CN106477629A - 一种硫化铋分级纳米花超级电容器电极材料及制备方法 - Google Patents

一种硫化铋分级纳米花超级电容器电极材料及制备方法 Download PDF

Info

Publication number
CN106477629A
CN106477629A CN201610876608.XA CN201610876608A CN106477629A CN 106477629 A CN106477629 A CN 106477629A CN 201610876608 A CN201610876608 A CN 201610876608A CN 106477629 A CN106477629 A CN 106477629A
Authority
CN
China
Prior art keywords
bismuth sulfide
electrode material
classifying nano
super capacitor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610876608.XA
Other languages
English (en)
Inventor
李娣
陈芬
施伟东
陈敏
姜德立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610876608.XA priority Critical patent/CN106477629A/zh
Publication of CN106477629A publication Critical patent/CN106477629A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及硫化铋(Bi2S3)分级纳米花超级电容器电极材料及制备方法,将Bi2WO6分级纳米花分散到硫代乙酰胺溶液中,搅拌后置于水热反应釜中,水热反应。反应结束后自然冷却至室温,收集沉淀物,分别用水和乙醇交替洗涤三次,离心,烘干。本发明通过水热法原位拓扑合成的硫化铋纳米花,具有规则的形貌,统一的尺寸及良好的分散性,相较于常规的硫化铋纳米材料,硫化铋分级结构所带来的更大的比表面积可以有效提高电容量。

Description

一种硫化铋分级纳米花超级电容器电极材料及制备方法
技术领域
本发明涉及硫化铋(Bi2S3)分级纳米花超级电容器电极材料及制备方法,是一种制备工艺简单,适合大规模生产且产物具有良好电化学性能的Bi2S3分级纳米材料的制备方法。
背景技术
随着现代工业的迅猛发展,全球能源消耗量逐年上升,能源危机迫在眉睫。为了有效解决这一难题,各种新技术应运而生,其中,超级电容器是近几十年逐渐发展起来的一种新型的能量存储和转换器件。超级电容器具有很多区别于其他储能器件的突出特点,如:超级电容器具有高的比电容、能量密度和功率密度;超级电容器充放电时间短,且循环寿命长;超级电容器适用范围广、具有较高的安全性。电极材料是超级电容器最重要的部分,直接影响超级电容器的性能和应用前景,而开发环保、成本低、稳定性好、电化学性能良好的电极材料成为了研究的热点,也是使超级电容器真正实现工业化应用的主要途经。
对于利用双电层机理进行能量存储的材料,为了提高超级电容器的容量,需要形成更大的电极/电解液界面。将电极材料制备成具有三维分级结构,利用分级结构的形貌特征可以获得更大的比表面积,从而得到具有高性能的超级电容器电极材料,是目前超级电容器电极材料开发的一个重要方向。Bi系材料具有廉价、低毒、稳定性好等优点,在储能、能量转化等领域具有较为广泛的用途。正交晶系Bi2S3具有Bi系材料的诸多优点,而且被发现作为超级电容器电极材料具有良好的性能,如济南大学徐锡金教授课题组发现由微米棒组成的Bi2S3分级结构不仅具有良好的光催化降解有机物能力,还表现出优异的电化学性能(Xu et al,RSC Adv.,2014,4,41636–41641)。然而,他们所制备的Bi2S3分级结构尺寸较大(微米级),严重影响了该材料的比表面积和比电容。因此,探索新的合成方法以制备纳米尺度、大比表面积的Bi2S3分级材料,是提高Bi2S3电极材料比电容的关键手段。然而,目前关于成功合成纳米尺度Bi2S3分级结构仍鲜有报道。
该制备方法中涉及到形成Bi2S3分级结构前驱体Bi2WO6分级纳米花的合成,利用原位阴离子交换,将Bi2WO6分级纳米花拓扑转变为Bi2S3分级纳米花。该方法合成简单,制备工艺绿色,重复性好,适合大规模生产。同时,所得到空心结构形貌均一,尺寸均匀,电化学性能测试证明产物具有较高的比电容和良好的循环稳定性。
发明内容
本发明目的是提供一种新的利用Bi2WO6分级纳米花拓扑转变为Bi2S3分级纳米花的合成方法。
本发明通过以下步骤实现:
(1)制备前驱体Bi2WO6分级纳米花:将钨酸钠(Na2WO4·2H2O)溶于去离子水中制备钨酸钠水溶液,取硝酸铋(Bi(NO3)3)加入所制备钨酸钠水溶液中,调节pH值,将混合物置于水热反应釜中,水热反应,反应结束后自然冷却至室温,收集沉淀物,分别用水和乙醇交替洗涤三次,离心,烘干,备用。
所述pH值调节范围为1-3。
所述水热反应温度为120-200℃,水热反应时间为12-36h。
(2)制备Bi2S3分级纳米花:将步骤(1)所制备Bi2WO6分级纳米花分散到硫代乙酰胺溶液中,搅拌后置于水热反应釜中,水热反应。反应结束后自然冷却至室温,收集沉淀物,分别用水和乙醇交替洗涤三次,离心,烘干。
所述Bi2WO6分级纳米花与硫代乙酰胺的质量比为10:3。
所述水热反应温度为120-200℃,水热反应时间为8-24h。
(3)表征手段:利用X射线衍射仪(XRD)、扫描电子显微镜(SEM),透射电子显微镜(TEM)对产物进行结构分析。
本发明通过水热法原位拓扑合成的硫化铋纳米花,具有规则的形貌,统一的尺寸及良好的分散性,相较于常规的硫化铋纳米材料,硫化铋分级结构所带来的更大的比表面积可以有效提高电容量。
附图说明
图1为所制备Bi2WO6、Bi2S3分级纳米花的扫描(a,b)、透射电镜(c,d)照片和XRD谱图(e)。由图可见,所制备的Bi2WO6纳米材料是由厚度约为50nm的纳米片组装而成的分级纳米花结构,整体尺寸约为2-3μm,具有规则的形貌和均一的尺寸。经阴离子交换拓扑合成Bi2S3后,所得到产物整体形貌未发生明显改变,呈现分级纳米花结构,但是该分级结构单元的纳米片与之前Bi2WO6不同,该纳米片是由直径为50nm的纳米棒穿插形成的筛状结构。
X射线衍射分别考察了所合成Bi2WO6、Bi2S3的晶相和组成。由图可见,所制备的Bi2WO6和Bi2S3均为正交晶系,这就保证了由Bi2WO6到Bi2S3的拓扑转变。而且,两种物质的XRD谱图中并无杂质衍射峰存在,且峰形尖锐,说明Bi2WO6和Bi2S3均为结晶良好的纯相材料。
图2-图5为所制备Bi2S3分级纳米结构的电化学性能测试。由CV曲线可见(图2),Bi2S3具有一对氧化还原峰,展现出赝电容特性。如图3,4所示,在扫速为5mV s-1时,不同电流密度Bi2S3充放电曲线显示了电流密度在1,2,4,6,10,12,16,20A g-1的充放电曲线,产物的电容分别为233,194,156,144,130,120,99,100F g-1。可见,虽然在高的电流密度时,比电容有一定程度下降(这是由于离子仅仅在电极的表面作用引起),但该材料仍展现出较好的倍率性能。可见,产物展现出优越的氧化还原反应可逆性,说明其具有良好的循环稳定性。同样,循环稳定实验也证明上述说法(图5),在扫速为5mV s-1,电流密度为6A g-1时,Bi2S3电极材料循环700次后,仍展现出稳定的电容性能。
具体实施方式
实施例1:Bi2S3分级纳米花的制备
具体方法为:称取已制备Bi2WO6分级纳米花0.1g,加入20mL去离子水中,搅拌均匀后加入0.03g硫代乙酰胺,继续搅拌30分钟后,将混合物转移至30mL水热反应釜中,180℃反应24h。待反应釜自然降至室温后,收集黑色固体沉淀物,用去离子水和乙醇交替对产物进行离心清洗,60℃烘干。最终获得黑色粉末即为Bi2S3分级纳米花。
实施例2:电学性能测试
具体方法为:
(1)电极制备:将Bi2S3电极材料、乙炔黑、聚乙二烯以8:1:1的质量比例混合均匀,均匀的刮涂在泡沫镍集流体上,60℃干燥后,得到复合电极。
(2)电化学测试:以活性材料作为工作电极,泡沫镍作为对电极,Pt作为参比电极进行三电极测试,所有的电化学性能测试都在6M的KOH溶液中进行,在电化学工作站上进行循环伏安、恒流充放电的测试。
(3)电化学测试结果如附图2-5所示。由图可知,所制备Bi2S3分级纳米花的电容为赝电容,具有良好的氧化还原反应可逆性,扫速为5mV s-1、电流密度为1A g-1时电容量为233F g-1。在扫速为5mV s-1、电流密度为不同时,所制备电极材料展现出较好的倍率性能。循环700次后,材料电容性能未发生明显变化,证明所制备Bi2S3分级纳米花具有良好的循环稳定性,是潜在的工业化应用的超级电容器电极材料。

Claims (8)

1.一种硫化铋分级纳米花超级电容器电极材料,其特征在于:所述硫化铋分级纳米花材料是由直径为50nm的纳米棒穿插形成的筛状结构,其具有优异的电化学性能,在扫速为5mV s-1、电流密度为1A g-1时电容量达到233F g-1,且展现出优越的氧化还原反应可逆性,循环性能测试证明产物具有良好的循环稳定性;在扫速为5mV s-1、电流密度为不同时,所制备电极材料展现出较好的倍率性能;循环700次后,材料电容性能未发生明显变化,具有良好的循环稳定性。
2.如权利要求1所述的一种硫化铋分级纳米花超级电容器电极材料的制备方法,其特征在于具体步骤如下:将Bi2WO6分级纳米花分散到硫代乙酰胺溶液中,搅拌后置于水热反应釜中,水热反应,反应结束后自然冷却至室温,收集沉淀物,分别用水和乙醇交替洗涤三次,离心,烘干。
3.如权利要求2所述的一种硫化铋分级纳米花超级电容器电极材料的制备方法,其特征在于:所述Bi2WO6分级纳米花与硫代乙酰胺的质量比为10:3。
4.如权利要求2所述的一种硫化铋分级纳米花超级电容器电极材料的制备方法,其特征在于:所述水热反应温度为120-200℃,水热反应时间为8-24h。
5.如权利要求2所述的一种硫化铋分级纳米花超级电容器电极材料的制备方法,其特征在于,所述Bi2WO6分级纳米花的制备方法如下:将钨酸钠(Na2WO4·2H2O)溶于去离子水中制备钨酸钠水溶液,取硝酸铋(Bi(NO3)3)加入所制备钨酸钠水溶液中,调节pH值,将混合物置于水热反应釜中,水热反应,反应结束后自然冷却至室温,收集沉淀物,分别用水和乙醇交替洗涤三次,离心,烘干,备用。
6.如权利要求5所述的一种硫化铋分级纳米花超级电容器电极材料的制备方法,其特征在于,所述pH值调节范围为1-3。
7.如权利要求5所述的一种硫化铋分级纳米花超级电容器电极材料的制备方法,其特征在于,所述水热反应温度为120-200℃,水热反应时间为12-36h。
8.由权利要求1所述的一种硫化铋分级纳米花超级电容器电极材料制备得到的复合电极,其特征在于:将硫化铋分级纳米花超级电容器电极材料、乙炔黑、聚乙二烯以8:1:1的质量比例混合均匀,均匀的刮涂在泡沫镍集流体上,60℃干燥后,得到复合电极。
CN201610876608.XA 2016-10-08 2016-10-08 一种硫化铋分级纳米花超级电容器电极材料及制备方法 Pending CN106477629A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610876608.XA CN106477629A (zh) 2016-10-08 2016-10-08 一种硫化铋分级纳米花超级电容器电极材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610876608.XA CN106477629A (zh) 2016-10-08 2016-10-08 一种硫化铋分级纳米花超级电容器电极材料及制备方法

Publications (1)

Publication Number Publication Date
CN106477629A true CN106477629A (zh) 2017-03-08

Family

ID=58268500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610876608.XA Pending CN106477629A (zh) 2016-10-08 2016-10-08 一种硫化铋分级纳米花超级电容器电极材料及制备方法

Country Status (1)

Country Link
CN (1) CN106477629A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308957A (zh) * 2017-06-27 2017-11-03 河南师范大学 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法
CN107376942A (zh) * 2017-06-27 2017-11-24 河南师范大学 一种球状Bi2S3光催化材料的制备方法
CN109811357A (zh) * 2019-01-09 2019-05-28 中山大学 一种非中心对称的拓扑、超导材料应用于析氢反应
CN109817475A (zh) * 2019-01-18 2019-05-28 三峡大学 硫化铋镍正极材料的制备方法及其应用
CN111068720A (zh) * 2019-12-06 2020-04-28 南京邮电大学 一种Co-FeS2/CoS2纳米花材料及制备方法与调控其电催化性能的方法
CN111807409A (zh) * 2020-06-01 2020-10-23 上海海事大学 一种硅片基硫化铋纳米花阵列的半导体光电材料的制备方法和应用
CN112875751A (zh) * 2020-12-29 2021-06-01 内蒙古工业大学 硫掺杂三氧化二铋的制备方法、负极材料和超级电容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112898A (zh) * 2013-02-06 2013-05-22 长安大学 水热法制备花棒状钨酸铋的方法
CN105800687A (zh) * 2016-04-28 2016-07-27 江苏大学 一种硫化铋纳米棒的制备方法
CN105914055A (zh) * 2016-03-10 2016-08-31 江苏大学 一种银/硫化钴超级电容器电极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112898A (zh) * 2013-02-06 2013-05-22 长安大学 水热法制备花棒状钨酸铋的方法
CN105914055A (zh) * 2016-03-10 2016-08-31 江苏大学 一种银/硫化钴超级电容器电极材料及其制备方法
CN105800687A (zh) * 2016-04-28 2016-07-27 江苏大学 一种硫化铋纳米棒的制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308957A (zh) * 2017-06-27 2017-11-03 河南师范大学 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法
CN107376942A (zh) * 2017-06-27 2017-11-24 河南师范大学 一种球状Bi2S3光催化材料的制备方法
CN107376942B (zh) * 2017-06-27 2020-03-31 河南师范大学 一种球状Bi2S3光催化材料的制备方法
CN107308957B (zh) * 2017-06-27 2020-03-31 河南师范大学 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法
CN109811357A (zh) * 2019-01-09 2019-05-28 中山大学 一种非中心对称的拓扑、超导材料应用于析氢反应
CN109817475A (zh) * 2019-01-18 2019-05-28 三峡大学 硫化铋镍正极材料的制备方法及其应用
CN109817475B (zh) * 2019-01-18 2020-10-09 三峡大学 硫化铋镍正极材料的制备方法及其应用
CN111068720A (zh) * 2019-12-06 2020-04-28 南京邮电大学 一种Co-FeS2/CoS2纳米花材料及制备方法与调控其电催化性能的方法
CN111807409A (zh) * 2020-06-01 2020-10-23 上海海事大学 一种硅片基硫化铋纳米花阵列的半导体光电材料的制备方法和应用
CN112875751A (zh) * 2020-12-29 2021-06-01 内蒙古工业大学 硫掺杂三氧化二铋的制备方法、负极材料和超级电容器
CN112875751B (zh) * 2020-12-29 2022-09-02 内蒙古工业大学 硫掺杂三氧化二铋的制备方法、负极材料和超级电容器

Similar Documents

Publication Publication Date Title
CN106477629A (zh) 一种硫化铋分级纳米花超级电容器电极材料及制备方法
CN108735522B (zh) 一种CoNiO2/MXene复合材料及其制备方法和应用
CN108417404B (zh) 一种超级电容器电极材料的制备方法
CN106057480B (zh) 用于超级电容器的三维多孔硒化物纳米复合材料及其制备方法
CN106531456A (zh) 一种基于CuCo2S4的超级电容器材料及其制备和应用
Shinde et al. Effect of Mn doping on the chemical synthesis of interconnected nanoflakes-like CoS thin films for high performance supercapacitor applications
CN106098402B (zh) 一种用于超级电容器的CoNiSe2纳米阵列材料及其制备方法
CN106315522B (zh) 一种用于超级电容器的NiSe三维多孔纳米片材料及其制备方法
Ruan et al. Three-dimensional Ni (OH) 2/Cu2O/CuO porous cluster grown on nickel foam for high performance supercapacitor
JP2014501028A (ja) 複合電極材及びその製造方法、並びに応用
CN106057501B (zh) 一种用于超级电容器的Ni(OH)2/NiSe纳米棒材料及其制备方法
CN107527752A (zh) 一种超级电容器复合电极材料的制备方法
CN108400021A (zh) 一种超级电容器电极材料及其制备方法
CN106384675A (zh) 氮化碳/硫化钴超级电容器电极材料及其制备方法和用途
CN110350184A (zh) 一种用于电池正极材料的高容量NiMoO4储能材料的制备方法
Wang et al. Facile preparation of Ni–Mn layered double hydroxide nanosheets/carbon for supercapacitor
Chen et al. Porous tremella-like NiCo2S4 networks electrodes for high-performance dye-sensitized solar cells and supercapacitors
CN109786135A (zh) 一种氧化铜@钼酸镍/泡沫铜复合电极材料及其制备方法
Yang et al. A novel self-supported structure of Ce-UiO-66/TNF in a redox electrolyte with high supercapacitive performance
CN106098414A (zh) 一步水热法合成石墨烯‑氢氧化镍复合物超级电容器电极的方法
Ma et al. Facile growth of Bi 2 MoO 6 nanosheet arrays on Ni foam as an electrode for electrochemical applications
CN107086132B (zh) 花状五氧化二钒/二硫化三镍纳米片及其制备方法和应用
Zhu et al. Anions influence on the electrochemical performance of Co3X4 (X= O, Se) for supercapacitor: Experiments and theoretical calculations
CN106158420B (zh) 一种用于超级电容器的NiSe-Ni3Se2多孔纳米球材料及其制备方法
Xu et al. One-pot synthesis of a CoS-AC electrode in a redox electrolyte for high-performance supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170308