CN106542829B - 一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用 - Google Patents

一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用 Download PDF

Info

Publication number
CN106542829B
CN106542829B CN201610980264.7A CN201610980264A CN106542829B CN 106542829 B CN106542829 B CN 106542829B CN 201610980264 A CN201610980264 A CN 201610980264A CN 106542829 B CN106542829 B CN 106542829B
Authority
CN
China
Prior art keywords
sic
whisker
silicon nitride
raw material
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610980264.7A
Other languages
English (en)
Other versions
CN106542829A (zh
Inventor
张军战
张颖
高云琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xinyao Ceramic Composite Material Co Ltd
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201610980264.7A priority Critical patent/CN106542829B/zh
Publication of CN106542829A publication Critical patent/CN106542829A/zh
Application granted granted Critical
Publication of CN106542829B publication Critical patent/CN106542829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种利用固相反应法合成碳化硅晶须/碳化硅颗粒复合粉,并进一步通过烧结获得SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷的方法;首先制备SiC晶须/SiC颗粒复合粉,以氮化硅和炭黑为原料、氧化硼为催化剂,氩气气氛下在高温炉中高温合成,自然冷却至室温后,在氧化气氛下除碳得到SiC晶须/SiC颗粒复合粉;随后,将此复合粉和氮化硅按一定比例混合,加入烧结助剂和结合剂,冷等静压成型,干燥、烧结,得到SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷气。所得到的该多孔陶瓷气的气孔率在38%以上,与未加SiC晶须/SiC颗粒复合粉的材料相比,弯曲强度提高18%以上,断裂韧性提高80%以上;所得到的这种材料能明显改善氮化硅陶瓷的脆性,且生产成本低,制备方法简单。

Description

一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用
技术领域
本发明属于陶瓷技术领域,涉及一种用于增韧氮化硅陶瓷的碳化硅晶须/碳化硅颗粒复合粉体的制备方法,特别是提供了一种SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷的制备方法。
背景技术
多孔氮化硅陶瓷具有低密度、均匀的透过性、大比表面积等优良特点,同时又兼具耐高温、抗热震等优良性能,在高温废气过滤、隔热以及催化剂载体等方面有广阔的应用前景。然而,由于氮化硅陶瓷材料的脆性和科学技术的发展对陶瓷材料的服役环境提出了更苛刻的要求,人们开始用加入增强相的办法制备氮化硅基复合材料,以提高材料的力学性能。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种用于增韧氮化硅陶瓷的碳化硅晶须/碳化硅颗粒复合粉体的制备方法,有效地将SiC晶须的合成和多孔陶瓷的制备结合起来,既简化了SiC晶须的合成工艺,又通过得到的SiC晶须和SiC颗粒起到协同增韧的效果,在降低生产成本的同时提高了氮化硅多孔陶瓷材料的力学性能。
为了实现上述目的,本发明采用的技术方案是:
一种碳化硅晶须/碳化硅颗粒复合粉体的制备方法,包括:
1)将氮化硅粉、炭黑和B2O3共磨至混合均匀;
2)将混合后的原料放入高温气氛炉中,氩气保护,保持炉内压力0.11Mpa,以10℃/min左右的升温速度升温至1450~1550℃,保温3小时后,随炉体自然冷却至室温;
3)将获得的粉体在高温炉中,氧化气氛下升温至500℃保温6小时,随后继续升温至900℃保温1小时,除去未反应的炭黑,得到SiC晶须/SiC颗粒复合粉体。
所述步骤1)中,氮化硅粉与炭黑的质量比为(35~40):(60~65),外加B2O3为催化剂,用量为氮化硅粉与炭黑总重量的5%。
所述步骤1)中,混合共磨2小时。
所述步骤1)中,氮化硅粉为β-Si3N4粉,呈柱状,直径约10μm,长度20~40μm,主晶相β-Si3N4含量大于85%;炭黑呈粒状,粒径5~20μm。
所得SiC晶须/SiC颗粒复合粉中,包括:
占复合粉体总质量50%~60%的SiC晶须,直径为0.5~1.0μm;
占复合粉体总质量10%~20%的SiC颗粒;
以及余量的氮化硅粉。
本发明碳化硅晶须/碳化硅颗粒复合粉体可用于协同增韧氮化硅多孔陶瓷。具体包括以下步骤:
a)取一定量β-Si3N4粉和所述复合粉体为原料,外加烧结助剂和结合剂混合均匀,密封放置;
b)先机压成型,再冷等静压成型得到坯体;
c)将坯体干燥;
d)将干燥后的坯体在氮气气氛下以不低于10℃/min的升温速度升至1780℃并保温,保持炉内压力0.6MPa,完成后随炉体自然冷却至室温。
所述步骤a)中,氮化硅粉用量为原料总质量的85%~90%,复合粉体占10%~15%,烧结助剂和结合剂外加,烧结助剂占原料总质量的9%,结合剂占7%。
所述烧结助剂由占原料总质量3%的Y2O3和占原料总质量6%的Al2O3组成,所述结合剂由占原料总质量3%的糊精和占原料总质量4%的水组成。
所述步骤a)中,密封放置4小时;
所述步骤b)中,机压成型的压力为50MPa,冷等静压成型的压力为100MPa;
所述步骤c)中,坯体在105±5℃下干燥24小时;
所述步骤d)中,保温3小时。
与现有技术相比,采用本发明方法所得到的SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷可以根据复合粉的加入量控制增强体的含量。所得到的SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷气孔率在38%以上,与未加SiC晶须/SiC颗粒复合粉的材料相比,弯曲强度提高18%以上,断裂韧性提高80%以上。能明显提高氮化硅陶瓷的断裂韧性,且制备方法简单,简化了SiC晶须的合成工艺,降低了生产成本及其对环境的危害。
附图说明
图1是本发明SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷的制备工艺流程图。
图2是合成的SiC晶须/SiC颗粒复合粉的显微照片。
图3是SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷的显微照片。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
本发明所述的碳化硅晶须/碳化硅颗粒复合粉体的制备方法,其发明原理为:以氮化硅和炭黑为主要原料,在高温可控气氛炉中通过碳热还原反应,制备碳化硅晶须/碳化硅颗粒复合粉体。此反应总的化学方程式为:
Si3N4(s)+3C(s)=3SiC(s)+2N2(g)
要保证复合粉中SiC晶须的生成,关键是要控制反应过程中SiC的生成速度。反应过慢,晶须生长缓慢,长径比较小。反应过快,SiC沿三维方向生长,主要形成SiC颗粒。
本发明通过控制原料配比和保温时间等条件限制反应速率,保证复合粉体中碳化硅晶须的生成量。
所得到的复合粉体晶须和颗粒的尺寸通过扫描电子显微镜观察获得,SiC晶须和SiC颗粒的质量百分数利用扫描电子显微镜采用体视学图像分析法确定其体积百分数后换算成质量百分数。
SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷的气孔率和体积密度测试采用排水法;弯曲强度测试采用三点弯曲法;断裂韧性测试采用单边切口梁法。
以下是本发明给出的实施例。
实施例1:
如图1所示,包括如下步骤:
步骤一,将氮化硅和炭黑按照质量百分比35%:65%的比例,外加5%(质量百分比)的B2O3,充分混合均匀。将混合后的原料放入高温气氛炉中,氩气保护,保持炉内压力0.11MPa。以10℃/min左右的升温速度迅速升温至1450℃,保温3小时后,随炉体自然冷却至室温。
步骤二,将获得的粉体在高温炉中,在氧化气氛下500℃保温6小时,900℃保温1小时,得到SiC晶须/SiC颗粒复合粉。得到的复合粉中,SiC晶须约占复合粉质量的55%,直径约为0.6μm。SiC颗粒约占复合粉质量的15%,剩余为氮化硅粉。
步骤三,分别取质量百分比10%的复合粉体和90%的氮化硅粉,外加质量百分比为3%的Y2O3和6%的Al2O3作为烧结助剂,3%的糊精和4%的水作为结合剂,混合均匀,密封放置4小时。在50MPa的成型压力下机压成型,随后在100MPa的压力下冷等静压成型。在105±5℃干燥24小时。将干燥后的坯体在氮气气氛下以不低于10℃/min的升温速度升至1780℃,保温3小时烧结,保持炉内压力0.6MPa,完成后随炉自然冷却至室温。
所得到的SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷,气孔率38%,弯曲强度105.52MPa,断裂韧性4.44MPa·m1/2
实施例2:
如图1所示,包括如下步骤:
步骤一,将氮化硅和炭黑按照质量百分比40%:60%的比例,外加5%(质量百分比)的B2O3,充分混合均匀。将混合后的原料放入高温气氛炉中,氩气保护,保持炉内压力0.11MPa。以10℃/min左右的升温速度迅速升温至1550℃,保温3小时后,随炉自然冷却至室温。
步骤二,将获得的粉体在高温炉中,在氧化气氛下500℃保温6小时,900℃保温1小时,得到SiC晶须/SiC颗粒复合粉。得到的复合粉如图2所示,直径约为0.8μm,分散均匀,形态发育较好,笔直且表面较光滑。SiC晶须约占复合粉质量的52%,。SiC颗粒约占复合粉质量的16%,剩余为氮化硅。
步骤三,分别取质量百分比10%的复合粉和90%的氮化硅粉,外加质量百分比为3%的Y2O3和6%的Al2O3作为烧结助剂,3%的糊精和4%的水作为结合剂,混合均匀,密封放置4小时。在50MPa的成型压力下机压成型,随后在100MPa的压力下冷等静压成型。将干燥后的坯体在氮气气氛下以不低于10℃/min的升温速度升至1780℃,保温3小时烧结,保持炉内压力0.6MPa,完成后随炉自然冷却至室温。
所得到的SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷如图3所示,材料气孔分布均匀,SiC晶须在材料中达到了较好的分散,保证了材料断裂韧性的提高。气孔率43%,弯曲强度54.36MPa,断裂韧性1.88MPa·m1/2
实施例3:
本实施例与实施例1所不同的是:复合粉取质量百分比的15%,氮化硅粉取85%。其余同实施例1。所得到的SiC晶须/SiC颗粒协同增韧氮化硅多孔陶瓷,气孔率40%,弯曲强度56.46MPa,断裂韧性2.06MPa·m1/2

Claims (6)

1.一种碳化硅晶须/碳化硅颗粒复合粉体用于协同增韧氮化硅多孔陶瓷的用途,其特征在于,包括以下步骤:
1)将氮化硅粉、炭黑和B2O3共磨至混合均匀,其中,氮化硅粉为β-Si3N4粉,呈柱状,直径10μm,长度20~40μm,主晶相β-Si3N4含量大于85%;炭黑呈粒状,粒径5~20μm;
2)将混合后的原料放入高温气氛炉中,氩气保护,保持炉内压力0.11Mpa,以10℃/min的升温速度升温至1450~1550℃,保温3小时后,随炉体自然冷却至室温;
3)将获得的粉体在高温炉中,氧化气氛下升温至500℃保温6小时,随后继续升温至900℃保温1小时,除去未反应的炭黑,得到SiC晶须/SiC颗粒复合粉体,包括:占复合粉体总质量50%~60%的SiC晶须,直径为0.5~1.0μm、占复合粉体总质量10%~20%的SiC颗粒以及余量的氮化硅粉;
4)取一定量β-Si3N4粉和所述复合粉体为原料,外加烧结助剂和结合剂混合均匀,密封放置;
5)先机压成型,再冷等静压成型得到坯体;
6)将坯体干燥;
7)将干燥后的坯体在氮气气氛下以不低于10℃/min的升温速度升至1780℃并保温,保持炉内压力0.6MPa,完成后随炉体自然冷却至室温。
2.根据权利要求1所述用途,其特征在于,所述步骤4)中,氮化硅粉用量为原料总质量的85%~90%,复合粉体占10%~15%,烧结助剂和结合剂外加,烧结助剂占原料总质量的9%,结合剂占7%。
3.根据权利要求2所述用途,其特征在于,所述烧结助剂由占原料总质量3%的Y2O3和占原料总质量6%的Al2O3组成,所述结合剂由占原料总质量3%的糊精和占原料总质量4%的水组成。
4.根据权利要求2所述用途,其特征在于,
所述步骤4)中,密封放置4小时;
所述步骤5)中,机压成型的压力为50MPa,冷等静压成型的压力为100MPa;
所述步骤6)中,坯体在105±5℃下干燥24小时;
所述步骤7)中,保温3小时。
5.根据权利要求1所述用途,其特征在于,所述步骤1)中,氮化硅粉与炭黑的质量比为(35~40):(60~65),外加B2O3为催化剂,用量为氮化硅粉与炭黑总重量的5%。
6.根据权利要求1所述用途,其特征在于,所述步骤1)中,混合共磨2小时。
CN201610980264.7A 2016-11-08 2016-11-08 一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用 Active CN106542829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610980264.7A CN106542829B (zh) 2016-11-08 2016-11-08 一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610980264.7A CN106542829B (zh) 2016-11-08 2016-11-08 一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用

Publications (2)

Publication Number Publication Date
CN106542829A CN106542829A (zh) 2017-03-29
CN106542829B true CN106542829B (zh) 2019-10-25

Family

ID=58394761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610980264.7A Active CN106542829B (zh) 2016-11-08 2016-11-08 一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用

Country Status (1)

Country Link
CN (1) CN106542829B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204355A (zh) * 2019-06-21 2019-09-06 彭雅妮 一种耐高温多孔陶瓷材料及其制备方法
CN111074178B (zh) * 2019-12-30 2021-02-02 珠海凯利得新材料有限公司 一种金属基复合材料及其制备方法
CN113462995A (zh) * 2021-06-24 2021-10-01 珠海亿特立新材料有限公司 一种高比刚度铝碳化硅结构件的制备方法及高比刚度铝碳化硅结构件
CN116666293B (zh) * 2023-05-15 2024-01-16 杭州大和江东新材料科技有限公司 一种高平整度的陶瓷真空吸盘

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053271A (zh) * 1990-12-29 1991-07-24 清华大学 高性能α相碳化硅晶须的制造方法
CN1271008C (zh) * 2004-07-19 2006-08-23 西北工业大学 一种晶须和颗粒增韧陶瓷基复合材料制备方法
CN103724034B (zh) * 2013-07-23 2016-04-20 太仓派欧技术咨询服务有限公司 一种碳化硅晶须增强氮化硅陶瓷复合材料及其制备方法
CN105777165A (zh) * 2016-03-17 2016-07-20 合肥晨煦信息科技有限公司 一种陶瓷基复合材料

Also Published As

Publication number Publication date
CN106542829A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106542829B (zh) 一种碳化硅晶须/碳化硅颗粒复合粉体的制备与应用
KR101160140B1 (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN108033801A (zh) 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
Zhou et al. Fabrication and characterization of pure porous Ti3SiC2 with controlled porosity and pore features
CN100453508C (zh) 化学激励燃烧合成氮化硅/碳化硅复合粉体的方法
CN102190495A (zh) 一种反应助剂促进烧结硼化锆或碳化锆陶瓷的制备方法
CN103979507A (zh) 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
CN111848196B (zh) 一种原位碳化硅纳米线增韧碳化硅陶瓷的制备方法
CN110304923A (zh) 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法
CN101318636B (zh) 一种原位氮化制备含六方氮化硼的复合材料的方法
CN106588085B (zh) 一种耐高温结构型SiC多孔陶瓷的制备方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
Zhang et al. Self-propagating high temperature synthesis (SHS) of porous Si3N4-based ceramics with considerable dimensions and study on mechanical properties and oxidation behavior
Kennedy et al. Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN109665848A (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
Sun et al. Effect of LiYO2 on the synthesis and pressureless sintering of Y2SiO5
KR101859818B1 (ko) 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법
CN108996483B (zh) 一种燃烧合成氮化硅粉体的方法
CN109503172A (zh) 一种具有蠕虫状晶粒的多孔碳化硅陶瓷的制备方法
CN102249697B (zh) 反应助剂促进烧结硼化钛陶瓷的方法
Yuan et al. Fabrication of porous reaction-bonded Si3N4-SiC composites
US7314593B2 (en) Process for preparing improved silicon carbide powder
KR20110022424A (ko) 고효율 탄화규소 분체 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230113

Address after: 710065 No.912, West Section of Biyuan 1st Road, High-tech Zone, Xi'an, Shaanxi Province

Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd.

Address before: 710055 No. 13, Yanta Road, Shaanxi, Xi'an

Patentee before: XIAN University OF ARCHITECTURE AND TECHNOLOG

TR01 Transfer of patent right