CN106543774A - 一种纳米氮化硅粉体表面有机化改性方法 - Google Patents
一种纳米氮化硅粉体表面有机化改性方法 Download PDFInfo
- Publication number
- CN106543774A CN106543774A CN201610946986.0A CN201610946986A CN106543774A CN 106543774 A CN106543774 A CN 106543774A CN 201610946986 A CN201610946986 A CN 201610946986A CN 106543774 A CN106543774 A CN 106543774A
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- nano
- nano powder
- temperature
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/08—Treatment with low-molecular-weight non-polymer organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种纳米氮化硅粉体表面有机化改性方法,采用偶联剂作为表面改性剂,具体步骤为:在PH=4‑5的弱酸性水溶液环境和温度在3‑5℃的恒温气浴或水浴反应器环境中,同时缓慢添加纳米氮化硅和表面改性剂,控制二者同时开始添加并控制同时结束加料过程,再将反应器温度提高到20‑30℃,维持缓慢搅拌10‑15分钟完成纳米氮化硅的物理包覆和化学接枝改性过程,最后通过过滤和真空干燥得到改性纳米氮化硅粉体。本发明所提供的无机纳米氮化硅表面有机化改性方法改性效果明显,对聚合物基体可以达到增强、增韧并同时增强耐磨性和耐候性的功能,另外,本改性方法操作步骤简单、操作温度处于常温范围、过程节能环保,滤液可以循环使用。
Description
技术领域
本发明涉及一种纳米粉体的改性方法。
背景技术
纳米粉体作为添加剂加入到有机聚合物中,可以制备出特殊性能的有机/无机纳米复合材料。纳米复合材料的性能与纳米粉体在有机聚合物基体中的均匀分散性和相容性有直接的关系,纳米无机粉体只有在基体中均匀分散,才有可能制备出性能均衡优异的复合材料,但是无机粉体和有机基体通常是不相容的,而且无机纳米粉体本身由于粒径很小,表面活性很高,很容易形成大的团聚体,本身的分散性能很差,在有机基体中的分散性和相容性很差,纳米粉体和有机聚合物的简单复合一般不能得到性能优异的复合材料。纳米氮化硅具有强度高、耐磨、耐腐蚀和高介电等优异性质,如果纳米氮化硅的这些性能与有机聚合物的柔性、延展性和拉伸性能等形成协同作用,则可以得到力学性能和电学性能优异的有机/无机纳米复合材料,可用于航天、航海、医疗器械和军事等特殊需要的场合。得到这种性能优异复合材料的关键是需要有效可行的纳米氮化硅表面改性技术,但是目前还没有令人满意的相关技术实现工业化或商业化。
发明内容
为了克服纳米氮化硅自身易于团聚以及与聚合物基体相容性差的问题,本发明提供了一种纳米氮化硅表面有机化改性技术,运用该技术对纳米氮化硅表面实施有机化改性,既可有效防止纳米氮化硅粉体的团聚,保持氮化硅纳米粉粒的良好分散性,还可以使得氮化硅粉体与聚合物基体具有很好的相容性。
本发明解决技术问题所采用的技术方案是:
取一定量易挥发有机溶剂置于带有搅拌装置、粉体加料口和液体加料口的容器中,溶剂的加入体积占容器容积的2/3-3/4之间,再加入体积为易挥发有机溶剂体积1/10-1/15的去离子水,然后滴加少量弱酸,调节溶液的pH值为4-5之间。将容器置于3-5℃的恒温气浴或水浴环境中,在对溶液缓慢搅拌的同时,从固体加料口向溶液中缓慢加入纳米氮化硅固体粉末,从液体加料口向溶液中缓慢加入表面改性剂,纳米氮化硅的加入量(按干燥基自然堆积体积计算)占有机溶剂体积的1/3-1/2,表面改性剂加入量(按常温液体体积计算)占纳米氮化硅加入量的1/10-1/8。控制固体粉末加料和表面改性剂的加料同时开始、同时结束,纳米固体粉末和表面改性剂加料结束后,将反应物料温度升温到20-30℃,仍维持缓慢搅拌10-15分钟,以使表面改性剂充分水解并和纳米粉粒表面充分接触并接枝包覆改性,最后停止搅拌,过滤得到改性后的固体纳米氮化硅经过真空干燥,充分除去表面吸附的液体,得到表面有机化改性的纳米氮化硅,实验表明,改性过的纳米氮化硅在聚乙烯、聚丙烯等聚合物基体中具有良好的分散性和相容性,对聚合物基体可以达到增强、增韧并同时达到增强耐磨性和耐候性的功能。所述易挥发有机溶剂为低分子的酮或醇,如丙酮、甲醇或乙醇等,所述弱酸为甲酸、乙酸或草酸等,所述表面改性剂为硅烷偶联剂或钛酸酯偶联剂,如KH-560、KH-570等,所述的纳米氮化硅一次粒径范围是50-150纳米。
本发明的有益效果体现在以下几个方面:所提供的无机纳米氮化硅表面有机化改性方法改性效果明显,改性过的纳米氮化硅在聚乙烯、聚丙烯等聚合物基体中具有良好的分散性和相容性,对聚合物基体可以达到增强、增韧并同时增强耐磨性和耐候性的功能,另外,本改性方法操作步骤简单、操作温度处于常温范围、过程节能环保,滤液可以循环使用。
具体实施例
下面结合实施例对本发明作进一步描述:
实施例1
取175mL甲醇置于250mL三口烧瓶中,再加入15mL去离子水,然后滴加少量乙酸,调节溶液的pH值为4-5之间。将三口烧瓶置于3-5℃的恒温气浴环境中,在对溶液缓慢搅拌的同时,从固体加料口向溶剂中缓慢加入纳米氮化硅固体粉末80mL,从液体加料口向溶液中缓慢加入KH-560表面改性剂8mL。控制固体粉末加料和表面改性剂的加料同时开始、同时结束。纳米固体粉末和表面改性剂加料结束后,将反应物料温度升温到20-30℃,仍维持缓慢搅拌10-15分钟,以使表面改性剂充分水解并和纳米粉粒表面充分接触并接枝条包覆改性,最后停止搅拌,过滤得到改性后的固体纳米氮化硅经过真空干燥,充分除去表面吸附的液体,得到表面有机化改性的纳米氮化硅。所得改性纳米氮化硅在透射电镜下观察表明,粉体粒子分散性好,平均粒径处于纳米尺度,粉粒表面包覆改性效果良好;所得改性纳米氮化硅应用于制备纳米氮化硅/聚乙烯复合材料,测试表明:通过双螺杆挤压成型后的纳米氮化硅/聚乙烯复合材料,1%纳米氮化硅粉体加入量(质量百分比)可以在聚乙烯基体中均匀分散,相容性良好,聚合物的拉伸强度达到空白基体材料的1.1-1.5倍,冲击韧性达到空白基体材料的2-2.3倍;另外,试验表明纳米氮化硅/聚乙烯复合材料耐磨性和耐腐蚀性有一定程度提高。
实施例2
采用与实施例1同样的方法步骤用KH-570表面活性剂对纳米氮化硅进行改性,得到表面有机化改性的纳米氮化硅,所得改性纳米氮化硅在透射电镜下观察表明,粉体粒子分散性好,平均粒径处于纳米尺度,粉粒表面包覆改性效果良好;所得改性纳米氮化硅应用于制备纳米氮化硅/聚丙烯复合材料,测试表明:通过双螺杆挤压成型后的纳米氮化硅/聚丙烯复合材料,1%纳米氮化硅粉体加入量(质量百分比)可以在聚丙烯基体中均匀分散,相容性良好,聚合物的拉伸强度达到空白基体材料的1.1-1.8倍,冲击韧性达到空白基体材料的2-3倍;另外,试验表明纳米氮化硅/聚丙烯复合材料耐磨性和耐腐蚀性有一定程度提高。
应当理解本文所述的例子和实施方式仅为了说明,本领域技术人员可根据它做出各种修改或变化,在不脱离本发明精神实质的情况下,都属于本发明的保护范围。
Claims (3)
1.一种纳米氮化硅粉体表面有机化改性方法,其特征是按如下步骤进行:在PH为4-5的弱酸性水溶液中和温度在3-5℃的恒温气浴或水浴反应器环境中同时缓慢加入表面改性剂和纳米氮化硅粉体,并控制表面改性剂和氮化硅的加料同时结束,然后反应温度提高到20-30℃,维持缓慢搅拌10-15分钟完成纳米氮化硅的物理包覆和化学接枝改性过程,并通过过滤和真空干燥得到改性纳米氮化硅粉体。
2.如权利要求1所述,其中的偶联剂为硅烷偶联剂或钛酸酯偶联剂,纳米氮化硅粉体粒度范围是100-150纳米,其中的弱酸性水溶液采用滴加微量的弱酸如醋酸、甲酸或草酸等调节。
3.如权利要求1所述,改性过程分为两个温度段进行:即前期在3-5℃的恒温气浴或水浴反应器环境进行和后期在20-30℃下进行,并控制改性剂和纳米氮化硅同时开始加料、同时结束加料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610946986.0A CN106543774A (zh) | 2016-10-26 | 2016-10-26 | 一种纳米氮化硅粉体表面有机化改性方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610946986.0A CN106543774A (zh) | 2016-10-26 | 2016-10-26 | 一种纳米氮化硅粉体表面有机化改性方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106543774A true CN106543774A (zh) | 2017-03-29 |
Family
ID=58392515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610946986.0A Pending CN106543774A (zh) | 2016-10-26 | 2016-10-26 | 一种纳米氮化硅粉体表面有机化改性方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106543774A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115109514A (zh) * | 2022-06-23 | 2022-09-27 | 华能(广东)能源开发有限公司汕头电厂 | 一种高导热涂料、制备方法及应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6132801A (en) * | 1997-02-28 | 2000-10-17 | The Board Of Trustees Of The Leland Stanford Junior University | Producing coated particles by grinding in the presence of reactive species |
US20030118501A1 (en) * | 2001-07-12 | 2003-06-26 | National Cheng Kung University | Surface treatment method for preparing water-resistant aluminum nitride powder |
CN101457020A (zh) * | 2007-12-14 | 2009-06-17 | 西北工业大学 | 纳米氮化硅/环氧基硅烷/氰酸酯树脂复合材料及其制备方法 |
US20090260297A1 (en) * | 2008-04-18 | 2009-10-22 | Anuj Seth | Hydrophilic and hydrophobic silane surface modification of abrasive grains |
CN101942233A (zh) * | 2010-07-14 | 2011-01-12 | 合肥开尔纳米能源科技股份有限公司 | 无机纳米粒子的表面处理方法及应用 |
CN103146232A (zh) * | 2013-03-18 | 2013-06-12 | 潍坊埃尔派粉体技术设备有限公司 | 一种集约式粉体表面改性装置及其生产工艺 |
CN104356937A (zh) * | 2014-11-24 | 2015-02-18 | 刘继伟 | 一种用于地铁车厢内饰的陶瓷涂料的生产方法 |
CN105385106A (zh) * | 2015-12-02 | 2016-03-09 | 安捷利(番禺)电子实业有限公司 | 一种高导热绝缘复合材料的制备方法 |
-
2016
- 2016-10-26 CN CN201610946986.0A patent/CN106543774A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6132801A (en) * | 1997-02-28 | 2000-10-17 | The Board Of Trustees Of The Leland Stanford Junior University | Producing coated particles by grinding in the presence of reactive species |
US20030118501A1 (en) * | 2001-07-12 | 2003-06-26 | National Cheng Kung University | Surface treatment method for preparing water-resistant aluminum nitride powder |
CN101457020A (zh) * | 2007-12-14 | 2009-06-17 | 西北工业大学 | 纳米氮化硅/环氧基硅烷/氰酸酯树脂复合材料及其制备方法 |
US20090260297A1 (en) * | 2008-04-18 | 2009-10-22 | Anuj Seth | Hydrophilic and hydrophobic silane surface modification of abrasive grains |
CN101942233A (zh) * | 2010-07-14 | 2011-01-12 | 合肥开尔纳米能源科技股份有限公司 | 无机纳米粒子的表面处理方法及应用 |
CN103146232A (zh) * | 2013-03-18 | 2013-06-12 | 潍坊埃尔派粉体技术设备有限公司 | 一种集约式粉体表面改性装置及其生产工艺 |
CN104356937A (zh) * | 2014-11-24 | 2015-02-18 | 刘继伟 | 一种用于地铁车厢内饰的陶瓷涂料的生产方法 |
CN105385106A (zh) * | 2015-12-02 | 2016-03-09 | 安捷利(番禺)电子实业有限公司 | 一种高导热绝缘复合材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
丁浩: "《粉体表面改性与应用》", 31 August 2013, 清华大学出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115109514A (zh) * | 2022-06-23 | 2022-09-27 | 华能(广东)能源开发有限公司汕头电厂 | 一种高导热涂料、制备方法及应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fawaz et al. | Synthesis of polymer nanocomposites: review of various techniques | |
Roy et al. | Application of cellulose as green filler for the development of sustainable rubber technology | |
US20160002417A1 (en) | Toughened epoxy resin/glass fiber prepreg and preparation method thereof | |
CN104559327B (zh) | 一种具有核壳结构的表面改性纳米碳酸钙及其制备方法 | |
Banerjee et al. | Surface treatment of cellulose fibers with methylmethacrylate for enhanced properties of in situ polymerized PMMA/cellulose composites | |
CN103554558B (zh) | 一种利用甲基丙烯酸羟乙酯橡胶接枝改性陶土增强天然橡胶复合材料的制备方法 | |
CN103910816B (zh) | 一种改进的环氧化反式异戊橡胶制备方法 | |
CN110734587B (zh) | 一种改性炭黑制备丁腈橡胶的方法 | |
CN104877178A (zh) | 一种利用埃洛石缓释防老剂制备耐老化橡胶的方法 | |
CN110205809B (zh) | 一种碳纤维的上浆方法及其应用 | |
CN103627055A (zh) | 利用改性微晶纤维素制备轮胎胎面胶的方法 | |
Jia et al. | Advances in rubber/halloysite nanotubes nanocomposites | |
CN115161913A (zh) | 纤维的上浆方法、涂覆纤维和纤维增强复合材料 | |
CN103539976A (zh) | 一种利用甲基丙烯酸羟乙酯橡胶接枝改性纳米碳酸钙增强天然橡胶复合材料的制备方法 | |
CN110734590B (zh) | 一种离子液体和壳聚糖改性炭黑制备乳聚丁苯橡胶的方法 | |
CN110330769B (zh) | 纳米碳材料/纳米纤维素/环氧树脂抗静电薄膜制备法 | |
CN106543774A (zh) | 一种纳米氮化硅粉体表面有机化改性方法 | |
CN103554559B (zh) | 一种利用甲基丙烯酸羟乙酯橡胶接枝改性白炭黑增强天然橡胶复合材料的制备方法 | |
CN110734594A (zh) | 一种改性炭黑制备乳聚丁苯橡胶的方法 | |
CN104725778A (zh) | 一种聚合物基复合材料及其制备方法 | |
CN114045082A (zh) | 一种具有自修复、透气及耐磨性能的复合涂层及其制备方法和应用 | |
CN102558874A (zh) | 一种硅橡胶复合材料及提高力学性能的方法 | |
Wu et al. | Recent advances of lignin functionalization for high-performance and advanced functional rubber composites | |
CN104131459A (zh) | 一种含CNTs的乙烯基酯类碳纤维上浆剂及其制备方法 | |
CN110734593B (zh) | 一种改性石墨烯制备乳聚丁苯橡胶的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170329 |
|
WD01 | Invention patent application deemed withdrawn after publication |