CN106479965A - 一种增强聚乙二醇水凝胶生物相容性和降解性的方法 - Google Patents

一种增强聚乙二醇水凝胶生物相容性和降解性的方法 Download PDF

Info

Publication number
CN106479965A
CN106479965A CN201610887347.1A CN201610887347A CN106479965A CN 106479965 A CN106479965 A CN 106479965A CN 201610887347 A CN201610887347 A CN 201610887347A CN 106479965 A CN106479965 A CN 106479965A
Authority
CN
China
Prior art keywords
polyethylene glycol
culture
degradability
method strengthening
biocompatibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610887347.1A
Other languages
English (en)
Inventor
崔晓峰
高桂芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Feng Lin Technology Co Ltd
Original Assignee
Wuhan Feng Lin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Feng Lin Technology Co Ltd filed Critical Wuhan Feng Lin Technology Co Ltd
Priority to CN201610887347.1A priority Critical patent/CN106479965A/zh
Publication of CN106479965A publication Critical patent/CN106479965A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Rheumatology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种增强聚乙二醇水凝胶生物相容性和降解性的方法,包括以下步骤:(1)酰基化聚乙二醇的制备、(2)酰基化多肽的制备、(3)人间充质干细胞的分离、(4)间充质干细胞诱导分化成软骨细胞。本发明的优点在于:本发明具有工艺先进、步骤简单、操作简便、可以提升生物材料支架的生物相容性和可降解性、促进细胞繁殖和组织再生。

Description

一种增强聚乙二醇水凝胶生物相容性和降解性的方法
技术领域
本发明涉及生物材料技术领域,具体涉及一种增强聚乙二醇水凝胶生物相容性和降解性的方法。
背景技术
聚乙二醇具有安全、可自由改性、优良的生物物理性能等优点,已经广泛应用于多个医药领域,并且是通过美国FDA安全认证的可外用内服的生物材料。基于聚乙二醇这些优良的性能,通过多种交联技术而构建的生物材料支架可以广泛应用于组织工程领域。但是该生物材料目前在运用中也存在一些问题,首先聚乙二醇对较为敏感的细胞生物相容性不太理想,其次聚乙二醇生物材料无法被生物体降解,这些缺点限制了它更为广泛的应用,而对其缺点的改进方法研究较少,目前仍然没有很好的方法能够解决此问题。
多肽链GRGDS和MMP-sensitive可以促进细胞生长,并且能为细胞提供可降解的位点。将多肽酰基化,并且与酰基化的聚乙二醇同时交联,可以将这些多肽链化学结合至聚乙二醇骨架,由此提升该生物材料支架的生物相容性和可降解性,促进细胞繁殖和组织再生。
发明内容
本发明的目的在于解决现有聚乙二醇生物材料存在的不足,现提供一种增强聚乙二醇水凝胶生物相容性和降解性的方法。
为解决上述技术问题,本发明采用的技术方案为:一种增强聚乙二醇水凝胶生物相容性和降解性的方法,其创新点在于:包括以下步骤:
(1)酰基化聚乙二醇的制备:在氮气条件下,取一定量聚乙二醇与甲基丙烯酰氯过夜反应,反应完成后纯化合成的酰基化聚乙二醇,然后通过核磁共振检验,检验其纯度是否大于95%;
(2)酰基化多肽的制备:在氮气条件下,取一定量的GRGDS、MMP-sensitive多肽溶解在无水甲醇中,再加入甲基丙烯酰氯和二甲基氨基吡啶,室温下反应2小时,反应完成后加入乙醇旋转蒸发得酰基化多肽,将其溶解在去离子水中备用,所述蒸发温度为50℃,旋转蒸发至乙醇消失为止;
(3)人间充质干细胞的分离:无菌条件下取健康成人骨髓液,用硫化铅漂洗并计数,将漂洗后的细胞培养在α-MEM基础培养基中,置于细胞培养箱培养;
(4)间充质干细胞诱导分化成软骨细胞:取生长状态良好的第二代或第三代间充质干细胞传代,调整密度至5×103个/cm2,待细胞贴壁将基础培养基更换为DMEM诱导培养基,置于细胞培养箱培养。
进一步的,所述步骤(1)中每克聚乙二醇加0.2毫升甲基丙烯酰氯反应,纯化方法为乙醚析出和过夜冻干,纯化后的酰基化聚乙二醇纯度大于95%。
进一步的,所述步骤(2)中无水甲醇、甲基丙烯酰氯的量对于GRGDS、MMP-sensitive多肽为过量反应;二甲基氨基吡啶的量占总体积比的5%,旋转蒸发次数为5次,每次加入5mL甲醇以去除丙烯酸甲酯副产物。
进一步的,所述步骤(3)中α-MEM基础培养基含体积浓度为20%的胎牛血清和体积浓度为1%的PSG,细胞培养箱内温度为37℃,含体积浓度为5%的CO2,培养48小时后更换培养液,之后每3天更换一次培养液。
进一步的,所述步骤(4)中DMEM诱导培养基包括1×胰岛素-转铁蛋白-硒-丙酮酸钠,0.1mmol/L抗坏血酸磷酸盐, 1.25mg/mL人血清白蛋白, 10-7mol/L地塞米松, 1%体积浓度的青霉素-链霉素-庆大霉素,10 ng/mL TGF-b1,细胞培养箱内温度为37℃,含体积浓度为5%的CO2,培养48小时后更换培养液,之后每3天更换一次培养液,培养时间2-6周。
本发明的有益效果如下:本发明具有工艺先进、步骤简单、操作简便、可以提升生物材料支架的生物相容性和可降解性、促进细胞繁殖和组织再生。
附图说明
图1为本发明制备的酰基化聚乙二醇核磁共振谱图;
图2为间充质干细胞在该生物材料中的成骨分化结果;
图3为间充质干细胞在该生物材料中的成软骨分化的结果。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
一种增强聚乙二醇水凝胶生物相容性和降解性的方法,包括以下步骤:
(1)酰基化聚乙二醇的制备:在氮气条件下,取一定量聚乙二醇与甲基丙烯酰氯过夜反应,反应完成后纯化合成的酰基化聚乙二醇,每克聚乙二醇加0.2毫升甲基丙烯酰氯反应,纯化方法为乙醚析出和过夜冻干,然后通过核磁共振检验,如图1所示,其检验纯度大于95%,酰基化程度接近100%;
(2)酰基化多肽的制备:在氮气条件下,取一定量的GRGDS、MMP-sensitive多肽溶解在无水甲醇中,再加入甲基丙烯酰氯和二甲基氨基吡啶,室温下反应2小时,反应完成后加入乙醇旋转蒸发得酰基化多肽,将其溶解在去离子水中备用,蒸发温度为50摄氏度,旋蒸至乙醇基本消失为止,无水甲醇、甲基丙烯酰氯的量对于GRGDS、MMP-sensitive多肽为过量反应;二甲基氨基吡啶的量占总体积比的5%,旋转蒸发次数为5次,每次加入5mL甲醇以去除丙烯酸甲酯副产物;
(3)人间充质干细胞的分离:无菌条件下取健康成人骨髓液,用硫化铅漂洗并计数,将漂洗后的细胞培养在α-MEM基础培养基中,置于细胞培养箱培养,α-MEM基础培养基含体积浓度为20%的胎牛血清和体积浓度为1%的PSG,细胞培养箱内温度为37℃,含体积浓度为5%的CO2,培养48小时后更换培养液,之后每3天更换一次培养液;
(4)间充质干细胞诱导分化成软骨细胞:取生长状态良好的第二代或第三代间充质干细胞传代,调整密度至5×103个/cm2,待细胞贴壁将基础培养基更换为DMEM诱导培养基,置于细胞培养箱培养,DMEM诱导培养基包括1×胰岛素-转铁蛋白-硒-丙酮酸钠,0.1mmol/L抗坏血酸磷酸盐,1.25mg/mL人血清白蛋白,10-7mol/L地塞米松,1%体积浓度的青霉素-链霉素-庆大霉素,10 ng/mL TGF-b1,细胞培养箱内温度为37℃,含体积浓度为5%的CO2,培养48小时后更换培养液,之后每3天更换一次培养液,培养时间2-6周,如图2和图3所示。
本发明具有工艺先进、步骤简单、操作简便、可以提升生物材料支架的生物相容性和可降解性、促进细胞繁殖和组织再生。
上述实施例只是本发明的较佳实施例,并不是对本发明技术方案的限制,只要是不经过创造性劳动即可在上述实施例的基础上实现的技术方案,均应视为落入本发明专利的权利保护范围内。

Claims (5)

1.一种增强聚乙二醇水凝胶生物相容性和降解性的方法,其特征在于:包括以下步骤:
(1)酰基化聚乙二醇的制备:在氮气条件下,取一定量聚乙二醇与甲基丙烯酰氯过夜反应,反应完成后纯化合成的酰基化聚乙二醇,然后通过核磁共振检验,检验其纯度是否大于95%;
(2)酰基化多肽的制备:在氮气条件下,取一定量的GRGDS、MMP-sensitive多肽溶解在无水甲醇中,再加入甲基丙烯酰氯和二甲基氨基吡啶,室温下反应2小时,反应完成后加入乙醇旋转蒸发得酰基化多肽,将其溶解在去离子水中备用,所述蒸发温度为50℃,旋转蒸发至乙醇消失为止;
(3)人间充质干细胞的分离:无菌条件下取健康成人骨髓液,用硫化铅漂洗并计数,将漂洗后的细胞培养在α-MEM基础培养基中,置于细胞培养箱培养;
(4)间充质干细胞诱导分化成软骨细胞:取生长状态良好的第二代或第三代间充质干细胞传代,调整密度至5×103个/cm2,待细胞贴壁将基础培养基更换为DMEM诱导培养基,置于细胞培养箱培养。
2.根据权利要求1所述的一种增强聚乙二醇水凝胶生物相容性和降解性的方法,其特征在于:所述步骤(1)中每克聚乙二醇加0.2毫升甲基丙烯酰氯反应,纯化方法为乙醚析出和过夜冻干,纯化后的酰基化聚乙二醇纯度大于95%。
3.根据权利要求1所述的一种增强聚乙二醇水凝胶生物相容性和降解性的方法,其特征在于:所述步骤(2)中无水甲醇、甲基丙烯酰氯的量对于GRGDS、MMP-sensitive多肽为过量反应;二甲基氨基吡啶的量占总体积比的5%,旋转蒸发次数为5次,每次加入5mL甲醇以去除丙烯酸甲酯副产物。
4.根据权利要求1所述的一种增强聚乙二醇水凝胶生物相容性和降解性的方法,其特征在于:所述步骤(3)中α-MEM基础培养基含体积浓度为20%的胎牛血清和体积浓度为1%的PSG,细胞培养箱内温度为37℃,含体积浓度为5%的CO2,培养48小时后更换培养液,之后每3天更换一次培养液。
5.根据权利要求1所述的一种增强聚乙二醇水凝胶生物相容性和降解性的方法,其特征在于:所述步骤(4)中DMEM诱导培养基包括1×胰岛素-转铁蛋白-硒-丙酮酸钠,0.1mmol/L抗坏血酸磷酸盐, 1.25mg/mL人血清白蛋白, 10-7mol/L地塞米松, 1%体积浓度的青霉素-链霉素-庆大霉素, 10 ng/mL TGF-b1,细胞培养箱内温度为37℃,含体积浓度为5%的CO2,培养48小时后更换培养液,之后每3天更换一次培养液,培养时间2-6周。
CN201610887347.1A 2016-10-12 2016-10-12 一种增强聚乙二醇水凝胶生物相容性和降解性的方法 Pending CN106479965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610887347.1A CN106479965A (zh) 2016-10-12 2016-10-12 一种增强聚乙二醇水凝胶生物相容性和降解性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610887347.1A CN106479965A (zh) 2016-10-12 2016-10-12 一种增强聚乙二醇水凝胶生物相容性和降解性的方法

Publications (1)

Publication Number Publication Date
CN106479965A true CN106479965A (zh) 2017-03-08

Family

ID=58269677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610887347.1A Pending CN106479965A (zh) 2016-10-12 2016-10-12 一种增强聚乙二醇水凝胶生物相容性和降解性的方法

Country Status (1)

Country Link
CN (1) CN106479965A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109805890A (zh) * 2018-12-03 2019-05-28 浙江景嘉医疗科技有限公司 一种评价医用交联透明质酸钠凝胶在体内降解周期的方法
CN116407618A (zh) * 2023-03-31 2023-07-11 陕西美芙康生物科技有限公司 一种缓释生长因子温敏性凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAO G.F.等: "inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging", 《BIOTECHNOLOGY JOURNAL》 *
RAMI MHANNA等: "GFOGER-Modified MMP-Sensitive Polyethylene Glycol Hydrogels Induce Chondrogenic Differentiation of Human Mesenchymal Stem Cells", 《TISSUE ENGINEERING: PART A》 *
UWE FREUDENBERG等: "Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials", 《ADV. MATER.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109805890A (zh) * 2018-12-03 2019-05-28 浙江景嘉医疗科技有限公司 一种评价医用交联透明质酸钠凝胶在体内降解周期的方法
CN116407618A (zh) * 2023-03-31 2023-07-11 陕西美芙康生物科技有限公司 一种缓释生长因子温敏性凝胶的制备方法
CN116407618B (zh) * 2023-03-31 2024-05-10 陕西美芙康生物科技有限公司 一种缓释生长因子温敏性凝胶的制备方法

Similar Documents

Publication Publication Date Title
CN102634482B (zh) 一种间充质干细胞的无血清完全培养基
CN106479971A (zh) 一种用于培养间充质干细胞的无血清培养基和方法
Zheng et al. Erythropoietin enhances osteogenic differentiation of human periodontal ligament stem cells via Wnt/β-catenin signaling pathway
CN106479965A (zh) 一种增强聚乙二醇水凝胶生物相容性和降解性的方法
CN112220967B (zh) 一种靶向抗菌和原位促成骨双功能材料及其制备方法和应用
CN101831403B (zh) 体外扩增人脐带胎盘间充质干细胞的方法
Li et al. Multi-walled carbon nanotubes promote cementoblast differentiation and mineralization through the TGF-β/Smad signaling pathway
Kulakov et al. Mesenchymal stromal cells enhance vascularization and epithelialization within 7 days after gingival augmentation with collagen matrices in rabbits
Saber et al. Effect of different sealers on the cytocompatibility and osteogenic potential of human periodontal ligament stem cells: An in vitro study
Kämmerer et al. Continuous electrical stimulation affects initial growth and proliferation of adipose-derived stem cells
Jung et al. Biocompatibility of lithium disilicate and zirconium oxide ceramics with different surface topographies for dental implant abutments
Chen et al. Characterization of osteogenesis and chondrogenesis of human decellularized allogeneic bone with mesenchymal stem cells derived from bone marrow, adipose tissue, and wharton’s jelly
Fageeh Preliminary evaluation of proliferation, wound healing properties, osteogenic and chondrogenic potential of dental pulp stem cells obtained from healthy and periodontitis affected teeth
Vu et al. Investigating the effects of conditioned media from stem cells of human exfoliated deciduous teeth on dental pulp stem cells
Kim et al. In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration
Wang et al. Role of berberine thermosensitive hydrogel in periodontitis via PI3K/AKT pathway in vitro
KR102257386B1 (ko) 줄기세포 재료 및 그 제조방법
Ho et al. Enhancement of osteoblast function through extracellular vesicles derived from adipose-derived stem cells
Wang et al. Cultivation of cryopreserved human dental pulp stem cells—a new approach to maintaining dental pulp tissue
Brunello et al. Dentin particulate for bone regeneration: an in vitro study
Bianconi et al. Pretreatment of mesenchymal stem cells with electrical stimulation as a strategy to improve bone tissue engineering outcomes
CN107501562A (zh) 一种质子化吗啡啉修饰的含磷树状大分子及其制备和应用
CN101633900A (zh) 产大环糊精4-α-糖基转移酶的制备方法
Loukelis et al. Kappa-carrageenan/chitosan/gelatin scaffolds provide a biomimetic microenvironment for dentin-pulp regeneration
CN103736150A (zh) 褪黑素协同细胞外基质生物材料在制备促进间充质干细胞成骨分化药物中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170308