CN106518087B - 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法 - Google Patents

一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法 Download PDF

Info

Publication number
CN106518087B
CN106518087B CN201611016929.9A CN201611016929A CN106518087B CN 106518087 B CN106518087 B CN 106518087B CN 201611016929 A CN201611016929 A CN 201611016929A CN 106518087 B CN106518087 B CN 106518087B
Authority
CN
China
Prior art keywords
ball
powder
ceramic
pbsz
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611016929.9A
Other languages
English (en)
Other versions
CN106518087A (zh
Inventor
杨治华
梁斌
贾德昌
段小明
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201611016929.9A priority Critical patent/CN106518087B/zh
Publication of CN106518087A publication Critical patent/CN106518087A/zh
Application granted granted Critical
Publication of CN106518087B publication Critical patent/CN106518087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法,属于硅硼碳氮陶瓷制备方法技术领域。步骤一、按摩尔比和质量百分比称取立方硅粉、六方氮化硼粉、石墨粉和PBSZ作为原料备用;步骤二、将步骤一称取的原料装入球磨罐中,在氩气气氛保护下进行高能球磨即获得含有非晶Si‑B‑C‑N的陶瓷粉末;其中球料质量比为10~90:1,磨球直径为5~9mm,球磨时间为10~60h;步骤三、将步骤二获得的非晶Si‑B‑C‑N陶瓷粉末与PBSZ混合,在氩气气氛保护下进行球磨即获得SiBCN复合粉末;其中球料比为1~20:1,磨球直径为5~9mm,球磨时间为10~30h;步骤四、将步骤三获得的SiBCN复合粉末进行放电等离子烧结即获得以PBSZ为添加剂的Si‑B‑C‑N陶瓷材料。

Description

一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法
技术领域
本发明涉及一种以聚硅硼氮烷(PBSZ)为添加剂的硅硼碳氮(Si-B-C-N)陶瓷的制备方法,属于硅硼碳氮陶瓷制备方法技术领域。
背景技术
飞行器的鼻锥、机翼前缘、舵面、盖板、整流罩、涡轮叶片、喷管等在服役过程中都要面临严酷的高温、热震、烧蚀和气流冲刷的恶劣环境,这对高温结构材料的性能提出了更为苛刻的要求。硅硼碳氮(Si-B-C-N)陶瓷材料具有低密度、高强度、低模量、良好的热物理学性能(低热膨胀系数)以及高温性能(氧化/热震、烧蚀),成为航空航天领域中的新型高温结构以及多功能防热用候选材料。
固有的共价键结构导致原子扩散系数比较低,最终导致Si-B-C-N陶瓷材料很难实现完全致密化烧结。为改善硅硼碳氮陶瓷的烧结行为,Al、AlN、ZrO2、ZrB2等颗粒添加剂被引入硅硼碳氮陶瓷基体,这些“第二相”均不同程度地改善了硅硼碳氮陶瓷的烧结行为(梁斌等,科学通报,2015,60:236-245.)。但是,这些“异质”添加剂会恶化陶瓷材料的高温性能。“同质”添加剂有望改善Si-B-C-N陶瓷材料的烧结行为,同时又不降低其高温性能。但是目前尚没有文章或者专利报道含有“同质”添加剂的硅硼碳氮陶瓷材料及其制备方法。
发明内容
本发明的目的是为了解决上述现有技术存在的问题,即纯硅硼碳氮陶瓷材料难以烧结致密,而“异质”添加剂不利于材料高温性能的问题。进而提供一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法。
本发明的目的是通过以下技术方案实现的:
一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法,
步骤一、按摩尔比和质量百分比称取立方硅粉、六方氮化硼粉、石墨粉和PBSZ作为原料备用;
步骤二、将步骤一称取的立方硅粉、六方氮化硼粉和石墨粉装入球磨罐中,在氩气气氛保护下进行高能球磨即获得含有非晶Si-B-C-N的陶瓷粉末;其中球料质量比为10~90:1,磨球直径为5~9mm,球磨时间为10~60h;
步骤三、将步骤二获得的非晶Si-B-C-N陶瓷粉末与PBSZ混合,在氩气气氛保护下进行球磨即获得SiBCN复合粉末;其中球料比为1~20:1,磨球直径为5~9mm,球磨时间为10~30h;
步骤四、将步骤三获得的SiBCN复合粉末进行放电等离子烧结即获得以PBSZ为添加剂的Si-B-C-N陶瓷材料。
所述立方硅粉的纯度为99%~99.9%,立方硅粉的粒径为1~20μm;石墨粉的纯度为99%~99.9%,石墨粉的粒径为1~20μm;六方氮化硼粉的纯度为99%~99.9%,六方氮化硼粉的粒径为1~20μm;PBSZ为固态粉末。
所述步骤一立方硅粉、六方氮化硼粉和石墨粉原料中Si:B:C:N的摩尔比为2:1:3:1。
所述步骤二中球料质量比为20~80:1,磨球直径为6~8mm,球磨时间为15~45h。
所述步骤三中PBSZ的添加量为原料总质量的1~30wt%。
所述步骤三中球料质量比为5~15:1,磨球直径为6~8mm,球磨时间为15~25h。
所述步骤四中烧结温度为1600~2000℃,压力为30~80MPa,保温时间为2~20min。
经过对本发明方法制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料分析测试得知,以PBSZ为添加剂的Si-B-C-N陶瓷材料具有较高的密度和纯度,其密度高达2.80g/cm3,维氏硬度高达8.0GPa。以PBSZ为添加剂的Si-B-C-N陶瓷材料可以在数分钟内实现致密化烧结
附图说明
图1为实施例1制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的XRD图谱。
图2为实施例2制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的表面扫描照片。
图3为实施例2制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的断口扫描照片。
具体实施方式
下面将对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。
实施例1
本实施例所涉及的一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法,具体按照以下步骤进行:一、按照Si:B:C:N摩尔比为2:1:3:1的比例称取立方硅粉、六方氮化硼粉和石墨粉;其中硅粉纯度为99%~99.9%,粒径为1~20μm;石墨粉纯度为99%~99.9%,粒径为1~20μm;氮化硼粉纯度为99%~99.9%,粒径为1~20μm;二、将称取的原料装入球磨罐中,在氩气气氛保护下进行高能球磨获得非晶Si-B-C-N陶瓷粉末;其中球料质量比为40:1,磨球直径为8mm,球磨时间为25h;三、将步骤二中获得的非晶Si-B-C-N陶瓷粉末与PBSZ混合,在氩气气氛保护下进行普通球磨即可获得SiBCN复合粉末;其中PBSZ的添加量为总质量的3wt%;球料比为10:1,磨球直径为8mm,球磨时间为20h;四、将步骤三中获得的复合粉体进行放电等离子烧结即可获得以PBSZ为添加剂的Si-B-C-N陶瓷材料;其中烧结温度为1750℃,压力为40MPa,保温时间为5min。
图1是实施例1制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的XRD图谱(■表示β-SiC晶相,▲表示α-SiC晶相,●BN(C)晶相),通过图1可观察到实施例1制备的以PBSZ为添加剂的Si-B-C-N陶瓷材料主要由β/α-SiC和BN(C)晶相构成,这说明高温烧结过程中非晶组织发生了晶化。此外,并探测到杂质相,说明实施例1制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料具有很高的纯度。
对实施例1制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料经分析测试可知,实施例1制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的密度为2.60g/cm3,维氏硬度为5.60GPa。
实施例2
本实施例所涉及的一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法,具体按照以下步骤进行:一、按照Si:B:C:N摩尔比为2:1:3:1的比例称取立方硅粉、六方氮化硼粉和石墨粉;其中立方硅粉的纯度为99%~99.9%,粒径为1~20μm;石墨粉的纯度为99%~99.9%,粒径为1~20μm;六方氮化硼粉的纯度为99%~99.9%,粒径为1~20μm;二、将称取的原料装入球磨罐中,在氩气气氛保护下进行高能球磨获得非晶Si-B-C-N陶瓷粉末;其中球料质量比为35:1,磨球直径为8mm,球磨时间为30h;三、将步骤二中获得的非晶Si-B-C-N陶瓷粉末与PBSZ混合,在氩气气氛保护下进行普通球磨即可获得SiBCN复合粉末;其中PBSZ的添加量为总质量的6wt%;球料比为8:1,磨球直径为8mm,球磨时间为24h;四、将步骤三中获得的复合粉体进行放电等离子烧结即可获得以PBSZ为添加剂的Si-B-C-N陶瓷材料;其中烧结温度为1850℃,压力为50MPa,保温时间为5min。
图2是实施例2制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的表面扫描照片,通过图2可观察到实施例2制备的以PBSZ为添加剂的Si-B-C-N陶瓷材料的表面相对比较光滑,这说明材料的致密度相对比较高。
图3是实施例2制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的断口扫描照片,通过图3可观察到实施例2制备的以PBSZ为添加剂的Si-B-C-N陶瓷材料中含有明显的亚微米级晶粒,这说明高温条件下实现了材料致密化烧结的同时,发生了非晶组织晶化以及晶粒长大现象。
对实施例2制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料经分析测试可知,实施例2制备得到的以PBSZ为添加剂的Si-B-C-N陶瓷材料的密度为2.70g/cm3,维氏硬度为7.50GPa。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (1)

1.一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法,其特征在于,
步骤一、按照Si:B:C:N摩尔比为2:1:3:1的比例称取立方硅粉、六方氮化硼粉和石墨粉;其中立方硅粉的纯度为99%~99.9%,粒径为1~20μm;石墨粉的纯度为99%~99.9%,粒径为1~20μm;六方氮化硼粉的纯度为99%~99.9%,粒径为1~20μm;
步骤二、将称取的原料装入球磨罐中,在氩气气氛保护下进行高能球磨获得非晶Si-B-C-N陶瓷粉末;其中球料质量比为35:1,磨球直径为8mm,球磨时间为30h;
步骤三、将步骤二中获得的非晶Si-B-C-N陶瓷粉末与PBSZ混合,在氩气气氛保护下进行普通球磨即可获得SiBCN复合粉末;其中PBSZ的添加量为总质量的6wt%;球料比为8:1,磨球直径为8mm,球磨时间为24h;
步骤四、将步骤三中获得的复合粉体进行放电等离子烧结即可获得以PBSZ为添加剂的Si-B-C-N陶瓷材料;其中烧结温度为1850℃,压力为50MPa,保温时间为5min。
CN201611016929.9A 2016-11-16 2016-11-16 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法 Active CN106518087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611016929.9A CN106518087B (zh) 2016-11-16 2016-11-16 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611016929.9A CN106518087B (zh) 2016-11-16 2016-11-16 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN106518087A CN106518087A (zh) 2017-03-22
CN106518087B true CN106518087B (zh) 2019-07-05

Family

ID=58352451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611016929.9A Active CN106518087B (zh) 2016-11-16 2016-11-16 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106518087B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879743B (zh) * 2017-09-28 2020-06-09 中国空间技术研究院 一种超高温陶瓷的低温烧结方法
CN110041078A (zh) * 2019-04-28 2019-07-23 哈尔滨工业大学 一种耐烧蚀Si-B-C-N-Hf陶瓷材料的制备方法
CN112851363B (zh) * 2021-01-22 2022-03-22 哈尔滨工业大学 氧化石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2664100A (en) * 1999-01-14 2000-08-01 Menzolit-Fibron Gmbh Fibre-reinforced ceramic body and method for producing same
CN101870586A (zh) * 2010-07-07 2010-10-27 哈尔滨工业大学 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法
CN102701771A (zh) * 2012-05-28 2012-10-03 东华大学 一种SiBNC纤维/SiBNC复合材料的制备方法
CN103755348A (zh) * 2013-11-22 2014-04-30 天津大学 硅硼碳氮陶瓷及其制备方法
CN104529468A (zh) * 2015-01-26 2015-04-22 哈尔滨工业大学 石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法
CN105152670A (zh) * 2015-07-01 2015-12-16 西北工业大学 一种SiC纳米线增强SiBCN陶瓷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2664100A (en) * 1999-01-14 2000-08-01 Menzolit-Fibron Gmbh Fibre-reinforced ceramic body and method for producing same
CN101870586A (zh) * 2010-07-07 2010-10-27 哈尔滨工业大学 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法
CN102701771A (zh) * 2012-05-28 2012-10-03 东华大学 一种SiBNC纤维/SiBNC复合材料的制备方法
CN103755348A (zh) * 2013-11-22 2014-04-30 天津大学 硅硼碳氮陶瓷及其制备方法
CN104529468A (zh) * 2015-01-26 2015-04-22 哈尔滨工业大学 石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法
CN105152670A (zh) * 2015-07-01 2015-12-16 西北工业大学 一种SiC纳米线增强SiBCN陶瓷的制备方法

Also Published As

Publication number Publication date
CN106518087A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106518087B (zh) 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法
CN106518075A (zh) 一种片层状BN(C)晶粒增韧的Si‑B‑C‑N陶瓷的制备方法
Justin et al. Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability.
CN101870586A (zh) 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN105948748B (zh) 一种硅硼碳氮锆陶瓷复合材料及其制备方法
Hu et al. Microstructure and properties of ZrB2–SiC and HfB2–SiC composites fabricated by spark plasma sintering (SPS) using TaSi2 as sintering aid
Mestvirishvili et al. Thermal and mechanical properties of B4C-ZrB2 ceramic composite
Chen et al. Effect of V2O5 addition on the wettability of vitrified bond to diamond abrasive and grinding performance of diamond wheels
Feng et al. Effects of Cu on properties of vitrified bond and vitrified CBN composites
CN103588483A (zh) 硅硼碳氮锆陶瓷复合材料及其制备方法
Huang et al. Sintering of transparent Nd: YAG ceramics in oxygen atmosphere
Sun et al. Compositional gradient affects the residual stress distribution in Si3N4/SiC functionally graded materials
Hua et al. Microstructure and high temperature strength of SiCW/SiC composites by chemical vapor infiltration
CN102030535B (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
CN103011829B (zh) 一种二硼化锆陶瓷材料的烧结方法
Liu et al. Effects of sintering temperature on phases, microstructures and properties of fused silica ceramics
Shan et al. Hot-pressing of translucent Y-α-SiAlON ceramics using ultrafine mixed powders prepared by planetary ball mill
CN104098335B (zh) 一种高电阻率碳化硅陶瓷及其制备方法
Yu et al. Fabrication of porous Al2O3-based ceramics using ball-shaped powders by preceramic polymer process in N2 atmosphere
Guo et al. Hot‐pressed silicon nitride with Lu2O3 additives: oxidation and its effect on strength
CN105503197A (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
Wang et al. Hot-press sintering studies of sol-gel-prepared composite powders: A novel preparation method to improve mechanical properties of BN-BAS composite ceramics
Park et al. Tailoring the microstructure of hot-pressed SiC by heat treatment
Lan et al. High-temperature property of carbon/carbon composite joints bonded with ternary Ti–Si–C compound

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant