CN106479047B - 一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法 - Google Patents

一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法 Download PDF

Info

Publication number
CN106479047B
CN106479047B CN201610870574.3A CN201610870574A CN106479047B CN 106479047 B CN106479047 B CN 106479047B CN 201610870574 A CN201610870574 A CN 201610870574A CN 106479047 B CN106479047 B CN 106479047B
Authority
CN
China
Prior art keywords
polypropylene
conductive film
preparation
low excess
excess effusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610870574.3A
Other languages
English (en)
Other versions
CN106479047A (zh
Inventor
石素宇
王利娜
闫新
宋会芬
李思雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Zhongsu New Materials Co.,Ltd.
Original Assignee
Henan Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Engineering filed Critical Henan Institute of Engineering
Priority to CN201610870574.3A priority Critical patent/CN106479047B/zh
Publication of CN106479047A publication Critical patent/CN106479047A/zh
Application granted granted Critical
Publication of CN106479047B publication Critical patent/CN106479047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法,步骤如下:将PP粒料放入熔喷机中熔喷制备PP纤维网;将导电粒子分散于二甲苯溶剂中超声震荡制得溶液A;将PP纤维网置于溶液A中超声震荡2~5 min后取出,洗涤、自然晾干得到导电纤维;将导电纤维网上下两层铺于压机模板上,纤维网中间放置一些PP粒料,于真空压机中热压10~15 min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。本发明利用熔喷工艺制备PP超细纤维网,比表面积大,通过超声分散的方法将导电填料均匀修饰在纤维网表面,热压后在膜内形成均匀的导电网络结构,不仅工艺简单,制得的导电薄膜同时具有较高的力学性能和较低逾渗值。

Description

一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法
技术领域
本发明属于高分子材料加工领域,具体涉及一种具有较好力学性能和较低逾渗值PP导电薄膜的简单制备方法。
背景技术
炭黑、碳纳米管、石墨烯等粒子是制备聚合物导电复合材料常用的填料。如何在改善导电性能的同时能提高力学性能,怎样尽可能采用较低的导电填料来制备性能更加优越的材料,已经吸引导电材料领域越来越多的兴趣。然而,导电复合材料的制备往往采用将导电填料与基体共混的方法,不仅操作繁琐,导电填料用量大,而且在共混时导电粒子很容易发生团聚,严重制约高性能导电复合材料的制备及应用。
发明内容
针对现有技术中存在的问题,本发明提供一种具有较高力学性能和较低逾渗值的聚丙烯(PP)导电薄膜的制备方法,该制备工艺简单,设备要求低,所制备的PP导电薄膜具有较高的力学性能和较低的逾渗值。
为解决上述技术问题,本发明采用以下技术方案:
一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法,步骤如下:
(1)纤维网的制备:采用熔喷机将聚丙烯粒料熔喷制备出均匀的聚丙烯纤维网;
(2)导电粒子分散:将导电粒子分散于二甲苯溶剂中超声震荡10~15min制得不同浓度的溶液A;
(3)超声震荡:将步骤(1)制得的聚丙烯纤维网分别置于不同浓度的溶液A中超声震荡2~5 min;
(4)洗涤:将步骤(3)中超声震荡后的聚丙烯纤维网取出,用无水乙醇洗涤、自然晾干得到导电纤维网;
(5)热压:将晾干后的导电纤维网上下两层铺于模板上,上、下两层导电纤维网中间放置一定质量的聚丙烯(PP)粒料,置于真空压机中热压后得到综合力学性能较高和较低逾渗值的“三明治结构”的聚丙烯导电薄膜。
所述步骤(1)中的纤维网是将熔喷级聚丙烯粒料放于熔喷机中在175~200℃的条件下制备得到厚度为60µm的聚丙烯纤维网,纤维直径为3~7 µm。
所述步骤(2)中导电粒子为炭黑、碳纳米管或石墨烯。
所述步骤(2)中溶液A的浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL。
所述步骤(5)中聚丙烯粒料与导电纤维网的质量比为5:3。
所述步骤(5)中热压的条件为在175~200℃、1~2MPa的条件下热压10~15min。
本发明的有益效果:(1)该发明中通过熔喷工艺制备超细聚丙烯纤维网,比表面积大,纤维粗细均匀,通过超声分散的方法将导电填料均匀修饰在纤维表面,热压后可以在膜内形成一层均匀的导电网络结构,制得的PP导电薄膜具有更低的逾渗值。(2)本发明提供的PP导电薄膜的制备方法,主要采用超声波分散的方法将导电粒子均匀修饰在PP纤维网表面,与传统共混的方法相比,不仅工艺简单,设备要求低,而且避免碳纳米管在共混过程中的团聚现象。(3)采用本发明制备的PP导电薄膜同时力学性能也得到较大提高。主要原因有两方面:一方面,超声波分散的方法有利于导电粒子在纤维网表面的均匀修饰,有效避免了碳纳米管的团聚;另一方面,PP导电纤维网和PP基体通过热压的方法界面结合紧密,在PP导电膜内部形成一个网络结构,促进碳纳米管和聚合物基体的应力传递,从而使导电复合薄膜的力学性能得到提高。与现有技术相比,不仅工艺简单,而且可以获得一种同时具有较高力学性能和较低逾渗值的导电薄膜。
附图说明
图1为实施例1制备得到的PP导电薄膜的电性能测试曲线。
图2为实施例1制备得到的PP导电薄膜的力学性能测试曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。
实施例1
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于180℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的MWCNTs 分散于40 mL的二甲苯溶剂中超声震荡10 min,配置MWCNTs浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡2 min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在185℃、2 MPa的条件下热压10 min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
本实施例制备得到的PP导电薄膜的电性能测试如图1所示,由图1可以看出,随MWCNTs的浓度增加,PP膜的电阻率显著降低,当MWCNTs的浓度仅为0.1 mg/mL时,PP导电膜的电阻率与纯PP膜相比降低了高达8个数量级。基于TG分析,导电膜的逾渗值仅为0.08%。与文献中报道的结果相比,本发明中PP导电膜的逾渗值显著降低。
本实施例制备得到的PP导电薄膜的力学性能测试曲线如图2所示。由图2可知,PP导电薄膜的拉伸强度与纯PP薄膜相比得到较大提高,其中,MWCNTs的浓度仅为0.1 mg/mL时,拉伸强度提高了76%。同时,PP导电薄膜的断裂伸长率也提高了56%。与文献中报道的导电薄膜的力学性能结果相比,本发明的优点在于断裂伸长率和拉伸强度都得到较大提高,导电膜的综合力学性能较好。
实施例2
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于185℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的MWCNTs分散于40 mL的二甲苯溶剂中超声震荡10 min,配置MWCNTs浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡2 min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在175℃、2 MPa的条件下热压12 min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
实施例3
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于185℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的MWCNTs分散于40 mL的二甲苯溶剂中超声震荡10 min,配置MWCNTs浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡5min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在175℃、2 MPa的条件下热压12 min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
实施例4
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于190℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的石墨烯分散于40 mL的二甲苯溶剂中超声震荡10 min,配置石墨烯浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡5min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在200℃、2 MPa的条件下热压10min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
实施例5
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于195℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的石墨烯分散于40 mL的二甲苯溶剂中超声震荡15min,配置石墨烯浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡2 min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在190℃、2 MPa的条件下热压10min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
实施例6
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于195℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的炭黑分散于40 mL的二甲苯溶剂中超声震荡15min,配置炭黑浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡5 min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在180℃、2 MPa的条件下热压10min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
实施例7
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于200℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的炭黑分散于40 mL的二甲苯溶剂中超声震荡15min,配置炭黑浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡5min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一些PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在180℃、1MPa的条件下热压15min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
实施例8
本实施例的低逾渗值高力学性能聚丙烯(PP)导电薄膜的制备方法,步骤如下:
(1)将PP粒料放于熔喷机中于180℃的条件下制备得到厚度约为60 µm的PP纤维网,纤维直径为3~7 µm;
(2)称取一定质量的石墨烯分散于40 mL的二甲苯溶剂中超声震荡10 min,配置石墨烯浓度分别为1,0.5,0.25,0.1,0.05,0.025,0.01 mg/mL的溶液;
(3)将步骤(1)制得的PP纤维网置于步骤(2)制得的碳纳米管的二甲苯溶液中超声波震荡2 min,取出PP纤维网,用无水乙醇洗涤、自然晾干,得到导电纤维网;
(4)将晾干后的导电纤维网上下铺两层于压机模板上,上、下两层纤维网中间放置一定质量的PP粒料(导电纤维网与PP的质量比为3:5),于真空压机中在185℃、2 MPa的条件下热压10 min,得到具有综合力学性能较高和较低逾渗值的PP导电薄膜。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法,其特征在于步骤如下:
(1)纤维网的制备:采用熔喷机将聚丙烯粒料熔喷制备出均匀的聚丙烯纤维网;
(2)导电粒子分散:将导电粒子分散于二甲苯溶剂中超声震荡10~15min制得一定浓度的溶液A;
(3)超声震荡:将步骤(1)制得的聚丙烯纤维网置于一定浓度的溶液A中超声震荡2~5min;
(4)洗涤:将步骤(3)中超声震荡后的聚丙烯纤维网取出,用无水乙醇洗涤、自然晾干得到导电纤维网;
(5)热压:将晾干后的导电纤维网上下两层铺于模板上,上、下两层导电纤维网中间放置一定质量的聚丙烯粒料,置于真空压机中热压后得到聚丙烯导电薄膜;
所述步骤(2)中导电粒子为炭黑、碳纳米管或石墨烯。
2.根据权利要求1所述的低逾渗值高力学性能聚丙烯导电薄膜的制备方法,其特征在于:所述步骤(1)中的纤维网是将熔喷级聚丙烯粒料放于熔喷机中在175~200℃的条件下制备得到厚度为60µm的聚丙烯纤维网,纤维直径为3~7 µm。
3.根据权利要求1所述的低逾渗值高力学性能聚丙烯导电薄膜的制备方法,其特征在于:所述步骤(2)中溶液A的浓度为1,0.5,0.25,0.1,0.05,0.025或0.01 mg/mL。
4.根据权利要求1所述的低逾渗值高力学性能聚丙烯导电薄膜的制备方法,其特征在于:所述步骤(5)中聚丙烯粒料与导电纤维网的质量比为5:3。
5.根据权利要求1所述的低逾渗值高力学性能聚丙烯导电薄膜的制备方法,其特征在于:所述步骤(5)中热压的条件为在175~200℃、1~2MPa的条件下热压10~15min。
CN201610870574.3A 2016-09-30 2016-09-30 一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法 Active CN106479047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610870574.3A CN106479047B (zh) 2016-09-30 2016-09-30 一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610870574.3A CN106479047B (zh) 2016-09-30 2016-09-30 一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106479047A CN106479047A (zh) 2017-03-08
CN106479047B true CN106479047B (zh) 2018-08-28

Family

ID=58269097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610870574.3A Active CN106479047B (zh) 2016-09-30 2016-09-30 一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106479047B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051217B (zh) * 2017-05-09 2019-10-11 河南工程学院 一种耐高温、低电阻、机械性能优良的双极膜的制备方法
CN107415420B (zh) * 2017-08-02 2018-12-18 河南工程学院 电磁屏蔽tpu薄膜的制备方法
CN107877893B (zh) * 2017-11-24 2019-11-22 河南工程学院 一种电磁屏蔽pp薄膜的制备方法
CN108610559B (zh) * 2018-04-13 2021-06-15 武汉金发科技有限公司 一种石墨烯改性聚丙烯复合材料及其制备方法
CN109130441B (zh) * 2018-08-03 2020-12-25 河南工程学院 一种具有多层结构的梯度hdpe电磁屏蔽薄膜的可控制备方法
CN114656658B (zh) * 2022-04-05 2023-12-05 华南农业大学 一种含有三维网络结构天然纤维复合材料的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650498A (zh) * 2013-11-22 2015-05-27 中国科学院金属研究所 一种石墨烯/聚合物复合导电薄膜材料及其制备方法
CN104727016A (zh) * 2014-04-01 2015-06-24 浙江伟星实业发展股份有限公司 一种纳米纤维复合膜及其制备方法
CN105801892A (zh) * 2015-10-20 2016-07-27 河南工程学院 一种lldpe导电薄膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136327A1 (en) * 2008-04-17 2010-06-03 National Tsing Hua University Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650498A (zh) * 2013-11-22 2015-05-27 中国科学院金属研究所 一种石墨烯/聚合物复合导电薄膜材料及其制备方法
CN104727016A (zh) * 2014-04-01 2015-06-24 浙江伟星实业发展股份有限公司 一种纳米纤维复合膜及其制备方法
CN105801892A (zh) * 2015-10-20 2016-07-27 河南工程学院 一种lldpe导电薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Preparation of carbon black/polypropylene nanocomposite with low percolation threshold using mild blending method;Wei Li, etc.;《Journal of Applied Polymer Science》;20091026;第115卷;第2629-2634页 *

Also Published As

Publication number Publication date
CN106479047A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN106479047B (zh) 一种低逾渗值高力学性能聚丙烯导电薄膜的制备方法
CN107415420B (zh) 电磁屏蔽tpu薄膜的制备方法
CN107877893B (zh) 一种电磁屏蔽pp薄膜的制备方法
Wang et al. Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin composite laminate modified by carbon black-loaded polypropylene non-woven fabric interleaves
Lu et al. Electrical conductivity investigation of a nonwoven fabric composed of carbon fibers and polypropylene/polyethylene core/sheath bicomponent fibers
KR20130139857A (ko) 탄소 섬유 집합체의 제조 방법 및 탄소 섬유 강화 플라스틱의 제조 방법
CN107137979A (zh) 一种微米纤维三维骨架/聚合物纳米纤维复合过滤材料及其制备方法
Zhao et al. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes
CN105907009A (zh) 导电高分子复合材料的制备及其在应变传感器中的应用
CN102617870A (zh) 一种改性环氧树脂复合材料的制备方法
WO2018010347A1 (zh) 一种抗静电纳米纤维非织造材料及制备方法
Zhang et al. Carbonaceous nanofiber-supported sulfonated poly (ether ether ketone) membranes for fuel cell applications
GB2573914A (en) Method for preparing high-performance polymer based conductive composite material using micro-nano precision assembly method within confinement space
Wu et al. A Hollow Core‐Sheath Composite Fiber Based on Polyaniline/Polyurethane: Preparation, Properties, and Multi‐Model Strain Sensing Performance
CN104233503A (zh) 一种高导电涤纶复合短纤维
CN105365305A (zh) 一种玻璃纤维与涤纶复合针刺毡及其制造方法
CN106633373B (zh) 用于sls的碳纳米管/聚丙烯复合粉末材料及制备方法
Zhang et al. A flexible strain sensor based on conductive TPU/CNTs‐Gr composites
CN109098029A (zh) 一种新型碳纤维发热纸的制造方法
CN103184579A (zh) 一种静电纺聚砜酰胺/多壁碳纳米管复合纤维的制备方法
Wang et al. Preparation and characterization of CNTs/PE micro‐nanofibers
Mojtaba Alizadeh Darbandi et al. Electrospun nanostructures based on polyurethane/MWCNTs for strain sensing applications
CN105801892B (zh) 一种lldpe导电薄膜的制备方法
CN109629032A (zh) 一种基于静电纺丝技术的高拉伸模量聚合物纳米复合纤维的制备方法
CN115819969A (zh) 一种聚酰亚胺纳米纤维/碳纳米管复合导电气凝胶及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231030

Address after: No. 1999 Yikang Avenue South Road, Tengzhou Economic Development Zone, Zaozhuang City, Shandong Province, 277500

Patentee after: Shandong Zhongsu New Materials Co.,Ltd.

Address before: 451191 No. 1 Zhongshan North Road, Longhu Town, Zhengzhou City, Henan Province

Patentee before: HENAN INSTITUTE OF ENGINEERING