CN106469677B - 具有双晶界的互连结构及其形成方法 - Google Patents

具有双晶界的互连结构及其形成方法 Download PDF

Info

Publication number
CN106469677B
CN106469677B CN201610674152.9A CN201610674152A CN106469677B CN 106469677 B CN106469677 B CN 106469677B CN 201610674152 A CN201610674152 A CN 201610674152A CN 106469677 B CN106469677 B CN 106469677B
Authority
CN
China
Prior art keywords
semiconductor device
conductive material
twin boundary
diffusion barrier
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610674152.9A
Other languages
English (en)
Other versions
CN106469677A (zh
Inventor
林建宏
邱垂青
李永辉
廖建能
阙郁伦
詹宗晟
黄俊龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN106469677A publication Critical patent/CN106469677A/zh
Application granted granted Critical
Publication of CN106469677B publication Critical patent/CN106469677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53223Additional layers associated with aluminium layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53242Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
    • H01L23/53252Additional layers associated with noble-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • H01L23/53266Additional layers associated with refractory-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供了一种具有双晶界的半导体器件结构及其形成方法。半导体器件结构包括衬底和在衬底上方形成的导电结构。导电结构包括双晶界,并且双晶界的密度在约25μm‑1至约250μm‑1的范围中。

Description

具有双晶界的互连结构及其形成方法
技术领域
本发明总体涉及半导体领域,更具体地,涉及互连结构及其形成方法。
背景技术
半导体器件被用于诸如个人电脑、手机、数码相机和其他电子设备的多种电子应用中。半导体器件通常通过以下步骤来制造:在半导体衬底上方依次沉积绝缘或介电层、导电层和半导体材料层;使用光刻来图案化多个材料层,以在其上形成电路部件和元件。许多集成电路通常制造在单个半导体晶圆上,并且通过沿着划线在集成电路之间锯切来分割晶圆上的单独的管芯。通常,单独的管芯以例如多管芯模块或以其他封装类型来被分别封装。
为了增大器件密度,在制造工艺中不断减小半导体器件的尺寸。相应地,提供了多层互连结构。互连结构可以包括一个或多个导线和通孔层。
虽然现有的互连结构和制造互连结构的方法对于它们的预期目的通常已经足够,但是它们不是在所有方面都已完全令人满意。
发明内容
根据本发明的一个方面,提供了一种半导体器件结构,包括:衬底;以及导电结构,形成在所述衬底上方,其中,所述导电结构包括双晶界,以及所述双晶界的密度在约25μm-1至约250μm-1的范围中。
优选地,所述双晶界的平均双层片宽度在约4nm至约40nm的范围中。
优选地,所述导电结构包括:扩散阻挡层;以及导电材料,形成在所述扩散阻挡层上方。
优选地,所述扩散阻挡层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在约0.1%到约6%的范围中。
优选地,该半导体器件结构还包括:胶层,在所述扩散阻挡层和所述导电材料之间形成,其中,所述胶层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在约0.1%至约6%的范围中。
优选地,所述扩散阻挡层是由钌(Ru)、镍(Ni)、α-钴(Co)、β-钴(CO)、氮化钴(Co4N)或它们的组合制成的。
优选地,该半导体器件结构还包括:沟槽-通孔结构,形成在所述导电材料上方,其中,所述沟槽-通孔结构包括双晶界,并且所述双晶界的密度在约25μm-1至约250μm-1的范围中。
优选地,该半导体器件结构还包括:器件元件,形成在所述衬底中;以及介电层,形成在所述器件元件上方,其中,所述导电结构电连接至所述器件元件。
根据本发明的另一方面,提供了一种半导体器件结构,包括:第一介电层,形成在衬底上方;扩散阻挡层,形成在所述第一介电层中;以及导电材料,形成在所述扩散阻挡层上方,其中,所述扩散阻挡层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在约0.1%到约6%的范围中。
优选地,所述导电结构包括双晶界,以及所述双晶界的密度在约25μm-1至约250μm-1的范围中。
优选地,所述双晶界的平均双层片宽度在约4nm至约40nm的范围中。
优选地,所述扩散阻挡层是由钌(Ru)、镍(Ni)、α-钴(Co)、β-钴(CO)、氮化钴(Co4N)或它们的组合制成的。
优选地,该半导体器件结构还包括:胶层,形成在所述扩散阻挡层和所述导电材料之间,其中,所述胶层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在约0.1%至约6%的范围中。
优选地,该半导体器件结构还包括:沟槽-通孔结构,形成在所述导电材料上方,其中,所述沟槽-通孔结构包括双晶界,以及所述双晶界的密度在约25μm-1至约250μm-1的范围中。
根据本发明的又一方面,提供了一种形成半导体器件结构的方法,包括:提供衬底;以及在所述衬底上方形成导电结构,其中,所述导电结构包括双晶界,以及所述双晶界的密度在约25μm-1至约250μm-1的范围中。
优选地,在所述衬底上方形成所述半导体器件结构包括:通过脉冲电流的方法来执行电沉积工艺。
优选地,所述电沉积工艺操作在约-5度至约5度范围的温度下执行。
优选地,在所述衬底上方形成所述导电结构包括:形成扩散阻挡层;以及
在所述扩散阻挡层上方形成导电材料,其中,所述扩散阻挡层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在约0.1%至约6%的范围中。
优选地,该方法还包括:在所述扩散阻挡层和所述导电材料之间形成胶层,其中,所述胶层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在约0.1%至约6%的范围中。
优选地,该方法还包括:在所述导电结构上方形成沟槽-通孔结构,其中,所述沟槽-通孔结构包括双晶界,以及所述双晶界的密度在约25μm-1至约250μm-1的范围中。
附图说明
当结合附图进行阅读时,根据下面详细的描述可以最佳地理解本发明的各个方面。应该注意,根据工业中的标准实践,各种部件没有被按比例绘制。实际上,为了清楚的讨论,各种部件的尺寸可以被任意地增加或减少。
图1A至图1D示出了根据本发明的一些实施例的形成半导体器件结构的各个阶段的截面示图。
图2示出了根据本发明的一些实施例的图1C的区域A的放大的示图。
图3A至图3B示出了根据本发明的一些实施例的半导体器件结构的截面示图。
图4A至图4C示出了根据本发明的一些实施例的形成半导体器件结构的各个阶段的截面示图。
图5A至图5B示出了根据本发明的一些实施例的形成半导体器件结构的各个阶段的截面示图。
图6示出了根据本发明的一些实施例的导电材料的双晶界的密度和原子迁移率(VTM/V0)的关系。
图7示出了根据本发明的一些实施例的导电材料的双晶界的双层片宽度和故障电流密度的关系。
图8A至图8B示出了具有双晶界(如实施例4标记)和没有双晶界(如实施例5标记)的导电材料电压和电流的关系
具体实施方式
以下公开内容提供了多种不同实施例或实例,用于实现所提供主题的不同特征。以下将描述组件和布置的具体实例以简化本发明。当然,这些仅是实例并且不意欲限制本发明。例如,在以下描述中,在第二部件上方或上形成第一部件可以包括第一部件和第二部件直接接触的实施例,也可以包括形成在第一部件和第二部件之间的附加部件使得第一部件和第二部件不直接接触的实施例。而且,本发明在各个实例中可以重复参考数字和/或字母。这种重复仅是为了简明和清楚,其自身并不表示所论述的各个实施例和/或配置之间的关系。
描述了实施例的一些变化。在各个视图和说明性实施例中,类似的参考标号用于标示类似的元件。应该理解,可以在方法之前、期间和之后提供附加的操作,并且对于方法的其他实施例,可以代替或消除描述的一些操作。
提供了半导体器件结构和用于形成半导体器件结构的方法的实施例。图1A至图1D示出了根据本发明的一些实施例的形成半导体器件结构100a的各个阶段的截面示图。
参考图1A,提供了衬底102。衬底102可以由硅或其他半导体材料制成。可选地或额外地,衬底102可以包括诸如锗的其他元素半导体材料。在一些实施例中,衬底102是由诸如碳化硅、砷化镓、砷化铟或磷化铟的化合物半导体制成。在一些实施例中,衬底102是由诸如硅锗、碳化硅锗、磷砷化镓或磷铟化镓的合金半导体制成的。在一些实施例中,衬底102包括外延层。例如,该衬底102具有覆盖块状半导体的外延层。
半导体器件结构100a包括在衬底102上方的第一介电层110。在一些实施例中,第一介电层110是层间电介(ILD)层。第一介电层110由氧化硅(SiOx)、氮化硅(SixNy)或氮氧化硅(SiON)制成。
器件元件104形成在第一介电层110中。器件元件104包括晶体管(例如,金属氧化物半导体场效应晶体管(MOSFET)、互补金属氧化物半导体(CMOS)晶体管、双极结型晶体管(BJT)、高压晶体管、高频晶体管、P-沟道和/或n-沟道场效应晶体管(PFET/NFET)等)、二极管和/或其他适用的元件。执行各种工艺(诸如,沉积、蚀刻、注入、光刻、退火和/或其他适用的工艺)以形成器件元件104。在一些实施例中,在前段制程(FEOL)工艺中,在衬底102中形成器件元件104。
衬底102可以包括诸如p-型阱或n-型阱的各个掺杂区域。掺杂区域可以掺杂有p-型掺杂剂(诸如硼或BF2)和/或n-型掺杂剂(诸如磷(P)或砷(As))。掺杂区域可以以p-阱结构、n-阱结构或双-阱结构直接在衬底102上形成。
衬底102还可以进一步包括诸如浅沟槽隔离(STI)部件或局部硅氧化(LOCOS)部件的隔离部件(未示出)。隔离部件可以限定和隔离各个器件元件。
在第一介电层110上方形成第二介电层120。在一些实施例中,第二介电层120是金属间介电(IMD)层。第二介电层120可以是单层或多层。第二介电层120由氧化硅(SiOx)、氮化硅(SixNy)、氮氧化硅(SiON)、具有低介电常数(低-k)的介电材料或它们的组合制成。
在一些实施例中,第二介电层120由具有小于约2.5的介电常数(k)的极低k(ELK)介电材料制成。由于随着技术节点发展至30nm及以下,几何尺寸缩小,ELK介电材料用于最小化器件RC(时间常数,R:电阻,C:电容)延迟。在一些实施例中,ELK介电材料包括掺杂碳的氧化硅、非晶氟化碳、聚对二甲苯、双苯并环丁烯(BCB)、聚四氟乙烯(PTFE)(特氟龙)或碳氧化硅聚合物(SiOC)。在一些实施例中,ELK介电材料包括多孔形式的现有的介电材料,诸如氢倍半硅氧烷(HSQ)、多孔甲基倍半硅氧烷(MSQ)、多孔聚芳醚(PAE)、多孔SiLK或多孔氧化硅(SiO2)。在一些实施例中,第二介电层120通过化学汽相沉积工艺(诸如等离子体增强化学汽相沉积,PECVD)或旋涂工艺沉积。
根据本发明的一些实施例,如图1B所示,在第二介电层120形成之后,沟槽122形成在第二介电层120中。沟槽122通过图案化工艺形成。图案化工艺包括光刻工艺和蚀刻工艺。光刻工艺包括软烘、掩模对准、曝光、曝光后烘焙、使光刻胶显影、冲洗和干燥(如,硬烘)。蚀刻工艺包括干蚀刻工艺或湿蚀刻工艺。
根据本发明的一些实施例,如图1C所示,在沟槽122形成之后,导电结构130形成在沟槽122中和第二介电层120的上方。导电结构130是互连结构的一部分。互连结构用于将器件元件104的信号电连接至外部器件(未显示)。导电结构130电连接至器件元件104。
示出的导电结构130仅仅是为了说明的目的。导电结构130可包括其他配置并可包括一个或多个导线和通孔层。
导电结构130包括扩散阻挡层132和导电材料134。扩散阻挡层132用于防止导电材料134扩散至相邻区域。第二介电层120、扩散阻挡层132和导电材料134在后段制程(BEOL)工艺中形成。
在一些实施例中,导电材料134由金属(诸如,铜(Cu)、铜合金、铝(Al)、铝合金、钨(W)、钨合金、钛(Ti)、钛合金、钽(Ta)或钽合金、银(Ag)或银合金,金(Au)或金合金)制成。在一些实施例中,当导电材料134是由铜(Cu)或铜基合金制成时,导电材料134具有改进的电阻值,从而使信号高速传播通过铜(Cu)互连件。
应该注意,导电结构130的迁移可以分为由直流引起的“电迁移(EM)”和由剩余应力引起的“应力迁移(SM)”,这些应力在形成多层布线时就已产生。“电迁移(EM)”和“应力迁移(SM)”是评估导电结构130的可靠性的两个因素。
术语“电迁移(EM)”可以指代基于在互连结构(如导电材料130)中的金属原子和在互连结构中的运动的电子之间的相互作用的扩散现象。具体地,电迁移(EM)是金属原子的迁移方向与电子的运动方向相同的现象。当发生EM时,金属原子的迁移会引起原子缺位或空洞或者引起小丘(hillock)。当形成这样的空洞时,导电材料的截面面积会减小,因此导电材料的电流密度会增大。电迁移(EM)会增大器件的电阻率,并且降低器件的性能。
当具有不同热膨胀系数的各种材料形成在互连结构中时,由于在不同的材料之间产生应力而出现“应力迁移”。形成空洞是受静水应力梯度驱动的空位迁移的结果。结果,一些小的空洞形成在互连结构中(诸如导电结构130)。这些小空洞可以共同形成一个大的空洞。大的空洞减少或消除各金属层之间的电接触。在另一个实例中,应力迁移(SM)由热循环和工艺变化(诸如退火不当、化学机械抛光(“CMP”)工艺、填充导电材料)引起。因此,应力迁移会引起各导电材料之间的电接触减少,这会引起电阻率增大以及导致器件故障。
随着半导体器件的几何尺寸继续缩小,电迁移(EM)和应力迁移(SM)的可靠性问题变得严重。为了提高电迁移(EM)可靠性和应力迁移(SM)可靠性,导电结构130包括高密度双边界,以抑制电迁移(EM)和应力迁移(SM)。
图2示出了根据本发明的一些实施例的图1C中的区域A的放大示图。导电结构130具有包括晶界210(实线显示)和双晶界220(虚线显示)的一些缺陷。双晶界220用于当电压被施加到导电结构130上时,延迟导电结构130的导电材料的原子的迁移。一旦导电材料的原子的迁移率被双晶界限制,电迁移(EM)就减小了,应力迁移(SM)也减小了。在一些实施例中,双晶界220的密度在约25μm-1至约250μm-1范围中。如果双晶界220的密度小于25μm-1,导电材料130的电迁移不可以减小。如果双晶界220的密度大于250μm-1,缺陷可能会过大,从而扩散阻挡层132和导电材料134之间的粘合会降低。双晶界220的密度由每单位长度双晶界220的数量来限定。在一些实施例中,双晶界220的密度由透射电子显微镜(TEM)来测量。
在一些实施例中,双晶界220具有在约4纳米至约40纳米的范围中的平均双层片宽度。如果双层片宽度小于4纳米,缺陷可能过大,从而扩散阻挡层132和导电材料134之间的粘合会劣化。如果双层片宽度大于40纳米,导电结构130的电迁移(EM)不能被有效地减小。
此外,当双晶界220的密度在上述的范围内时,导电材料134的电阻率可以保持。与没有双晶界的导电材料134相比,即便是导电材料134的缺陷增加,电阻率也不会改变。
双晶界220可以由两种工艺形成。第一工艺是接通时间(on-time)工艺,第二工艺是停止时间(off-time)工艺。接通时间工艺意味着双晶界220在形成导电材料134的期间建立,停止时间工艺意思是双晶界220在形成导电材料134之后建立。
在一些实施例中,导电材料134的双晶界220通过接通时间工艺形成。接通时间工艺包括通过脉冲电流方法执行电沉积工艺。衬底102和电极被设置在电解质中,并且电沉积工艺在受控的温度下进行。衬底102和电极分别用作阴极和阳极。然后,对衬底102施加脉冲电流,并且导电材料134沉积在扩散阻挡层132上。
在一些实施例中,电解质是一种硫酸铜溶液。在一些实施例中,电沉积工艺在约-5度至约5度的温度范围中操作。如果温度低于-5度,电解质会冻住。如果温度高于5度,可以形成多晶结构而不是双晶界220。在一些实施例中,脉冲电流具有在约0.4A/cm2至约1.8A/cm2范围中的电流密度。如果脉冲电流小于0.4A/cm2,双晶界220的密度可能会过小。如果脉冲电流大于1.8A/cm2,会形成多晶结构而不是双晶界220。在一些实施例中,脉冲电流操作的时间段在约0.02秒至约0.2秒范围内。如果时间段小于0.02秒,双晶界220可能不会形成。如果时间段大于0.2秒,双晶界220的密度可能会过小。
脉冲电流提高了在形成导电材料134期间堆垛层错的可能性。温度控制在上述的范围中以利于形成双晶界220的成核位置。
在其他一些实施例中,当导电材料134通过接通时间工艺形成的时候,扩散阻挡层132是由钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、氮化钨(WN)以及它们的组合形成。
在其他一些实施例中,导电材料134的双晶界220通过停止时间工艺形成,扩散阻挡层132的材料用来引起双晶界220的形成。扩散阻挡层132和导电材料134由不同的材料形成,并且因此具有不同的晶格常数。在对导电结构130执行热退火工艺之后,扩散阻挡层132和导电材料134之间的晶格常数的不同会在导电材料134中引起缺一些陷。
如上所述,扩散阻挡层132和导电材料134之间的晶格常数的不同用来诱导在导电材料134中形成双晶界(或双结构)。在一些实施例中,扩散阻挡层132的晶格常数和导电材料134的晶格常数之间的晶格失配率的范围在约0.1%到约6%之间。如果晶格失配率小于0.1%,双晶界220的密度可能会过低。如果晶格失配率大于6%,扩散阻挡层132和导电材料134之间的粘合会降低。因此,可能会出现脱层问题。
在一些实施例中,当导电材料134是由具有面心立方(fcc)晶体结构的铜(Cu)组成时,扩散阻挡层132是由钌(Ru)、镍(Ni)、α-钴(Co)、β-钴(CO)、氮化钴(Co4N)或它们的组合形成的。在一些实施例中,扩散阻挡层132是双层结构,钽(Ta)和钌(Ru)依次形成于沟槽122中。
表1示出了不同材料的扩散阻挡层132的晶体结构和晶格常数。如表1所示,计算了铜(Cu)和各种材料的晶格常数之间的百分比差异。
表1
在一些实施例中,扩散阻挡层132通过物理汽相沉积(PVD)、化学汽相沉积(CVD)、原子层沉积(ALD)或其他合适的工艺制成。
在沉积扩散阻挡层132之后,导电材料134形成在扩散阻挡层132上方。之后,对导电结构130执行热退火工艺。在一些实施例中,热退火工艺操作的温度范围是在约150至约400度之间。如果温度低于150度,不能形成双晶界。如果温度高于400度,会劣化扩散阻挡层的质量。在一些实施例中,热退火工艺操作的时间段在约1分钟至约1小时的范围内。如果时间段小于1分钟,不能形成双晶界。如果时间段大于1小时,会劣化扩散阻挡层的质量。
根据本发明的一些实施例,如图1D所示,在形成导电材料134之后,对导电材料134执行抛光工艺。去除沟槽122外多余的材料。结果,导电材料134的顶面与第二介电层120的顶面齐平。在一些实施例中,抛光工艺是化学抛光工艺(CMP)。
然后,重复图1B至1D的工艺步骤,以制造多层双镶嵌金属互连结构(未显示)。当多层导电材料都有高的双晶界密度的时候,半导体器件结构的可靠性会进一步提高。
图3A到3B示出了根据本发明的一些实施例半导体器件结构100b的截面图。半导体器件结构100b与图1D所示的半导体器件结构100a类似或相同,除了胶层133形成在扩散阻挡层132上方。用于形成半导体结构100b的工艺和材料可以与用于形成半导体结构100a的工艺和材料类似或相同,因此在此处未重复。
如图3A所示,胶层133形成在扩散阻挡层132和导电材料134之间。胶层133用来提高扩散阻挡层132和导电材料134之间的粘合。
在一些实施例中,胶层133的晶格常数和导电材料134的晶格常数之间的晶格失配率在约0.1%至约6%的范围。当晶格失配率在上述的范围内,导电材料134的双晶界220会容易地形成。
然后,根据本发明的一些实施例,如图3B所示,去除导电材料134、胶层133和扩散阻挡层132的一部分。
图4A至图4C示出了根据本发明的一些实施例的形成半导体器件结构100c的各个阶段的截面示图。用于形成半导体结构100c的工艺和材料可以与用于形成半导体结构100a的工艺和材料类似或相同,因此在此处未重复。
如图4A所示,覆盖层410形成在导电材料134的上方。覆盖层410是介电覆盖层或金属覆盖层。在一些实施例中,介电覆盖层由氮化硅(如,SiN)、氮氧化硅(如,SiON)、碳化硅(例如,SiC)、碳氧化硅(如SiOC或SiCO)、碳氮化硅(如SiCN)、另一种适用的材料或它们的组合制成。在一些实施例中,金属介电层是由镍(Ni)、镍硼(NiB)、镍钨硼(NiWB)、钴(Co)、钴钨硼(CoWB)、钴钨磷(CoWP)、NiReP、其他适用的材料或其组合制成。
可以理解的是,各个介电覆盖层或金属覆盖层的化学计量根据化学汽相沉积(CVD)工艺的变化而变化的,包括反应物相对配比的改变以获得希望的薄膜压缩应力。
根据本发明的一些实施例,如图4B所示,在形成覆盖层410之后,蚀刻停止层420形成在覆盖层410和第二介电层120上方。
蚀刻停止层420可以是单层或多层。蚀刻停止层420由碳化硅(SiC)、氮化硅(SixNy)、碳氮化硅(SiCN)、碳氧化硅(SiOC)、氮碳氧化硅(SiOCN)、或其他适用的材料制成。在一些实施例中,蚀刻停止层420具有形成在碳化硅(SiC)层上的氧化硅(SiOx)层的双层结构。氧化硅(SiOx)层比碳化硅(SiC)层具有更好的防湿性。此外,SiC层用来提高下面的层和SiOx层的粘合。
在蚀刻停止层420形成之后,第三介电层430形成在蚀刻停止层420上方。在一些实施例中,第三介电层430与第二介电层120相同。在一些实施例中,第三介电层430由具有小于约2.5的介电常数(k)的极低-k(ELK)介电材料制成。随着由于技术节点发展至30nm及以下而导致的几何尺寸缩小,ELK介电材料用于最小化器件RC(时间常数,R:电阻,C:电容)延迟。
然后,用作双镶嵌腔的沟槽-通孔结构435形成在第三介电层430中。沟槽-通孔结构435包括通孔部分435a和第一沟槽孔435b。在一些实施例中,沟槽-通孔结构435由两次图案化-两次蚀刻(2P2E)工艺制成。
根据本发明的一些实施例,如图4C所示,在沟槽-通孔结构435形成之后,扩散阻挡层232和导电材料234顺序形成在沟槽-通孔结构435中。然后,对扩散阻挡层232和导电材料234执行抛光工艺以去除多余材料。扩散阻挡层232和导电材料234共同构成双镶嵌结构。
导电材料234包括双晶界以在不引起高电阻率的情况下提高电迁移(EM)的可靠性和应力迁移(SM)的可靠性。在一些实施例中,双晶界的双密度在约25μm-1至约250μm-1的范围中。在一些实施例中,双晶界的双层片宽度在约4nm至约40nm的范围中。
应该注意,导电材料234电连接至导电材料134,两者都具有高的双密度以减小电迁移(EM)和应力迁移(SM)。
图5A至图5B示出了根据本发明的一些实施例的形成半导体器件结构100d的各个阶段的截面示图。用于形成半导体结构100d的工艺和材料可以与用于形成半导体结构100a的工艺和材料类似或相同,因此在此处未重复。
如图5A所示,在导电部件134上方形成覆盖层410。在一些实施例中,覆盖层410是由金属或合金制成,并且它是由电镀工艺形成的。
然后,在覆盖层410上方形成蚀刻停止层420、第三介电层430。沟槽-通孔结构穿过第三介电层430、蚀刻停止层420和覆盖层430形成。然后,根据本发明的一些实施例,如图5B所示,扩散阻挡层232、胶层233和导电材料234形成在沟槽-通孔结构中。因此,得到了双镶嵌导电结构230。
图6示出了根据本发明的一些实施例的导电材料134的双晶界的密度与原子迁移率(VTM/V0)的关系。
图6所示的数据是通过原位透射电镜获得的。导电材料134是由铜(Cu)制成的。X轴示出了导电材料(例如导电材料134和234)的双晶界的密度。Y轴示出了具有双晶界的导电材料的迁移率(用VTM表示)与没有双晶界的材料的迁移率(用Vo表示)的比率。铜原子的迁移率被导电材料的每个双晶界延迟了两秒(标记为实施例1)、三秒(标记为实施例2)、五秒(标记为实施例3)。实施例1、2和3的导电材料是由铜(Cu)制成的。
如图6所示,随着由铜(Cu)制成的导电材料的双晶界的密度增加,导电材料的迁移率逐渐减小。当导电材料的双晶界密度是常数时,导电材料的迁移率随着迁移铜原子的延迟时间的增加而下降。换句话说,导电材料134的迁移率被双晶界减少。所以,当导电材料134的双晶界的密度范围在约25μm-1至约250μm-1的时候,电子迁移率(EM)有效地抑制了。所以,当导电材料由高密度双晶界形成的时候,互连结构的可靠性提高了。
图7示出了根据本发明的一些实施例的导电材料的双晶界的双层片宽度与故障电流密度的关系。
图7所示的数据是由TEM获得的双层片宽度(双晶界的间隔)。X轴示出了由铜(Cu)制成的导电材料的双层片宽度(诸如导电材料134和234)。X轴中的“no”表示导电材料没有双晶界。Y轴示出了故障电流密度,单位是108A/cm2
如图7所示,随着导电材料的双晶界的双层片宽度减小,故障电流密度增加。换句话说,具有小双层片宽度的导电材料的双晶界具有更高的耐受电流。
图8A和图8B示出了具有双晶界(标记为实施例4)和没有双晶界(标记为实施例5)的导电材料的电压和电流的关系。
当电压施加到导电材料(诸如导电材料134和234),测量导电材料的电流。如图8A所示,实施例4具有比实施例5更高的耐受电流。
图8B中所示的两条线表示导电材料的电阻率。实施例4的斜率类似于实施例5的斜率。因此,实施例4的电阻率接近实施例5的电阻率,导电材料的原始性能的电阻率没有被双晶界改变。导电材料的双晶界提高了电迁移率(EM)的可靠性和应力迁移率(SM)的可靠性而没有引起高电阻率。
本发明提供了形成半导体器件结构和形成半导体器件结构的方法的实施例。半导体器件结构包括形成在衬底上方的互连结构。互连结构包括具有双晶界的导电材料。在一些实施例中,双晶界的双密度在从约25μm-1至约250μm-1的范围中。当电压施加到导电材料上的时,双晶界用来延迟导电结构的原子迁移率。所以,减小了电迁移(EM)和应力迁移(SM),并且提高了半导体器件结构的可靠性。
在一些实施例中,提供了半导体器件结构。半导体器件结构包括衬底和形成在衬底上方的导电结构。导电结构包括双晶界,并且双晶界的密度在从约25μm-1至约250μm-1的范围中。
在一些实施例中,提供了半导体器件结构。半导体器件结构包括形成在衬底上方的第一介电层和形成在第一介电层中的扩散阻挡层。半导体器件结构也包括形成在扩散阻挡层上方的导电材料。扩散阻挡层的晶格常数和导电材料的晶格常数之间的晶格失配率在约0.1%至约6%的范围中。
在一些实施例中,提供了形成一种半导体器件结构的方法。这种方法包括提供衬底并且在衬底上方形成导电结构。导电结构包括双晶界,双晶界的密度范围在约25μm-1至约250μm-1
以上论述了若干实施例的部件,使得本领域的技术人员可以更好地理解本发明的各个方面。本领域技术人员应该理解,他们可以很容易地使用本发明作为基础来设计或更改其他用于达到与本文所介绍实施例相同的目的和/或实现相同优点的工艺和结构。本领域技术人员也应该意识到,这些等效结构并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (19)

1.一种半导体器件结构,包括:
衬底;以及
导电结构,形成在所述衬底上方,其中,所述导电结构包括双晶界,以及所述双晶界的密度在25μm-1至250μm-1的范围中。
2.根据权利要求1所述的半导体器件结构,其中,所述双晶界的平均双层片宽度在4nm至40nm的范围中。
3.根据权利要求1所述的半导体器件结构,其中,所述导电结构包括:
扩散阻挡层;以及
导电材料,形成在所述扩散阻挡层上方。
4.根据权利要求3所述的半导体器件结构,其中,所述扩散阻挡层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在0.1%到6%的范围中。
5.根据权利要求3所述的半导体器件结构,还包括:
胶层,在所述扩散阻挡层和所述导电材料之间形成,其中,所述胶层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在0.1%至6%的范围中。
6.根据权利要求4所述的半导体器件结构,其中,所述扩散阻挡层是由钌(Ru)、镍(Ni)、α-钴(Co)、β-钴(CO)、氮化钴(Co4N)或它们的组合制成的。
7.根据权利要求1所述的半导体器件结构,还包括:
沟槽-通孔结构,形成在所述导电材料上方,其中,所述沟槽-通孔结构包括双晶界,并且所述双晶界的密度在25μm-1至250μm-1的范围中。
8.根据权利要求1所述的半导体器件结构,还包括:
器件元件,形成在所述衬底中;以及
介电层,形成在所述器件元件上方,其中,所述导电结构电连接至所述器件元件。
9.一种半导体器件结构,包括:
第一介电层,形成在衬底上方;
扩散阻挡层,形成在所述第一介电层中;以及
导电材料,形成在所述扩散阻挡层上方,其中,所述扩散阻挡层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在0.1%到6%的范围中,所述扩散阻挡层和所述导电材料组成导电结构,所述导电结构包括双晶界,以及所述双晶界的密度在25μm-1至250μm-1的范围中。
10.根据权利要求9所述的半导体器件结构,其中,所述双晶界的平均双层片宽度在4nm至40nm的范围中。
11.根据权利要求9所述的半导体器件结构,其中,所述扩散阻挡层是由钌(Ru)、镍(Ni)、α-钴(Co)、β-钴(CO)、氮化钴(Co4N)或它们的组合制成的。
12.根据权利要求9所述的半导体器件结构,还包括:
胶层,形成在所述扩散阻挡层和所述导电材料之间,其中,所述胶层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在0.1%至6%的范围中。
13.根据权利要求9所述的半导体器件结构,还包括:
沟槽-通孔结构,形成在所述导电材料上方,其中,所述沟槽-通孔结构包括双晶界,以及所述双晶界的密度在25μm-1至250μm-1的范围中。
14.一种形成半导体器件结构的方法,包括:
提供衬底;以及
在所述衬底上方形成导电结构,其中,所述导电结构包括双晶界,以及所述双晶界的密度在25μm-1至250μm-1的范围中。
15.根据权利要求14所述的形成半导体器件结构的方法,其中,在所述衬底上方形成所述半导体器件结构包括:
通过脉冲电流的方法来执行电沉积工艺。
16.根据权利要求15所述的形成半导体器件结构的方法,其中,所述电沉积工艺操作在-5度至5度范围的温度下执行。
17.根据权利要求14所述的形成半导体器件结构的方法,其中,在所述衬底上方形成所述导电结构包括:
形成扩散阻挡层;以及
在所述扩散阻挡层上方形成导电材料,其中,所述扩散阻挡层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在0.1%至6%的范围中。
18.根据权利要求17所述的形成半导体器件结构的方法,还包括:
在所述扩散阻挡层和所述导电材料之间形成胶层,其中,所述胶层的晶格常数与所述导电材料的晶格常数之间的晶格失配率在0.1%至6%的范围中。
19.根据权利要求14所述的形成半导体器件结构的方法,还包括:
在所述导电结构上方形成沟槽-通孔结构,其中,所述沟槽-通孔结构包括双晶界,以及所述双晶界的密度在25μm-1至250μm-1的范围中。
CN201610674152.9A 2015-08-21 2016-08-16 具有双晶界的互连结构及其形成方法 Active CN106469677B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/832,055 US9761523B2 (en) 2015-08-21 2015-08-21 Interconnect structure with twin boundaries and method for forming the same
US14/832,055 2015-08-21

Publications (2)

Publication Number Publication Date
CN106469677A CN106469677A (zh) 2017-03-01
CN106469677B true CN106469677B (zh) 2019-09-27

Family

ID=58157905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610674152.9A Active CN106469677B (zh) 2015-08-21 2016-08-16 具有双晶界的互连结构及其形成方法

Country Status (2)

Country Link
US (3) US9761523B2 (zh)
CN (1) CN106469677B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449921B1 (en) * 2015-12-15 2016-09-20 International Business Machines Corporation Voidless contact metal structures
US10566232B2 (en) * 2017-05-18 2020-02-18 Taiwan Semiconductor Manufacturing Co., Ltd. Post-etch treatment of an electrically conductive feature
CN107469853B (zh) * 2017-08-23 2019-11-29 中国科学技术大学先进技术研究院 一种Co4N纳米片及其制备方法和应用
US10515896B2 (en) * 2017-08-31 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure for semiconductor device and methods of fabrication thereof
CN112447661B (zh) * 2019-08-28 2023-05-02 芯恩(青岛)集成电路有限公司 一种铜互连结构及其制备方法
CN113690187B (zh) * 2021-08-17 2023-10-20 福建省晋华集成电路有限公司 半导体结构及其形成方法
CN114664732B (zh) * 2022-05-25 2022-09-16 合肥晶合集成电路股份有限公司 一种半导体集成器件及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357157A (zh) * 1999-06-22 2002-07-03 日本电气株式会社 铜互连
CN104392939A (zh) * 2014-10-27 2015-03-04 中国科学院上海微系统与信息技术研究所 纳米孪晶铜再布线的制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126806A (en) * 1998-12-02 2000-10-03 International Business Machines Corporation Enhancing copper electromigration resistance with indium and oxygen lamination
JP4611602B2 (ja) * 2002-05-29 2011-01-12 ルネサスエレクトロニクス株式会社 配線設計方法
US8221544B2 (en) * 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US7569866B2 (en) * 2005-09-30 2009-08-04 Hitachi Cable, Ltd. Semiconductor light-emitting device
JP4809042B2 (ja) * 2005-11-10 2011-11-02 日本電波工業株式会社 弾性表面波素子及びその製造方法
US8012861B2 (en) * 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
WO2009067688A1 (en) * 2007-11-21 2009-05-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
JP2010045132A (ja) * 2008-08-11 2010-02-25 Nec Electronics Corp 電気ヒューズおよび半導体装置
US8557507B2 (en) * 2010-11-05 2013-10-15 California Institute Of Technology Fabrication of nano-twinned nanopillars
US9269870B2 (en) * 2011-03-17 2016-02-23 Epistar Corporation Light-emitting device with intermediate layer
TWI432613B (zh) * 2011-11-16 2014-04-01 Univ Nat Chiao Tung 電鍍沉積之奈米雙晶銅金屬層及其製備方法
TWI454422B (zh) 2012-04-12 2014-10-01 Nat Univ Tsing Hua 具高密度雙晶的奈米銅導線製造方法
US8957323B2 (en) * 2012-05-10 2015-02-17 National Chiao Tung University Electrical connecting element having nano-twinned copper, method of fabricating the same, and electrical connecting structure comprising the same
US10023977B2 (en) * 2012-09-17 2018-07-17 The Texas A&M University System Method for producing high stacking fault energy (SFE) metal films, foils, and coatings with high-density nanoscale twin boundaries
TWI507569B (zh) * 2013-08-30 2015-11-11 Univ Nat Chiao Tung 單晶銅、其製備方法及包含其之基板
US10196734B2 (en) * 2014-03-25 2019-02-05 Iowa State University Research Foundation, Inc. Nanotwinned silver alloy film with controlled architecture
US9878306B2 (en) * 2014-09-19 2018-01-30 Georgia Tech Research Corporation Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
US10170425B2 (en) * 2014-11-12 2019-01-01 International Business Machines Corporation Microstructure of metal interconnect layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357157A (zh) * 1999-06-22 2002-07-03 日本电气株式会社 铜互连
CN104392939A (zh) * 2014-10-27 2015-03-04 中国科学院上海微系统与信息技术研究所 纳米孪晶铜再布线的制备方法

Also Published As

Publication number Publication date
US10283450B2 (en) 2019-05-07
US9761523B2 (en) 2017-09-12
US20170053865A1 (en) 2017-02-23
US20190103351A1 (en) 2019-04-04
CN106469677A (zh) 2017-03-01
US10475742B2 (en) 2019-11-12
US20170338178A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
CN106469677B (zh) 具有双晶界的互连结构及其形成方法
US10804147B2 (en) Semiconductor device with reduced via resistance
TWI575604B (zh) 半導體裝置及其製造方法
TWI618189B (zh) 金屬互連件裝置及形成金屬互連件的方法
CN106252408B (zh) 具有互连结构的鳍式场效应晶体管(finfet)器件结构
JP2011003881A (ja) 配線構造及びその形成方法
CN102246293A (zh) 具有改进的电介质线路到过孔的抗电迁移性界面层的互连结构及其制造方法
JP2007250907A (ja) 半導体装置およびその製造方法
TW201517281A (zh) 半導體裝置結構及其形成方法
TWI595597B (zh) 形成金屬內連接之方法
US20140264872A1 (en) Metal Capping Layer for Interconnect Applications
JP2010177538A (ja) 半導体装置の製造方法
KR101076927B1 (ko) 반도체 소자의 구리 배선 구조 및 그 형성방법
KR100973277B1 (ko) 반도체 소자의 금속배선 및 그 형성방법
KR100924556B1 (ko) 반도체 소자의 금속배선 및 그 형성방법
JP2002064138A (ja) 半導体集積回路装置およびその製造方法
KR20100011799A (ko) 반도체 소자의 제조방법
KR20080001905A (ko) 반도체 소자의 금속 배선 형성방법
US20230110587A1 (en) Copper interconnects with self-aligned hourglass-shaped metal cap
KR100861306B1 (ko) 반도체 소자의 배선 및 그의 형성방법
KR101029107B1 (ko) 반도체 소자의 금속배선 및 그 형성방법
KR101029106B1 (ko) 반도체 소자의 금속배선 및 그 형성방법
KR100924557B1 (ko) 반도체 소자의 금속배선 및 그 형성방법
JP2004063980A (ja) 半導体装置の製造方法および半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant