃料电池系统中各部件的连接关系均相同,本实施例不对其进行详细。
本实施例在燃料电池系统上增加冷却液循环系统,如图1所示,本实施例的冷却液循环系统包括:依次连接并形成环路的空气-冷却液换热器11、氢气-冷却液换热器12、氢气催化燃烧换热器13、水泵14、散热器15;
其中,空气-冷却液换热器11位于燃料电池系统的空气输送管路21上,用于与待进入燃料电池电堆的空气换热;例如,空气-冷却液换热器11的位置可以同时或独立设置在空气压缩机进气口、空气压缩机出口、燃料电池电堆23空气尾排处,流经该换热器的冷却液和空气换热。
所述氢气-冷却液换热器12位于燃料电池系统的氢气输送管路22上,用于与待进入燃料电池电堆的氢气换热;例如,氢气-冷却液换热器的位置可以同时或者独立设置在燃料电池电堆的氢气入口处,或者燃料电池电堆氢气出口处。流经该换热器的冷却液和氢气换热。
所述氢气催化燃烧换热器13用于使冷却液循环系统中循环的冷却液升温,该氢气催化燃烧换热器13通过第一氢气输送支路16连通所述燃料电池系统的氢气源24;经由所述氢气催化燃烧换热器13的冷却液通过水泵14在所述冷却液循环系统中循环。
也就是说,氢气催化燃烧换热器13将第一氢气输送支路16输送的氢气直接催化为热能,以加热冷却液循环系统中的冷却液,实现燃料电池系统的快速低温启动。
氢气催化燃烧换热器13为使用氢气与空气在催化固定床内催化燃烧,实现快速升温的反应器。在整个低温启动系统中可能同时具有稀释氢气降低浓度含量的作用。氢气催化燃烧换热器13中的氢气来源是氢气源的直接纯氢或者如图2所示的燃料电池电堆反应的尾排气体氢气。氢气催化燃烧换热器13中的空气来源是直接空压机供气、自然对流或其他设备供应或者燃料电池电堆反应空气尾排废气。
举例来说,本实施例中的空气-冷却液换热器11可为板式换热器、翅片式换热器、管壳式换热器中的一种;和/或,氢气-冷却液换热器12可为板式换热器、翅片式换热器、管壳式换热器中的一种;和/或,氢气催化燃烧换热器13可为板式换热器、翅片式换热器、管壳式换热器中的一种。
在实际应用中,为更好的燃料电池低温启动系统的启动和运行,上述的冷却液循环系统还包括:用于监测冷却液温度的冷却液温度传感器18;该冷却液温度传感器18连接所述燃料电池系统的控制器(图中未示出),该控制器连接所述燃料电池系统的空气压缩机、所有的电磁阀、节温器、散热器15,以及连接所述冷却液循环系统的水泵14;
所述控制器根据所述冷却液温度传感器18检测的冷却液温度控制所述水泵的启动,以及控制燃料电池系统中空气输送管路、氢气输送管路的通断。
本实施例的燃料电池低温启动系统,通过在燃料电池系统中增加冷却液循环系统,使得冷却液循环系统中的空气-冷却液换热器可与空气输送管路中的空气换热,以及氢气-冷却液换热器可与氢气输送管路中的氢气换热,保证在燃料电池系统的环境温度低于0℃时,燃料电池系统可以正常启动,且保证正常运行,进而实现低温环境下燃料电池的快速启动,且保证低温下燃料电池运行寿命,可有效降低燃料电池的低温运行故障率。
另外,在实际应用中,为减少成本,且降低燃料电池系统的结构复杂度,上述冷却液循环系统中的散热器15可为燃料电池系统的散热器,如图2所示,在图2中水泵14连接散热器的一端还连接所述燃料电池系统的节温器25;
散热器15远离所述水泵14的一端连接节温器25的一端,所述节温器25的另一端连接所述空气-冷却液换热器11,形成冷却液的循环环路。
优选地,为充分利用氢气或氢能加热冷却液循环系统中的冷却液,还可使氢气催化燃烧换热器13通过第二氢气输送支路17连通所述燃料电池系统的氢气排放装置26。
进而在检测到所述燃料电池系统的氢气排放装置中排放的氢气温度超过第二预设温度时,打开第二氢气输送支路,关闭第一氢气输送支路,使氢气排放装置的排放氢气催化加热氢气催化燃烧换热器中的冷却液。
另外,在一种优选实施方式中,燃料电池系统的空气输送管路上还可设置有用于监测空气温度的空气温度传感器27,该空气温度传感器27连接所述控制器,由此,在燃料电池系统的环境温度低于0℃时,可根据冷却液温度传感器的检测值以及空气温度传感器27的检测值确定是否向燃料电池电堆中通入氢气和空气。
进一步地,前述的空气-冷却液换热器11、氢气-冷却液换热器12、氢气催化燃烧换热器13中的一个或多个换热器上还可设有电辅助加热设备(图中未示出);每一电辅助加热设备均连接燃烧电池系统的电源。
举例来说,电辅助加热设备可包括下述的一种或多种:电阻丝、PTC贴片、红外设备或激光设备。上述各换热器上可通过串联或粘贴方式附加电辅助加热设备。
在燃料电池系统的环境温度低于0℃时,启动氢气催化燃烧换热器加热冷却液循环系统中的冷却液的同时,可通过各个换热器上设置的电辅助加热设备同时加热冷却液循环系统中的冷却液。
上述的燃料电池低温启动系统,能够保证在燃料电池系统的环境温度低于0℃时,燃料电池系统可以正常启动,且保证正常运行,进而实现低温环境下燃料电池的快速启动,且保证低温下燃料电池运行寿命,可有效降低燃料电池的低温运行故障率。
如图3所示,图3示出了本发明一实施例提供的燃料电池低温运行方法的流程示意图,本实施例的燃料电池低温运行方法是基于燃料电池低温启动系统的运行方法,该方法包括如下步骤:
301、在燃料电池系统的环境温度低于0℃时,通过冷却液循环系统的氢气催化燃烧换热器加热冷却液循环系统中的冷却液。
举例来说,可打开第一氢气输送支路,使氢气源向氢气催化燃烧换热器输送用于产热的氢气,以加热冷却液循环系统中的冷却液;
或者,在实际应用中,还可以对各换热器上设置的电辅助加热设备通电,以实现加热冷却液循环系统中的冷却液的目的。
302、通过冷却液循环系统的水泵使加热的冷却液在冷却液循环系统中循环,进而燃料电池系统的空气输送管路中空气、氢气输送管路中氢气分别通过各自的换热器与冷却液换热。
303、若冷却液的温度超过第一预设温度(0-5℃),则分别向燃料电池系统的燃料电池电堆中通入换热后的空气和氢气。
进一步地,在燃料电池系统的低温运行中,若燃料电池系统的氢气排放装置中排放的氢气温度超过第二预设温度(40℃+-5℃)时,则可打开第二氢气输送支路的电磁阀,关闭第一氢气输送支路上的电磁阀,使氢气排放装置的排放氢气催化加热氢气催化燃烧换热器中的冷却液。即,本实施例中在运行时可利用尾排氢气给冷却液循环中的冷却液加热,尾排氢气被冷却。因为尾排空气和尾排氢气会比散热器系统温度均要高一些。
特别地,为保证燃料电池系统的使用寿命,可在所述冷却液的温度超过第三预设温度(60℃+-5℃)时,停止加热氢气催化燃烧换热器中的冷却液。
上述方法通过冷却液循环系统以冷却液为介质实现对燃料电池电堆供氧、供氢的温度控制,并在低温下运行。
上述图3所示的低温运行方法可在燃料电池系统所处环境温度低于0℃启动时,首先启动燃料电池系统内的水泵带动冷却液在冷却液循环系统内循环,氢气源可通过第一氢气输送支路直接喷入氢气催化燃烧换热器中进行产热,同时还可根据锂电池状态给各换热器上的电辅助加热设备进行预热。待冷却液温度传感器测试超过冷却液的温度超过第一预设温度时,如0-5℃时,即可向燃料电池系统通入氢气,同时启动空压机供风,完成正常启动。
在燃料电池运行全过程中可以保持空气换热器持续与冷却水换热,低温过程可用于加热空气,在大负载下可用于降低可能被空气压缩机加热的空气,避免对燃料电池电堆造成超温度范围影响。
在燃料电池运行过程中,图2中所示的空气温度传感器测得低于第一预设温度如5℃时,氢气由氢气源直接进入氢气催化燃烧换热器,快速加热冷却液循环系统中的冷却液,使空气温度在最短时间内达到最利于燃料电池反应的温度。当系统温度升高至大于第二预设温度以上时,如40℃时,氢气尾排通过氢气催化换热器,利用反应剩余尾排氢气间歇性加热冷却液,充分利用氢能加热;当温度高于第三设定温度时,一般为燃料电池反应温度或稍低于燃料电池反应温度,如60℃,关闭氢气进入催化燃烧换热器,以减轻散热器的散热压力。
上述方法无充足启动电源的情况下燃料电池均可以完成低温启动;使得燃料电池低温启动和使用较为简单,对水热管理要求低,不用考虑空气压缩机供风带来的电堆内部的水管理问题;
空气换热使电堆空气温度高于零度,消除电堆工作过程中入口附近电极表面生成水被冰冻的可能性,减小低温运行故障,增加低温运行寿命。
进一步地,上述低温启动系统中以循环水为热管理核心,由于其热容大波动性较小,全系统热管理更加稳定;在燃料电池系统低温关机通过空压机吹扫系统内液态水时,由于全系统水热容较大,可以吹扫更彻底;使用以氢气催化加热为主,最大效能利用氢气能量,增加热效率;同时加入电加热辅助,在条件允许时加快低温启动速度。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (10)

1.一种燃料电池低温启动系统,包括:燃料电池系统,其特征在于,还包括:冷却液循环系统;
所述冷却液循环系统包括:依次连接并形成环路的空气-冷却液换热器、氢气-冷却液换热器、氢气催化燃烧换热器、水泵、散热器;
其中,所述空气-冷却液换热器位于燃料电池系统的空气输送管路上,用于与待进入燃料电池电堆的空气换热;
所述氢气-冷却液换热器位于燃料电池系统的氢气输送管路上,用于与待进入燃料电池电堆的氢气换热;
所述氢气催化燃烧换热器用于使冷却液循环系统中循环的冷却液升温,该氢气催化燃烧换热器通过第一氢气输送支路连通所述燃料电池系统的氢气源;
经由所述氢气催化燃烧换热器的冷却液通过水泵在所述冷却液循环系统中循环。
2.根据权利要求1所述的系统,其特征在于,所述水泵连接散热器的一端还连接所述燃料电池系统的节温器;
所述散热器为所述燃料电池系统的散热器;
所述散热器远离所述水泵的一端连接节温器的一端,所述节温器的另一端连接所述空气-冷却液换热器,形成冷却液的循环环路;
和/或,
所述氢气催化燃烧换热器通过第二氢气输送支路连通所述燃料电池系统的氢气排放装置。
3.根据权利要求1所述的系统,其特征在于,所述空气-冷却液换热器为板式换热器、翅片式换热器、管壳式换热器中的一种;
和/或,
所述氢气-冷却液换热器为板式换热器、翅片式换热器、管壳式换热器中的一种;
和/或,
所述氢气催化燃烧换热器为板式换热器、翅片式换热器、管壳式换热器中的一种。
4.根据权利要求1至3任一所述的系统,其特征在于,所述空气-冷却液换热器、氢气-冷却液换热器、氢气催化燃烧换热器中的一个或多个上设有电辅助加热设备;
每一电辅助加热设备均连接燃烧电池系统的电源。
5.根据权利要求4所述的系统,其特征在于,所述电辅助加热设备包括下述的一种或多种:电阻丝、PTC贴片、红外设备或激光设备。
6.根据权利要求1至3任一所述的系统,其特征在于,所述冷却液循环系统还包括:用于监测冷却液温度的冷却液温度传感器;
所述冷却液温度传感器连接所述燃料电池系统的控制器,该控制器连接所述燃料电池系统的空气压缩机、所有的电磁阀、节温器、散热器,以及连接所述冷却液循环系统的水泵;
所述控制器根据所述冷却液温度传感器检测的冷却液温度控制所述水泵的启动,以及控制燃料电池系统中空气输送管路、氢气输送管路的通断。
7.根据权利要求6所述的系统,其特征在于,所述燃料电池系统的空气输送管路上设置有用于监测空气温度的空气温度传感器,所述空气温度传感器连接所述控制器。
8.一种基于权1至权7任一所述的燃料电池低温启动系统的燃料电池低温运行方法,其特征在于,包括:
在燃料电池系统的环境温度低于0℃时,通过冷却液循环系统的氢气催化燃烧换热器加热冷却液循环系统中的冷却液;以及
通过冷却液循环系统的水泵使加热的冷却液在冷却液循环系统中循环,进而燃料电池系统的空气输送管路中空气、氢气输送管路中氢气分别通过各自的换热器与冷却液换热;
若冷却液的温度超过第一预设温度,则分别向燃料电池系统的燃料电池电堆中通入换热后的空气和氢气。
9.根据权利要求8所述的方法,其特征在于,通过冷却液循环系统的氢气催化燃烧换热器加热冷却液循环系统中的冷却液,包括:
打开第一氢气输送支路,使氢气源向氢气催化燃烧换热器输送用于产热的氢气,以加热冷却液循环系统中的冷却液;
相应地,所述方法还包括:
在所述燃料电池系统的氢气排放装置中排放的氢气温度超过第二预设温度时,打开第二氢气输送支路,关闭第一氢气输送支路,使氢气排放装置的排放氢气催化加热氢气催化燃烧换热器中的冷却液。
10.根据权利要求8所述的方法,其特征在于,所述方法还包括:
在所述冷却液的温度超过第三预设温度时,停止加热氢气催化燃烧换热器中的冷却液。
CN201510600125.2A 2015-09-18 2015-09-18 一种燃料电池低温启动系统及运行方法 Active CN106558713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510600125.2A CN106558713B (zh) 2015-09-18 2015-09-18 一种燃料电池低温启动系统及运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510600125.2A CN106558713B (zh) 2015-09-18 2015-09-18 一种燃料电池低温启动系统及运行方法

Publications (2)

Publication Number Publication Date
CN106558713A true CN106558713A (zh) 2017-04-05
CN106558713B CN106558713B (zh) 2019-12-10

Family

ID=58414796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510600125.2A Active CN106558713B (zh) 2015-09-18 2015-09-18 一种燃料电池低温启动系统及运行方法

Country Status (1)

Country Link
CN (1) CN106558713B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011114A (zh) * 2017-12-18 2018-05-08 大连交通大学 一种利用合金储氢材料低温启动车用燃料电池系统及方法
CN108400356A (zh) * 2018-03-15 2018-08-14 东莞深圳清华大学研究院创新中心 一种sofc燃料电池热电联供系统的控制方法
CN108414939A (zh) * 2018-01-23 2018-08-17 同济大学 一种燃料电池电堆低温冷启动测试研究平台
CN108470925A (zh) * 2018-03-27 2018-08-31 中国东方电气集团有限公司 燃料电池启动系统及方法
CN108808035A (zh) * 2018-06-29 2018-11-13 张家港氢云新能源研究院有限公司 能超低温冷启动的燃料电池汽车的动力系统
CN109119655A (zh) * 2018-08-31 2019-01-01 广东国鸿氢能科技有限公司 一种燃料电池低温保护装置
CN109291830A (zh) * 2018-11-20 2019-02-01 吉林大学 一种燃料电池汽车热管理系统及其控制方法
CN109888333A (zh) * 2019-04-24 2019-06-14 吉林大学 一种基于引射器的氢燃料电池冷起动及应急启动装置
CN109904494A (zh) * 2019-02-01 2019-06-18 清华大学 燃料电池系统的低温启动方法、计算机设备和存储介质
CN110165247A (zh) * 2019-05-20 2019-08-23 浙江大学 具有冷启动功能的燃料电池汽车热管理系统及其控制方法
CN110444786A (zh) * 2018-05-03 2019-11-12 郑州宇通客车股份有限公司 一种燃料电池低温启动控制方法及装置
CN110611108A (zh) * 2019-10-23 2019-12-24 中山大洋电机股份有限公司 一种加热中冷一体器及其应用的燃料电池系统和控制方法
CN110649280A (zh) * 2019-09-26 2020-01-03 上海电气集团股份有限公司 燃料电池热电联供系统及装置
CN110739470A (zh) * 2018-07-18 2020-01-31 郑州宇通客车股份有限公司 一种燃料电池辅助系统
CN110890573A (zh) * 2019-11-01 2020-03-17 中车工业研究院有限公司 一种冷启动方法、系统、电子设备及存储介质
CN110970638A (zh) * 2019-12-11 2020-04-07 浙江氢谷新能源汽车有限公司 一种燃料电池热平衡“气-气-气”三相热交换系统
CN112993319A (zh) * 2019-12-13 2021-06-18 中车时代电动汽车股份有限公司 一种具有加热辅助功能的燃料电池
CN113299949A (zh) * 2021-04-08 2021-08-24 东风汽车集团股份有限公司 具有低温冷启动功能的燃料电池热管理系统及控制方法
CN113540500A (zh) * 2021-06-15 2021-10-22 佛山仙湖实验室 一种氢燃料电池发动机低温冷启动控制方法
CN113675442A (zh) * 2021-07-27 2021-11-19 华南理工大学 一种应用于燃料电池的辅助低温冷启动系统及其控制方法
CN114256486A (zh) * 2020-09-25 2022-03-29 北京亿华通科技股份有限公司 燃料电池系统冷启动的控制方法及燃料电池系统、车辆
CN114566674A (zh) * 2022-02-09 2022-05-31 上海神力科技有限公司 一种电堆氢气入口加热结构
CN114719558A (zh) * 2022-04-19 2022-07-08 江苏凌氢新能源科技有限公司 氢空冷却一体化机组及控制方法
CN114914477A (zh) * 2021-02-07 2022-08-16 广州汽车集团股份有限公司 燃料电池系统及其加热控制方法和燃料电池汽车
CN115621507A (zh) * 2022-11-14 2023-01-17 北京亿华通科技股份有限公司 用于液氢燃料电池发动机的氢气温度调控系统
CN116936863A (zh) * 2023-08-02 2023-10-24 北京航天试验技术研究所 一种冷启动的液氢储供系统及其方法
CN117352777A (zh) * 2023-12-05 2024-01-05 大连擎研科技有限公司 一种燃料电池系统及其低温启动方法
CN114914477B (zh) * 2021-02-07 2024-05-10 广州汽车集团股份有限公司 燃料电池系统及其加热控制方法和燃料电池汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2763990Y (zh) * 2005-02-01 2006-03-08 上海神力科技有限公司 可在低温环境下启动与运行的燃料电池发电系统
CN101132070A (zh) * 2006-08-21 2008-02-27 Lg电子株式会社 燃料电池单元系统
JP2008282664A (ja) * 2007-05-10 2008-11-20 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその制御方法
CN102324538A (zh) * 2011-07-12 2012-01-18 浙江银轮机械股份有限公司 基于固体氧化物燃料电池余热回收的有机郎肯循环发电系统
CN102496730A (zh) * 2011-11-24 2012-06-13 新源动力股份有限公司 一种燃料电池发电系统低温启动的热管理系统及其方法
CN104157890A (zh) * 2014-08-18 2014-11-19 芜湖国氢能源股份有限公司 一种氢燃料电池热水利用系统
CN104733748A (zh) * 2013-12-24 2015-06-24 上海神力科技有限公司 一种中高温燃料电池集成运行系统
CN104835976A (zh) * 2015-05-07 2015-08-12 昆山弗尔赛能源有限公司 一种利用相变冷却的燃料电池散热系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2763990Y (zh) * 2005-02-01 2006-03-08 上海神力科技有限公司 可在低温环境下启动与运行的燃料电池发电系统
CN101132070A (zh) * 2006-08-21 2008-02-27 Lg电子株式会社 燃料电池单元系统
JP2008282664A (ja) * 2007-05-10 2008-11-20 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその制御方法
CN102324538A (zh) * 2011-07-12 2012-01-18 浙江银轮机械股份有限公司 基于固体氧化物燃料电池余热回收的有机郎肯循环发电系统
CN102496730A (zh) * 2011-11-24 2012-06-13 新源动力股份有限公司 一种燃料电池发电系统低温启动的热管理系统及其方法
CN104733748A (zh) * 2013-12-24 2015-06-24 上海神力科技有限公司 一种中高温燃料电池集成运行系统
CN104157890A (zh) * 2014-08-18 2014-11-19 芜湖国氢能源股份有限公司 一种氢燃料电池热水利用系统
CN104835976A (zh) * 2015-05-07 2015-08-12 昆山弗尔赛能源有限公司 一种利用相变冷却的燃料电池散热系统

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011114A (zh) * 2017-12-18 2018-05-08 大连交通大学 一种利用合金储氢材料低温启动车用燃料电池系统及方法
CN108414939A (zh) * 2018-01-23 2018-08-17 同济大学 一种燃料电池电堆低温冷启动测试研究平台
CN108400356A (zh) * 2018-03-15 2018-08-14 东莞深圳清华大学研究院创新中心 一种sofc燃料电池热电联供系统的控制方法
CN108400356B (zh) * 2018-03-15 2020-07-07 东莞深圳清华大学研究院创新中心 一种sofc燃料电池热电联供系统的控制方法
CN108470925B (zh) * 2018-03-27 2023-10-24 东方电气(成都)氢燃料电池科技有限公司 燃料电池启动系统及方法
CN108470925A (zh) * 2018-03-27 2018-08-31 中国东方电气集团有限公司 燃料电池启动系统及方法
CN110444786A (zh) * 2018-05-03 2019-11-12 郑州宇通客车股份有限公司 一种燃料电池低温启动控制方法及装置
CN108808035B (zh) * 2018-06-29 2023-12-15 张家港氢云新能源研究院有限公司 能-40℃以下超低温冷启动的燃料电池汽车的动力系统
CN108808035A (zh) * 2018-06-29 2018-11-13 张家港氢云新能源研究院有限公司 能超低温冷启动的燃料电池汽车的动力系统
CN110739470B (zh) * 2018-07-18 2024-02-27 宇通客车股份有限公司 一种燃料电池辅助系统
CN110739470A (zh) * 2018-07-18 2020-01-31 郑州宇通客车股份有限公司 一种燃料电池辅助系统
CN109119655B (zh) * 2018-08-31 2023-09-01 国鸿氢能科技(嘉兴)股份有限公司 一种燃料电池低温保护装置
CN109119655A (zh) * 2018-08-31 2019-01-01 广东国鸿氢能科技有限公司 一种燃料电池低温保护装置
CN109291830A (zh) * 2018-11-20 2019-02-01 吉林大学 一种燃料电池汽车热管理系统及其控制方法
CN109291830B (zh) * 2018-11-20 2019-12-20 吉林大学 一种燃料电池汽车热管理系统及其控制方法
CN109904494A (zh) * 2019-02-01 2019-06-18 清华大学 燃料电池系统的低温启动方法、计算机设备和存储介质
CN109888333A (zh) * 2019-04-24 2019-06-14 吉林大学 一种基于引射器的氢燃料电池冷起动及应急启动装置
CN109888333B (zh) * 2019-04-24 2024-05-03 吉林大学 一种基于引射器的氢燃料电池冷起动及应急启动装置
CN110165247A (zh) * 2019-05-20 2019-08-23 浙江大学 具有冷启动功能的燃料电池汽车热管理系统及其控制方法
CN110649280A (zh) * 2019-09-26 2020-01-03 上海电气集团股份有限公司 燃料电池热电联供系统及装置
CN110611108B (zh) * 2019-10-23 2024-03-15 中山大洋电机股份有限公司 一种加热中冷一体器及其应用的燃料电池系统和控制方法
CN110611108A (zh) * 2019-10-23 2019-12-24 中山大洋电机股份有限公司 一种加热中冷一体器及其应用的燃料电池系统和控制方法
CN110890573B (zh) * 2019-11-01 2021-04-13 中车工业研究院有限公司 一种冷启动方法、系统、电子设备及存储介质
CN110890573A (zh) * 2019-11-01 2020-03-17 中车工业研究院有限公司 一种冷启动方法、系统、电子设备及存储介质
CN110970638A (zh) * 2019-12-11 2020-04-07 浙江氢谷新能源汽车有限公司 一种燃料电池热平衡“气-气-气”三相热交换系统
CN110970638B (zh) * 2019-12-11 2024-04-16 浙江氢谷新能源汽车有限公司 一种燃料电池热平衡“气-气-气”三相热交换系统
CN112993319A (zh) * 2019-12-13 2021-06-18 中车时代电动汽车股份有限公司 一种具有加热辅助功能的燃料电池
CN114256486A (zh) * 2020-09-25 2022-03-29 北京亿华通科技股份有限公司 燃料电池系统冷启动的控制方法及燃料电池系统、车辆
CN114914477A (zh) * 2021-02-07 2022-08-16 广州汽车集团股份有限公司 燃料电池系统及其加热控制方法和燃料电池汽车
CN114914477B (zh) * 2021-02-07 2024-05-10 广州汽车集团股份有限公司 燃料电池系统及其加热控制方法和燃料电池汽车
CN113299949A (zh) * 2021-04-08 2021-08-24 东风汽车集团股份有限公司 具有低温冷启动功能的燃料电池热管理系统及控制方法
CN113540500B (zh) * 2021-06-15 2022-08-23 佛山仙湖实验室 一种氢燃料电池发动机低温冷启动控制方法
CN113540500A (zh) * 2021-06-15 2021-10-22 佛山仙湖实验室 一种氢燃料电池发动机低温冷启动控制方法
CN113675442B (zh) * 2021-07-27 2023-03-31 华南理工大学 一种应用于燃料电池的辅助低温冷启动系统及其控制方法
CN113675442A (zh) * 2021-07-27 2021-11-19 华南理工大学 一种应用于燃料电池的辅助低温冷启动系统及其控制方法
CN114566674A (zh) * 2022-02-09 2022-05-31 上海神力科技有限公司 一种电堆氢气入口加热结构
CN114719558A (zh) * 2022-04-19 2022-07-08 江苏凌氢新能源科技有限公司 氢空冷却一体化机组及控制方法
CN115621507B (zh) * 2022-11-14 2023-03-10 北京亿华通科技股份有限公司 用于液氢燃料电池发动机的氢气温度调控系统
CN115621507A (zh) * 2022-11-14 2023-01-17 北京亿华通科技股份有限公司 用于液氢燃料电池发动机的氢气温度调控系统
CN116936863A (zh) * 2023-08-02 2023-10-24 北京航天试验技术研究所 一种冷启动的液氢储供系统及其方法
CN116936863B (zh) * 2023-08-02 2024-03-12 北京航天试验技术研究所 一种冷启动的液氢储供系统及其方法
CN117352777A (zh) * 2023-12-05 2024-01-05 大连擎研科技有限公司 一种燃料电池系统及其低温启动方法
CN117352777B (zh) * 2023-12-05 2024-03-05 大连擎研科技有限公司 一种燃料电池系统及其低温启动方法

Also Published As

Publication number Publication date
CN106558713B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
CN106558713A (zh) 一种燃料电池低温启动系统及运行方法
CN105390715B (zh) 一种低温冷启动燃料电池系统及利用方法
US11545677B2 (en) Fuel cell vehicle thermal management system with cold start function and control method thereof
CN107394232B (zh) 燃料电池的动力系统与交通工具
CN106476640A (zh) 燃料电池车辆的热管理系统
CN102496730A (zh) 一种燃料电池发电系统低温启动的热管理系统及其方法
CN101257124B (zh) 热电并给装置
CN108123152B (zh) 一种以液氧为氧化剂的燃料电池发电系统
JP4894156B2 (ja) 燃料電池システム
JP4965414B2 (ja) 燃料電池システム用カソード入口空気流の温度制御
WO2008016257A1 (en) Fuel cell system and operating method
JP2006528827A (ja) 低温燃料電池発電装置の動作
CN110120535A (zh) 一种燃料电池电堆低温快速启动系统和启动方法
CN210700982U (zh) 余热回收加热涂布机系统
JP3563681B2 (ja) 燃料電池コジェネシステム、および燃料電池コジェネシステムの運転方法
JP5287368B2 (ja) 燃料電池システム
US8871400B2 (en) Fuel cell system and method for operating fuel cell system
CN210467992U (zh) 燃料电池测试系统
CN113793952A (zh) 燃料电池系统及其低温启动控制方法、装置
KR20120075823A (ko) 폐열을 이용한 냉난방 시스템 및 방법
JP2004164951A (ja) 燃料電池システム
TWI385847B (zh) Stage fuel cell system for loading system components and methods thereof
CN111769302B (zh) 用于燃料电池的加热装置
CN210489739U (zh) 用于燃料电池的加热组件
GB2407432A (en) Fuel cell having a heating and /or cooling circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant