CN106460774A - 利用水压及蒸汽的发电方法及发电装置 - Google Patents
利用水压及蒸汽的发电方法及发电装置 Download PDFInfo
- Publication number
- CN106460774A CN106460774A CN201580023981.4A CN201580023981A CN106460774A CN 106460774 A CN106460774 A CN 106460774A CN 201580023981 A CN201580023981 A CN 201580023981A CN 106460774 A CN106460774 A CN 106460774A
- Authority
- CN
- China
- Prior art keywords
- steam
- waterwheel
- condensing
- water
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/005—Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/06—Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B33/00—Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
- F22B33/18—Combinations of steam boilers with other apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/702—Application in combination with the other apparatus being a steam turbine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/50—Energy storage in industry with an added climate change mitigation effect
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Power Engineering (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明提供一种利用水压及蒸汽的发电方法及发电装置,利用水的落差与高压蒸汽按顺序循环,使得持续地生产电力的同时,借助水的重力的自然落差生产电力的同时,利用蒸汽生产电力,并将蒸汽自然地上升后凝缩的方式再次使用,因此,基本上没有水资源的浪费,有效地旋转与发电机连接的水车,从而,有效地生产电力的利用水压及蒸汽的发电方法及发电装置。
Description
技术领域
本发明涉及一种利用水压及蒸汽的发电方法及发电装置,更详细而言,涉及利用水压与蒸汽旋转水车来进行发电机的发电,从而生产电力的利用水压及蒸汽的发电方法及发电装置。
背景技术
通常的发电机是利用外部的驱动源传递机械能源来转换电能,外部驱动源有涡轮机、水车、电动机、发动机等。
使用外部驱动源产生电能的方法有利用水的位能的水力发电与利用风力的风力发电等直接利用自然力的发电,也可以利用石油及煤炭或铀等天然资源用人工的方法发电的火力发电及核能发电等。
通常的利用所述外部驱动源的发电机的发电原理为,将导体内的电子与磁界之间的相对关系作为基础,若导体切断磁束,则在导体两端产生电压,根据产生的感应电压传递电流。此时,感应电压E的大小与磁束密度B与磁界的导体的长度I及导体的运动速度V有关,因此,发电机进行发电动作时必须需要外部动力,需要从外部驱动源持续地接受机械能源。
所述火力发电或核能发电为,利用燃烧天然资源或核反应产生的热能来启动发电机,因此,由热能的损失不仅降低转换成电能的效率还能根据燃烧燃料产生二氧化,使得导致地球变暖,并发生泄露放射能及核废弃物的处理问题等引发有关环境问题。
并且,代表性的化石燃料中煤炭或石油等天然资源的埋藏量有限,使得当枯竭能源时油价会持续地上升,因此,需要开发新的代替能源,利用水力及风力或太阳热的自然能源也受限制。
另一方面,现有的技术有公开专利第2012-86004号。
发明内容
要解决的技术问题
本发明是鉴于所述诸多问题而提出的,其目的在于,提供一种将水作为发电机的外部驱动源持续地提供能源,当循环水时有效地旋转与发电机连接的水车,从而生产发电机的电力的利用水压及蒸汽的发电方法及发电装置。
技术方案
为了实现所述目的,本发明的利用水压及蒸汽的发电方法及发电装置,其特征在于,包括:水槽,设置于规定高度的位置,使得具备位能;第一水车,在旋转轴上结合发电机,对应所述水槽的排出的位置垂直地形成,使得借助水的落差旋转;加热锅炉,与所述第一水车的下部连通,使得加热流入水来排出蒸汽;蒸汽水车,在旋转轴上结合发电机,与所述加热锅炉的蒸汽排出端连通,使得借助吐出的高压的蒸汽旋转;凝缩罐,设置于所述蒸汽水车的上侧,一侧与蒸汽水车连通,使得凝缩蒸汽的同时将凝缩水朝另一侧流出的方式排出;以及第二水车,在旋转轴结合发电机,并朝下与所述水槽连通,在所述凝缩罐的排出侧朝下连通,使得借助凝缩水的落差旋转。
有益效果
根据本发明的利用水压及蒸汽的发电方法及发电装置为,在水槽将规定量的水朝垂直方向降落,使得借助位能的水压旋转第一水车,使得与第一水车的旋转轴连接的发电机生产一次电力,在加热锅炉加热完成生产第一电力的水后,利用高压的蒸汽旋转蒸汽水车,然后向与蒸汽水车的旋转轴连接的发电机施加旋转力,从而生产二次电力,完成生产第二电力后,将蒸汽排出到凝缩罐,并将蒸汽凝缩成凝缩水后,将凝缩水朝垂直降落的方式旋转第二水车,从而向与第二水车的旋转轴连接的发电机施加旋转力后生产三次电力,将完成生产第三电力的水流向水槽后连续地循环的同时持续地生成电力,使得利用水循环后有效地旋转与发电机连接的水车,从而生产发电机所需的电力。
附图说明
图1是用于示出根据本发明的利用水压及蒸汽的发电方法及发电装置的立体图。
图2是用于示出根据本发明的利用水压及蒸汽的发电方法及发电装置的主视图。
具体实施方式
以下参照附图详细说明本发明的实施例。
如图1至2所示,本发明的利用水压及蒸汽的发电装置,包括:水槽110,设置于规定高度的位置,使得具备位能;第一水车120,在旋转轴上结合发电机121,对应所述水槽110的排出的位置垂直地形成,使得借助水的落差旋转;加热锅炉130,与所述第一水车120的下部连通,使得加热流入水来排出蒸汽;蒸汽水车140,在旋转轴上结合发电机141,与所述加热锅炉130的蒸汽排出端连通,使得借助吐出的高压的蒸汽旋转;凝缩罐150,设置于所述蒸汽水车140的上侧,一侧与蒸汽水车140连通,使得凝缩蒸汽的同时将凝缩水朝另一侧流出的方式排出;以及第二水车160,在旋转轴结合发电机121,并朝下与所述水槽110连通,在所述凝缩罐150的排出侧朝下连通,使得借助凝缩水的落差旋转。
所述水槽110设置于规定高度并储藏水后形成于第二水车160的下侧,使得从第二水车160持续地接受水,并在下侧与调整阀门111结合,从而规定地朝下供给水。
所述第一水车120设置于水槽110的下侧后相连通,使得借助从水槽110朝下供给的水的位能旋转第一水车120,在第一水车120的旋转轴结合发电机121,使得以第一水车120的旋转力生产电力。
此时,第一水车120具备用于与外部隔开的壳体,使得位于内部。
所述加热锅炉130具备蒸汽发生器131,使得与第一水车120连通后旋转第一水车120,然后接受朝下部降落的水后,加热生成高压的蒸汽,从而通过与蒸汽水车140连通的排出管吐出。
加热锅炉130形成于第一水车120的侧方,使得低于第一水车120,并倾斜地形成排出管,从而从第一水车120接受水。
所述蒸汽水车140与加热锅炉130的蒸汽发生器131连通,使得接受从排出管吐出的高压的蒸汽后旋转,然后,在蒸汽水车140的旋转轴结合发电机141来生产电力。
蒸汽水车140具备用于与外部隔开的壳体,使得位于内部的同时,在排出管的吐出端具备通常的喷嘴,使得利用高压排出蒸汽。
蒸汽水车140朝上与凝缩罐150的一侧连通,使得排出旋转蒸汽水车140的蒸汽。
所述凝缩罐150的一侧借助连接管与蒸汽水车140的上侧连通,在连接管形成止回阀152,使得旋转蒸汽水车140后,将朝上部上升的蒸汽流入到内部的同时防止流入到内部的蒸汽逆流。
尤其,流入到凝缩罐150的内部的蒸汽凝缩后,从内部流向另一侧,并借助连接管将凝缩罐150的另一侧下部与第二水车160的上部连通后,在连接管结合调整阀门111来规定地朝下侧供给水。
在凝缩罐150的内部设置用于容易地凝缩蒸汽的通常的凝缩用通风扇或凝缩片或凝缩网等。
所述第二水车160与凝缩罐150的另一侧下部连通,使得借助从凝缩罐150供给的凝缩水的位能来旋转,在第二水车160的旋转轴结合发电机161后生产电力。
此时,第二水车120具备用于与外部隔开的壳体,使得位于内部。
在第二水车160的下侧设置水槽110,使得相连通后,旋转第二水车160后,将朝下部降落的水供给到水槽110。
利用本发明的水压及蒸汽的发电方法为如下。
第一电力生产步骤,在水槽110装满水后调整调整阀门111后,将规定量的水朝下方垂直地降落,使得借助位能向第一水车120施加水压,从而旋转第一水车120,然后,向与第一水车120的旋转轴连接的发电机121施加旋转力,从而生产一次电力;高压蒸汽供给步骤,将通过所述第一电力生产步骤完成生产第一电力的水流向加热锅炉130,并加热流入到加热锅炉130的水,然后通过蒸汽发生器131以高压的蒸汽状态供给到蒸汽水车140;第二电力生产步骤,将通过所述高压蒸汽供给步骤吐出的蒸汽的压力施加到蒸汽水车140,使得旋转蒸汽水车140后,向与蒸汽水车140的旋转轴连接的发电机141施加旋转力后,生产二次电力;蒸汽凝缩步骤,将通过所述第二电力生产步骤完成生产第二电力的蒸汽排出到凝缩罐150,然后凝缩流入到凝缩罐150的蒸汽;第三电力生产步骤;通过所述蒸汽凝缩步骤蒸汽凝缩成凝缩水,将凝缩水朝垂直降落后,借助位能向第二水车160施加水压,使得旋转第二水车160,并向与第二水车160的旋转轴连接的发电机161施加旋转力,从而生产三次电力;电力循环生成步骤,将通过所述第三电力生产步骤完成生产第三电力的水流向水槽110,并以连续地循环的方式持续地生成电力。
另一方面,本发明的发电装置100设置于工厂或外墙,并凝缩罐以大面积地设置于楼顶上,使得充分地进行凝缩。
尤其,利用水的落差与高压蒸汽按顺序循环,使得持续地生产电力,并利用加热锅炉130产生蒸汽,从而以最少的能源持续地自行发电。
尤其,借助水的重力的自然落差产生电力的同时,借助蒸汽生产电力,并上升蒸汽进行凝缩后再次使用,从而不会浪费水资源。
Claims (2)
1.一种利用水压及蒸汽的发电装置,其特征在于,包括:
水槽(110),设置于规定高度的位置,使得具备位能;
第一水车(120),在旋转轴上结合发电机(121),对应所述水槽(110)的排出的位置垂直地形成,使得借助水的落差旋转;
加热锅炉(130),与所述第一水车(120)的下部连通,使得加热流入水来排出蒸汽;
蒸汽水车(140),在旋转轴上结合发电机(141),与所述加热锅炉(130)的蒸汽排出端连通,使得借助吐出的高压的蒸汽旋转;
凝缩罐(150),设置于所述蒸汽水车(140)的上侧,一侧与蒸汽水车(140)连通,使得凝缩蒸汽的同时将凝缩水朝另一侧流出的方式排出;以及
第二水车(160),在旋转轴结合发电机121,并朝下方向与所述水槽(110)连通,在所述凝缩罐(150)的排出侧朝下连通,使得借助凝缩水的落差旋转。
2.一种利用水压及蒸汽的发电装置,其特征在于,包括:第一电力生产步骤,在水槽(110)装满水后调整调整阀门(111)后,将规定量的水朝下方垂直地降落,使得借助位能向第一水车(120)施加水压,从而旋转第一水车(120),然后,向与第一水车(120)的旋转轴连接的发电机(121)施加旋转力,从而生产一次电力;高压蒸汽供给步骤,将通过所述第一电力生产步骤完成生产第一电力的水流向加热锅炉(130),并加热流入到加热锅炉(130)的水,然后通过蒸汽发生器(131)以高压的蒸汽状态供给到蒸汽水车(140);第二电力生产步骤,将通过所述高压蒸汽供给步骤吐出的蒸汽的压力施加到蒸汽水车(140),使得旋转蒸汽水车(140)后,向与蒸汽水车(140)的旋转轴连接的发电机(141)施加旋转力后,生产二次电力;蒸汽凝缩步骤,将通过所述第二电力生产步骤完成生产第二电力的蒸汽排出到凝缩罐(150),然后凝缩流入到凝缩罐(150)的蒸汽;第三电力生产步骤;通过所述蒸汽凝缩步骤蒸汽凝缩成凝缩水,将凝缩水朝垂直降落后,借助位能向第二水车(160)施加水压,使得旋转第二水车(160),并向与第二水车(160)的旋转轴连接的发电机(161)施加旋转力,从而生产三次电力;电力循环生成步骤,将通过所述第三电力生产步骤完成生产第三电力的水流向水槽(110),并以连续地循环的方式持续地产生电力。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0054272 | 2014-05-07 | ||
KR20140054272A KR101495566B1 (ko) | 2014-05-07 | 2014-05-07 | 수압 및 증기를 이용한 자가발전 장치 |
PCT/KR2015/003359 WO2015170830A1 (ko) | 2014-05-07 | 2015-04-03 | 수압 및 증기를 이용한 자가발전 방법 및 그 발전 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106460774A true CN106460774A (zh) | 2017-02-22 |
Family
ID=52594342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580023981.4A Pending CN106460774A (zh) | 2014-05-07 | 2015-04-03 | 利用水压及蒸汽的发电方法及发电装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10247167B2 (zh) |
EP (1) | EP3141740B1 (zh) |
JP (1) | JP6622288B2 (zh) |
KR (1) | KR101495566B1 (zh) |
CN (1) | CN106460774A (zh) |
WO (1) | WO2015170830A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111356836A (zh) * | 2017-11-07 | 2020-06-30 | 崔祉年 | 高压喷射水的电气发电系统 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101495566B1 (ko) | 2014-05-07 | 2015-02-25 | 허상채 | 수압 및 증기를 이용한 자가발전 장치 |
DE202016106400U1 (de) * | 2016-11-15 | 2017-01-30 | Markus Fürstenberg | Energiespeichernde, hydraulische Vorrichtung |
KR101945929B1 (ko) * | 2017-07-03 | 2019-02-08 | 진동열 | 폐열을 이용한 부력 자가 발전시스템 |
CN110739882B (zh) * | 2019-09-27 | 2022-12-02 | 上海电力大学 | 基于半导体温差发电的射流发电装置及方法 |
CN215109062U (zh) * | 2019-11-29 | 2021-12-10 | 钟学斌 | 一种原动机 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4035870A1 (de) * | 1990-11-12 | 1992-05-14 | Priebe Klaus Peter | Arbeitsverfahren und -vorrichtung |
JPH05256108A (ja) * | 1992-03-12 | 1993-10-05 | Kosaburo Sato | 雪発電システム |
US5603218A (en) * | 1996-04-24 | 1997-02-18 | Hooper; Frank C. | Conversion of waste heat to power |
CN1626989A (zh) * | 2003-12-10 | 2005-06-15 | 张志学 | 地幔热能水力发电方法 |
KR20050062843A (ko) * | 2003-12-18 | 2005-06-28 | 홍선표 | 발전소의 냉각수를 이용한 전력 생산시스템 |
CN101526060A (zh) * | 2009-03-27 | 2009-09-09 | 周俊 | 热力发电厂废蒸气再生利用方法 |
KR20100119294A (ko) * | 2009-04-30 | 2010-11-09 | 최영구 | 수력발전장치 |
CN201818423U (zh) * | 2010-10-24 | 2011-05-04 | 石福军 | 汽轮机水轮机联合发电系统 |
US20110266804A1 (en) * | 2010-05-03 | 2011-11-03 | Joseph Dolcimascolo | Ancient hydroelectric company |
CN202732203U (zh) * | 2012-09-13 | 2013-02-13 | 陈阿萍 | 一种新型水能发电站 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116005A (en) * | 1977-06-06 | 1978-09-26 | General Electric Company | Combined cycle power plant with atmospheric fluidized bed combustor |
US4306416A (en) * | 1979-05-15 | 1981-12-22 | Joseph Iozzi | Closed cycle, hydraulic-turbine heat engine |
US4739620A (en) * | 1980-09-04 | 1988-04-26 | Pierce John E | Solar energy power system |
US4341490A (en) * | 1980-10-15 | 1982-07-27 | Keeling Walter W | Self-sustaining land irrigating and hydroelectric power generating system |
US4408960A (en) * | 1981-09-11 | 1983-10-11 | Logic Devices, Inc. | Pneumatic method and apparatus for circulating liquids |
BE891942A (nl) * | 1982-01-29 | 1982-05-17 | Ceulemans Andre E S | Aandrijving door middel van verdamping en condenseren |
US4443707A (en) * | 1982-11-19 | 1984-04-17 | Frank Scieri | Hydro electric generating system |
US4698973A (en) * | 1983-08-04 | 1987-10-13 | Johnston Barry W | Closed loop solar collector system powering a self-starting uniflow engine |
US4627241A (en) * | 1983-08-04 | 1986-12-09 | Johnston Barry W | Closed loop solar collector system powering a self-starting uniflow steam engine |
EP0199902A1 (de) * | 1985-04-29 | 1986-11-05 | GebràDer Sulzer Aktiengesellschaft | Kombinierte Heissluftturbinen-Dampfkraftanlage |
US4805410A (en) * | 1988-01-28 | 1989-02-21 | Barry Johnston | Closed loop recirculation system for a working fluid with regeneration |
US5431016A (en) * | 1993-08-16 | 1995-07-11 | Loral Vought Systems Corp. | High efficiency power generation |
US5713202A (en) * | 1994-04-04 | 1998-02-03 | Energy Conservation Partnership, Ltd. | Methods for producing hydro-electric power |
US5461858A (en) * | 1994-04-04 | 1995-10-31 | Energy Conversation Partnership, Ltd. | Method of producing hydroelectric power |
AUPM859994A0 (en) * | 1994-10-04 | 1994-10-27 | Thermal Energy Accumulator Products Pty Ltd | Apparatus and method relating to a thermovolumetric motor |
US5865086A (en) * | 1995-11-02 | 1999-02-02 | Petichakis P.; Haris | Thermo-hydro-dynamic system |
US6182615B1 (en) * | 1999-03-19 | 2001-02-06 | Charles H. Kershaw | Combustion-driven hydroelectric generating system |
US6073445A (en) * | 1999-03-30 | 2000-06-13 | Johnson; Arthur | Methods for producing hydro-electric power |
US6594997B2 (en) * | 2001-10-09 | 2003-07-22 | Pat Romanelli | Vapor engines utilizing closed loop fluorocarbon circuit for power generation |
US6397600B1 (en) * | 2001-10-09 | 2002-06-04 | Pat Romanelli | Closed loop fluorocarbon circuit for efficient power generation |
JP3092704U (ja) * | 2002-09-10 | 2003-03-28 | 有限会社西電機 | 自家用水力発電装置 |
US6739131B1 (en) * | 2002-12-19 | 2004-05-25 | Charles H. Kershaw | Combustion-driven hydroelectric generating system with closed loop control |
US7021900B2 (en) * | 2003-10-08 | 2006-04-04 | Prueitt Melvin L | Vapor-powered kinetic pump |
US20060150625A1 (en) * | 2005-01-12 | 2006-07-13 | Behrens Clifford H | Natural forces power system |
KR20100003189U (ko) | 2008-09-11 | 2010-03-19 | (주)스카이테크 | 폐열을 이용한 발전시스템 |
US8276383B2 (en) * | 2008-11-25 | 2012-10-02 | Acme Energy, Inc. | Power generator using an organic rankine cycle drive with refrigerant mixtures and low waste heat exhaust as a heat source |
US9453411B2 (en) * | 2010-09-23 | 2016-09-27 | Michael W. Courson | Rotary cam radial steam engine |
CN102635481A (zh) * | 2011-02-10 | 2012-08-15 | 林献铭 | 动能产生装置 |
US8127542B1 (en) * | 2011-04-13 | 2012-03-06 | Joseph Dolcimascolo | Portable hydroelectric generating system |
WO2012145406A2 (en) * | 2011-04-18 | 2012-10-26 | Holtec International, Inc. | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and methods of the same |
KR20120136994A (ko) | 2011-06-10 | 2012-12-20 | 김영호 | 수력 발전장치 |
US20130043681A1 (en) * | 2011-08-18 | 2013-02-21 | Luis Manuel Rivera | Methods and systems forhydroelectric power generation |
KR20120042788A (ko) | 2012-03-08 | 2012-05-03 | 박춘근 | 공장형 물순환식 수력발전장치 |
US9322299B2 (en) * | 2012-08-29 | 2016-04-26 | Ronald David Conry | Heat engine shuttle pump system and method |
US8736097B1 (en) * | 2013-05-17 | 2014-05-27 | Clarence W. Schrader | Hydrokinetic generator system |
US9441606B2 (en) * | 2014-01-10 | 2016-09-13 | Ibrahim Hanna | Synergic method for hydrodynamic energy generation with neutralized head pressure pump |
US9234437B1 (en) * | 2014-01-10 | 2016-01-12 | Ibrahim Hanna | Hydrodynamic energy generation system with neutralized pressure pump |
KR101495566B1 (ko) | 2014-05-07 | 2015-02-25 | 허상채 | 수압 및 증기를 이용한 자가발전 장치 |
TWI624589B (zh) * | 2016-07-21 | 2018-05-21 | Lai Rong Yi | Low head large flow channel turbine |
-
2014
- 2014-05-07 KR KR20140054272A patent/KR101495566B1/ko active IP Right Grant
-
2015
- 2015-04-03 US US15/309,309 patent/US10247167B2/en active Active
- 2015-04-03 EP EP15789436.1A patent/EP3141740B1/en active Active
- 2015-04-03 WO PCT/KR2015/003359 patent/WO2015170830A1/ko active Application Filing
- 2015-04-03 CN CN201580023981.4A patent/CN106460774A/zh active Pending
- 2015-04-03 JP JP2017511124A patent/JP6622288B2/ja not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4035870A1 (de) * | 1990-11-12 | 1992-05-14 | Priebe Klaus Peter | Arbeitsverfahren und -vorrichtung |
JPH05256108A (ja) * | 1992-03-12 | 1993-10-05 | Kosaburo Sato | 雪発電システム |
US5603218A (en) * | 1996-04-24 | 1997-02-18 | Hooper; Frank C. | Conversion of waste heat to power |
CN1626989A (zh) * | 2003-12-10 | 2005-06-15 | 张志学 | 地幔热能水力发电方法 |
KR20050062843A (ko) * | 2003-12-18 | 2005-06-28 | 홍선표 | 발전소의 냉각수를 이용한 전력 생산시스템 |
CN101526060A (zh) * | 2009-03-27 | 2009-09-09 | 周俊 | 热力发电厂废蒸气再生利用方法 |
KR20100119294A (ko) * | 2009-04-30 | 2010-11-09 | 최영구 | 수력발전장치 |
US20110266804A1 (en) * | 2010-05-03 | 2011-11-03 | Joseph Dolcimascolo | Ancient hydroelectric company |
CN201818423U (zh) * | 2010-10-24 | 2011-05-04 | 石福军 | 汽轮机水轮机联合发电系统 |
CN202732203U (zh) * | 2012-09-13 | 2013-02-13 | 陈阿萍 | 一种新型水能发电站 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111356836A (zh) * | 2017-11-07 | 2020-06-30 | 崔祉年 | 高压喷射水的电气发电系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3141740A4 (en) | 2018-01-10 |
EP3141740B1 (en) | 2019-06-12 |
JP2017515052A (ja) | 2017-06-08 |
US10247167B2 (en) | 2019-04-02 |
KR101495566B1 (ko) | 2015-02-25 |
EP3141740A1 (en) | 2017-03-15 |
US20170074229A1 (en) | 2017-03-16 |
JP6622288B2 (ja) | 2019-12-18 |
WO2015170830A1 (ko) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106460774A (zh) | 利用水压及蒸汽的发电方法及发电装置 | |
CN101260815B (zh) | 抛物面槽式太阳能集热器辅助燃煤锅炉的混合热发电系统 | |
CN103939306B (zh) | 一种两回路式太阳能热发电系统 | |
CN108757353A (zh) | 一种地热能水能混合发电装置 | |
CN107939623A (zh) | 带熔融盐储热的太阳能水工质塔式热发电装置 | |
EP3002423B1 (en) | Combined cycle power plant with a thermal storage unit and method for generating electricity by using the combined cycle power plant | |
CN105518384B (zh) | 用于防止塔型聚焦太阳能电站的锅炉中蒸干的方法和装置 | |
CN102691626A (zh) | 一种利用工业废热及太阳能的热风塔发电装置与方法 | |
CN101303000A (zh) | 利用电厂余热和太阳热能相结合的发电装置 | |
JP2018521257A (ja) | 低温蒸気から電力を生成するシステム | |
CN202493303U (zh) | 节能环保发动机 | |
KR101189213B1 (ko) | 냉각수 낙차를 이용한 발전장치 | |
CN202510285U (zh) | 一种利用工业废热及太阳能的热风塔发电装置 | |
US20140216032A1 (en) | Solar direct steam generation power plant combined with heat storage unit | |
CN109869208A (zh) | 蒸汽发电系统及使用该蒸汽发电系统的海水淡化系统 | |
KR101275245B1 (ko) | 공동주택용으로 태양광과 태양열을 동시적용하는 태양에너지장치 | |
CN206221009U (zh) | 单列给水泵给水阀门系统及使用该系统的火电发电机组 | |
CN107388226A (zh) | 太阳能和风能联合供热给水加热器 | |
CN210568514U (zh) | 一种锅炉尾气能量回收装置 | |
KR20110112659A (ko) | 태양열 발전장치 | |
WO2015161753A1 (zh) | 用于循环液态的传热介质的方法和太阳能光热电站系统 | |
JPS6078250A (ja) | 太陽熱利用ボイラ | |
CN105952596B (zh) | 一种太阳能光热低温蒸汽动力发电装置 | |
CN108005737B (zh) | 带螺旋叶片装置的喷汽转轮导轴 | |
CN109281716A (zh) | 一种蒸汽循环蒸汽轮机及其使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170222 |
|
WD01 | Invention patent application deemed withdrawn after publication |