WO2015161753A1 - 用于循环液态的传热介质的方法和太阳能光热电站系统 - Google Patents

用于循环液态的传热介质的方法和太阳能光热电站系统 Download PDF

Info

Publication number
WO2015161753A1
WO2015161753A1 PCT/CN2015/076818 CN2015076818W WO2015161753A1 WO 2015161753 A1 WO2015161753 A1 WO 2015161753A1 CN 2015076818 W CN2015076818 W CN 2015076818W WO 2015161753 A1 WO2015161753 A1 WO 2015161753A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
transfer medium
heat transfer
liquid
power
Prior art date
Application number
PCT/CN2015/076818
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳光热技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳光热技术有限公司 filed Critical 北京兆阳光热技术有限公司
Publication of WO2015161753A1 publication Critical patent/WO2015161753A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to the field of solar thermal utilization technology, in particular to a method for circulating a liquid heat transfer medium and a solar thermal power station system using the same.
  • DSG direct steam generation
  • the mode is a DSG straight-through heat collecting circuit operation mode, and the supply water is driven by the electric circulation pump 103 from the inlet of the single-row heat collecting pipeline to the outlet, and needs to pass through the preheating section, the evaporation section 101 and the superheating section.
  • the conversion of 102 to superheated steam is simple in structure but difficult to control.
  • the mode is a DSG indirect collector circuit operation mode
  • the feed water is driven by the electric circulation pump 103 from the inlet of the heat collecting pipe to the evaporation section 101, and the superheating section 102 is converted into superheated steam.
  • the temperature of the evaporation section and the superheating section steam is adjusted to ensure that the temperature of the steam at the outlet of the superheating section 102 is within a normal range, but the system is complicated and costly. . As shown in FIG.
  • the mode is a DSG recirculation type, and the feed water is driven from the inlet of the heat collecting pipe to the evaporation section 101 under the driving of the electric circulation pump 103, and a circulating water tank 105 is disposed after the evaporation section 101, and is in the circulating water tank.
  • a steam-water separation device is disposed in the 105, and the heated water-steam in the evaporation section 101 enters the steam-water separation device and is separated.
  • the saturated steam enters the superheating section 102, is further heated to become superheated steam, and is outputted.
  • the separated excess water is circulated by the electric circulation pump 104 to the inlet of the heat collecting pipeline and mixed with the preheated water for the next cycle.
  • the DSG operation mode can ensure that the heat absorption pipeline of the evaporation section obtains a stable heat exchange state, the operation is safe and reliable, and the system has good controllability.
  • the excess water produced by the separation must be recycled.
  • the existing recirculation devices use the traditional electric circulation pump, which has high cost, power consumption and heat loss from the pump body cooling. Complex, greatly increasing the cost of the system and the consumption of electricity.
  • a solar thermal power station system or a conventional thermal power generation system in a heat storage device using water as a heat exchange medium or a conventional steam turbine power generation system, after the heat storage heat exchange, the temperature is lowered, or the steam turbine is cooled, the steam becomes condensed water. It needs to be recycled to the heated area to become steam.
  • the condensate needs to be pressurized, and the conventional condensate boost is generally completed by using an electric circulation pump, which virtually increases the power consumption of the power plant.
  • Chinese Patent Application No. 200910026621.6 discloses a pneumatic submersible pump.
  • the power part of the pneumatic submersible pump is based on the principle of the impeller of the steam turbine, and the compressed air is used as the medium to enter the turbine through the nozzle to perform work. Rotation drives the pump impeller to drain.
  • the pneumatic submersible pump still needs to be powered by compressed air, and the compressed air needs to be compressed by external force, which increases the complexity of the process.
  • the invention provides a method for circulating a liquid heat transfer medium, which comprises using a vapor state heat transfer medium generated by a solar thermal power station system as a driving power of a steam power circulation pump to make a solar thermal power station system
  • the liquid heat transfer medium circulates.
  • the vapor-state heat transfer medium is derived from a direct steam generating device, a heat storage device, and/or a steam turbine of a solar thermal power plant system.
  • the vapor-state heat transfer medium includes a vapor-liquid mixture, saturated steam, and/or superheated steam.
  • the liquid heat transfer medium is water and/or organic working medium
  • the organic working substance is one or more of a halogenated hydrocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon and an alkane.
  • the direct steam generating device includes an evaporation section, a superheating section, and a gas-liquid separation device disposed between the two sections.
  • all or part of the vapor-liquid mixture produced by the evaporation section provides a drive for the steam power circulation pump
  • the power is such that the liquid in the gas-liquid mixture circulates between the evaporation section and the gas-liquid separation device.
  • the vapor-liquid mixture generated by the evaporation section is subjected to gas-liquid separation by a gas-liquid separation device, and all or a part of the saturated steam is used to provide driving power to the steam power circulation pump, so that the liquid in the gas-liquid mixture is in the evaporation section. Circulation with the gas-liquid separation device.
  • all or part of the superheated steam generated by the superheating section provides driving power to the steam power circulation pump, so that the liquid in the vapor-liquid mixture generated by the evaporation section is circulated between the evaporation section and the gas-liquid separation device.
  • the steam power circulation pump and the gas-liquid separation device are integrated structures. This avoids excessive pipe connections, simplifies the structure, reduces heat loss, and increases efficiency.
  • all or a portion of the vaporous heat transfer medium generated by the direct steam generating device provides driving power to the steam power circulating pump so that the liquid heat transfer medium circulates between the direct steam generating device and the heat storage device.
  • vapor state heat transfer medium generated by the heat storage device provides driving power to the steam power circulation pump to cause the liquid heat transfer medium to circulate between the turbine generator and the heat storage device.
  • the steam turbine is a multi-stage steam turbine
  • the exhaust steam of the upper or middle cylinder of the multi-stage steam turbine provides driving power for the steam power circulation pump to promote the liquid heat transfer medium between the multi-stage steam turbine and the direct steam generating device. cycle.
  • a steam powered circulation pump causes the liquid heat transfer medium to occur between the direct steam generating device and the heat storage device and/or between the turbine generator and the heat storage device and/or in the multi-stage steam turbine and direct steam Loop between devices.
  • the vapor-state heat transfer medium discharged by the steam power circulation pump urges the steam turbine to operate and/or carry thermal energy and transfer the heat energy to the heat storage device.
  • the invention also provides a solar thermal power station system comprising a direct steam generating device, a heat storage device, a steam turbine and a steam power circulating pump, the steam power circulating pump being driven by a vapor state heat transfer medium and used to actuate the liquid state Heat transfer medium in direct steam generating equipment and / or between direct steam generating equipment and heat storage equipment and / or between turbine generators and heat storage equipment and / or in multi-stage steam turbines and direct steam generating equipment Circulating between the vapor-state heat transfer medium is derived from direct steam generating equipment, heat storage equipment and/or steam turbines of the solar thermal power plant system.
  • the method for circulating a liquid heat transfer medium utilizes a vapor state heat transfer medium of a solar thermal power station system as a driving power of a steam power circulation pump to implement heat of the solar thermal power station system
  • the force cycle without any external energy during operation, can provide sufficient driving power for the steam power circulation pump with a small amount of steam, and the whole process is almost no external energy loss, achieving energy saving.
  • the driving power of the steam power circulation pump has a certain correspondence with the heat obtained from the direct steam generating device, and the larger the heat generated, the larger the circulating flow rate. Therefore, the method makes the solar thermal power station system have a certain adaptive ability without external Control, the overall operation is simple, stable and reliable.
  • the method for circulating a liquid heat transfer medium according to the present invention overcomes the disadvantages of high cost, high power consumption, complicated control, serious heat loss caused by the use of the electric circulation pump in the prior art, and greatly reduces the solar thermal power station.
  • the use of electricity by the system reduces the circulation of liquid heat transfer medium within the direct steam generating equipment, between the direct steam generating equipment and the heat storage equipment, between the turbine generator and the heat storage equipment, and/or at most
  • the cost of circulating between a steam turbine and a direct steam generating device, and thus the method for circulating a liquid heat transfer medium of the present invention has high practical value and commercial value.
  • FIG. 1 is a schematic structural view of a straight-through DSG heat collecting circuit
  • FIG. 2 is a schematic structural view of an indirect injection type DSG heat collecting circuit
  • FIG. 3 is a schematic structural view of a recirculating DSG heat collecting circuit
  • Figure 4 is a schematic representation of a first embodiment of a solar thermal power plant system in accordance with the present invention.
  • Figure 5 shows schematically a second embodiment of a solar thermal power plant system according to the invention
  • Figure 6 shows schematically a third embodiment of a solar thermal power plant system according to the invention.
  • Figure 7 is a view schematically showing a fourth embodiment of a solar thermal power plant system according to the present invention.
  • Fig. 8 shows schematically a fifth embodiment of a solar thermal power plant system according to the invention.
  • the heat transfer medium used in direct steam generating equipment that implements direct steam generation technology is water and/or organic working fluid.
  • the organic working medium may be one or more of a halogenated hydrocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon and an alkane, and of course, the organic working medium may also be other.
  • the liquid heat transfer medium described below is emphasized as water, but it should also be understood that it may also be Machine fluid or a mixture of organic working fluid and water.
  • FIG 4 is a first embodiment of a solar thermal power plant system in accordance with the present invention.
  • the solar thermal power plant system includes a direct steam generating device and a steam power circulating pump capable of implementing DSG.
  • the direct steam generating device includes an evaporation section 201, a superheating section 202, and a gas-liquid separation device 203 disposed between the two sections.
  • the direct steam generating apparatus further includes an external injection mechanism mainly composed of a water tank 208, a water injection pump 209, and a regulating valve 210.
  • the external injection mechanism can replenish the evaporation section 201 with water.
  • the inlet 204 of the steam power circulation pump is connected to the steam outlet of the gas-liquid separation device 203
  • the gas outlet 205 is connected to the superheating section 202
  • the water inlet 206 is connected to the water outlet of the gas-liquid separation device 203
  • the water outlet 207 is The evaporation section 201 is connected.
  • the heat transfer medium of the water-steam (ie, vapor-liquid mixture) generated by the evaporation section 201 is subjected to gas-liquid separation by the gas-liquid separation device 203, and the separated water is stored in the gas-liquid separation device 203 by its own gravity.
  • the separated saturated steam is discharged from the gas outlet of the gas-liquid separation device 203, and some or all of the saturated steam is used to power the steam power circulation pump to replenish the evaporation section 201. If only partially saturated steam is used, the remaining steam can also be used to perform other functions.
  • the operation process after the water-steam operation at the outlet of the evaporation section 201 is performed to the gas-liquid separation device 203 for gas-liquid separation, the separated saturated steam will enter the intake port 204 of the steam power circulation pump, and the saturated steam is utilized.
  • the driving power is provided for the steam power circulation pump, the steam power circulation pump blade rotates and drives the rotor to rotate, the rotor drives the coaxially connected impeller, and the rotating impeller sucks the water in the gas-liquid separation device 203 from the water inlet 206, but from the water outlet
  • the 207 is discharged, and the discharged water enters the evaporation section 201 to receive heat again.
  • the steam after work can be discharged from the gas outlet 205 of the steam power circulation pump, and the discharged steam will enter the superheating section 202 for heat treatment.
  • water can be caused to circulate within the direct steam generating apparatus, specifically between the evaporation section 201 and the gas-liquid separation apparatus 203.
  • a liquid level detector (which is a conventional product in the art) may be disposed within the gas-liquid separation device 203.
  • the direct steam generating device can adjust the regulating valve 210 and/or the water injection pump 209 through the data of the liquid level detector to deliver the water in the water tank 208 to the evaporation section 201 to supplement the evaporation section 201 with the required amount of water.
  • FIG. 5 is a second embodiment of a solar thermal power plant system in accordance with the present invention.
  • the second embodiment is basically the same as the first embodiment, and the main difference is the position of the steam power circulation pump.
  • a steam power circulation pump is disposed inside the gas-liquid separation device 203.
  • the steam power circulation pump is disposed in the gas-liquid separation device 203, and the steam power circulation pump and the gas-liquid separation device 203 are one
  • the structure is structured, thereby reducing the number of pipe connections, simplifying the structure, and reducing heat loss, thereby improving efficiency.
  • the heat transfer medium of the water-steam (ie, vapor-liquid mixture) discharged from the evaporation section 201 directly enters the inlet 204 of the steam power circulation pump, and uses some or all of the heat transfer medium as a steam power circulation pump.
  • the rotation provides driving power, and the rotating steam power circulation pump directly draws water from the bottom of the gas-liquid separation device 203 through the water inlet 20, but discharges through the water outlet 206 to the evaporation section 201 to replenish the evaporation section 201.
  • the amount of water The steam after the work can be discharged from the gas outlet 205 of the steam power circulation pump, and the discharged steam will be mixed with the steam separated by the gas-liquid separation device 203 and enter the superheat section 202 for heat treatment. In this way, it is also possible to circulate water in the direct steam generating device, in particular between the evaporation section 201 and the gas-liquid separation device 203.
  • a liquid level detector may be disposed in the gas-liquid separation device 203.
  • the direct steam generating device can adjust the regulating valve 210 and/or the water injection pump 209 through the data of the liquid level detector to deliver the water in the water tank 208 to the evaporation section 201, thereby supplementing the evaporation section 201 with the required amount of water.
  • FIG. 6 is a third embodiment of a solar thermal power plant system in accordance with the present invention.
  • the solar thermal power plant system includes a direct steam generating device 306 capable of implementing a DSG, a heat storage device 301 (eg, a heat storage tank), and a steam power circulation pump.
  • the air inlet 302 of the steam power circulation pump is connected to the air outlet of the direct steam generating device 306,
  • the air outlet 303 is connected to the air inlet of the heat storage device 301, and the water inlet 304 is connected to the water outlet of the heat storage device 301, and
  • the water outlet 305 is connected to the direct steam generating device 306.
  • the intake port of the heat storage device 301 is also connected to the air outlet of the direct steam generating device 306 so that the heat storage device 301 stores the heat generated by the direct steam generating device 306.
  • the steam generated by the direct steam generating device 306 can directly enter the heat storage device 301 for phase change heat storage, and the heat is stored in the heat storage device 301.
  • all or part of the steam generated by the direct steam generating device 306 directly enters the steam power circulating pump through the intake port 302 of the steam power circulating pump, and the steam is used to provide driving power for the steam power circulating pump, and the steam is a steam power cycle.
  • the pump sucks water from the heat storage device 301 through the water inlet 304, and then discharges it into the condenser through the water outlet 305, and then returns to the direct steam generating device 306 after cooling, thereby promoting the water in the heat storage device 301 and Circulation between direct steam generating equipment.
  • the steam after the work will be run into the heat storage tank 301 through the air outlet 303 of the steam power circulation pump, and the phase change heat storage is performed in the heat storage device 301, and the heat is stored in the heat storage device 301 to reduce the heat loss. To increase the use of thermal energy.
  • FIG. 7 is a fourth embodiment of a solar thermal power plant system in accordance with the present invention.
  • the solar thermal power station system includes a turbine generator composed of a steam turbine 603 and a generator 307, a condenser 308, a heat storage device 301, and a steam power circulation pump.
  • the air inlet 302 of the steam power circulation pump is connected to the air outlet of the heat storage device 301
  • the air outlet 303 is connected to the steam turbine generator
  • the water inlet 304 is connected to the condenser 308, and the water outlet 305 and the heat storage device 301 are connected.
  • the water inlet is connected.
  • the heat storage device 301 can also be connected to the steam turbine generator at the same time to prompt the steam turbine generator to perform rapid power generation.
  • all or part of the steam generated by the heat storage device 301 can be used as the power required for the operation of the turbo generator.
  • all or part of the steam generated by the heat storage device 301 can also provide driving power to the steam power circulation pump.
  • all or part of the steam generated by the heat storage device 301 directly enters the steam power circulation pump through the air inlet 302, and the steam is used to provide driving power to the steam power circulation pump, and the running steam power circulation pump will pass through.
  • the nozzle 304 draws water from the condenser 308 and then discharges it back into the heat storage device 301 through the water outlet 305, so that the water re-generates steam after the heat storage device 301 absorbs heat, thereby promoting the water in the turbine generator and storage.
  • the thermal devices 301 cycle between them.
  • the steam after the work will enter the steam turbine generator through the air outlet 303 of the steam power circulation pump, for example, the steam generator is driven by the steam from other sources to generate electricity, thereby improving the heat energy utilization rate.
  • FIG 8 is a fifth embodiment of a solar thermal power plant system in accordance with the present invention.
  • the solar thermal power plant system includes a direct steam generating device 408, a turbo generator composed of a steam turbine 401 and a generator 402, a condenser 403, and a steam power circulating pump.
  • the steam turbine 401 can be selected as a multi-stage steam turbine.
  • the inlet 404 of the steam power circulation pump is connected to the uppermost or intermediate cylinder of the multi-stage steam turbine, and the outlet port 404 is connected to the lower cylinder of the cylinder connected to the inlet 404 of the multi-stage steam turbine.
  • the water inlet 406 is connected to the condenser 403, and the water outlet 407 is connected to the water inlet of the direct steam generating device 408.
  • part or all of the steam generated by the direct steam generating device 408 directly drives the multi-stage steam turbine 401 to perform work, and a part of the steam is directly passed through the outlet of the multi-stage steam turbine 401 into the condenser 403 for condensation after work.
  • One part is discharged from the upper or intermediate cylinder and enters the steam power circulation pump to provide driving power for the steam power circulation pump.
  • the operating steam power circulation pump will draw water from the condenser 403 through the water inlet 406, and then discharge the water directly into the steam generating device 408 through the water outlet 407, realizing the water in the direct steam generating device 408 and the multi-stage steam turbine 401.
  • the cycle between. Wherein, the steam discharged from the steam power circulation pump through the air outlet 405 can supply steam to the lower cylinder of the steam turbine 401, and the steam can be recycled to improve steam utilization and reduce heat loss.
  • a system of a sixth embodiment of a solar thermal power plant system includes a direct steam generating device, a heat storage device, a steam turbine, and a steam power circulating pump.
  • Steam power circulation pump passes steam state Heat medium driven, and the heat transfer medium for actuating the liquid is in the direct steam generating device, between the direct steam generating device and the heat storage device, between the turbine generator and the heat storage device, and/or at multiple stages Circulation between the turbine and the direct steam generating equipment.
  • the vapor state heat transfer medium is derived from a direct steam generating device, a heat storage device and/or a steam turbine of a solar thermal power station system.
  • the vapor-state heat transfer medium discharged from the air outlet of the steam power circulation pump can be used to actuate the steam turbine operation, and of course, the steam heat transfer medium can carry the heat energy and transfer the heat energy to the heat storage device. In order to reduce heat loss and increase heat energy usage.
  • the method for circulating a liquid heat transfer medium used in the solar thermal power station system overcomes the high cost, high power consumption, complicated control, severe heat loss, etc. caused by the use of the electric circulation pump in the prior art.
  • Disadvantages greatly reduce the power consumption of the solar thermal power station system, reduce the circulation of the liquid heat transfer medium in the direct steam generating equipment, circulate between the direct steam generating equipment and the heat storage equipment, and the steam turbine generator and storage
  • the cost of recycling between thermal equipment and/or between a multi-stage steam turbine and a direct steam generating device (mainly due to power saving), therefore the solar thermal power plant system according to the invention and the The method of circulating liquid heat transfer medium has high practical value and commercial value.
  • the embodiment of the present invention describes a steam power cycle mode of a solar thermal power plant system using water as a heat transfer medium, and a solar power thermal power plant system using an organic working fluid as a heat transfer medium, and the above embodiment.
  • the processes described are the same and the invention will not be redundant.
  • only one gas-liquid separation device is shown in the drawings of the present invention, but the present invention is not limited to the gas-liquid separation device shown in the drawings, and the gas-liquid separation device of different configurations can be changed according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种用于循环液态的传热介质的方法和太阳能光热电站系统,其中所述方法包括利用太阳能光热电站系统产生的蒸汽态的传热介质作为蒸汽动力循环泵的驱动动力,以使所述太阳能光热电站系统中的液态的所述传热介质进行循环运动。该用于循环液态传热介质的方法和使用了该方法的太阳能光热电站系统克服了现有技术中采用电动循环泵所造成的造价高、耗电多、控制复杂、热损失严重等缺点。

Description

用于循环液态的传热介质的方法和太阳能光热电站系统
相关申请的交叉引用
本申请要求享有于2014年4月21日提交的名称为“一种太阳能光热电站蒸汽动力循环运行方式”的中国专利申请CN201410160604.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及太阳能光热利用技术领域,尤其涉及一种用于循环液态的传热介质的方法和使用了该方法的太阳能光热电站系统。
背景技术
在太阳能光热电站系统中,通常以水直接作为换热介质的直接蒸汽发生技术(Direct Steam Generation,简称DSG)基本原理为换热介质流经集热器的过程中吸收太阳辐射转化而来的热量,升温形成水蒸气,进而驱动常规蒸汽轮机带动发电机组发电。
目前,国内外采取的DSG集热回路运行模式主要有三种:直通式、间接注入式以及再循环式,分别如图1、图2和图3所示。如图1所示,该模式为DSG直通式集热回路运行模式,供给水在电动循环泵103的驱动下从单列集热管路入口到出口,期间需要经过预热段,蒸发段101和过热段102转化为过热蒸汽,该种模式结构较为简单、但过程难以控制。如图2所示,该模式为DSG间接式集热回路运行模式,供给水在电动循环泵103的驱动下从集热管路入口进入到蒸发段101、过热段102转化为过热蒸汽,此过程可通过在蒸发段101或过热段102多个不同的点注入水,调节蒸发段、过热段蒸汽的温度,保证过热段102出口的蒸汽的温度在正常范围内,但是该系统较为复杂,成本较高。如图3所示,该模式为DSG再循环式,供给水在电动循环泵103的驱动下从集热管路入口进入到蒸发段101,在蒸发段101后布置有循环水箱105,且在循环水箱105内布置有汽水分离装置,蒸发段101内受热后的水-蒸汽进入汽水分离装置内,被分离出的 饱和蒸汽进入过热段102,被进一步加热成为过热蒸汽后输出,被分离出来的多余的水在电动循环泵104的驱动下循环至集热管路的入口与预热水混合进行下一次循环,此种DSG运行模式能够保证蒸发段的吸热管路获得稳定的换热状态,运行安全可靠,系统可控性良好。但是,分离产生的过量水必须进行再循环,然而现有的再循环装置都是采用传统的电动循环泵,造价较高、耗电量及泵体冷却待来的热损失都很大,控制较复杂,大大增加了系统的成本及自用电消耗。
在太阳能光热电站系统或常规的火力发电系统中,以水作为换热介质的储热设备或者常规汽轮机发电系统中,经过储热换热、降温或汽轮机做功降温后,蒸气变为冷凝水,需要重新循环到受热区域变为蒸汽。为了能形成此闭式循环,冷凝水需要得到增压,而常规的冷凝水增压一般使用电动循环泵完成,无形中增加了发电厂的厂用电功耗。
申请号为200910026621.6的中国专利申请公开了一种风动潜水泵,风动潜水泵动力部分是根据汽轮机冲击叶轮原理,以压缩空气为介质,通过喷管进入涡轮旋转作功,泵轴随之高速转动带动泵叶轮排水。但该风动潜水泵仍需要以压缩空气为其提供动力,而压缩空气又需借助外力压缩,增加了工序的复杂性。
发明内容
为了克服上述描述的问题,本发明的目的是提供一种用于循环液态的传热介质的方法和太阳能光热电站系统。
本发明提供了一种用于循环液态传热介质的方法,其包括利用太阳能光热电站系统产生的蒸汽态的传热介质作为蒸汽动力循环泵的驱动动力,以使太阳能光热电站系统中的液态的传热介质进行循环运动。
进一步地,蒸汽态的传热介质来源于太阳能光热电站系统的直接蒸汽发生设备、储热设备和/或汽轮机。
进一步地,蒸汽态的传热介质包括汽液混合体、饱和蒸汽和/或过热蒸汽。
进一步地,液态的传热介质为水和/或有机工质,有机工质为卤代烃、氢氯氟烃、氢氟烃和烷烃其中一种或几种。
进一步地,直接蒸汽发生设备包括蒸发段、过热段以及设在两段之间的气液分离装置。
进一步地,蒸发段产生的全部或部分汽液混合体为蒸汽动力循环泵提供驱动 动力,以便气液混合体中的液体在蒸发段与气液分离装置之间进行循环。
进一步地,蒸发段产生的汽液混合体经气液分离装置进行气液分离,利用分离出的全部或部分饱和蒸汽为蒸汽动力循环泵提供驱动动力,以便气液混合体中的液体在蒸发段与气液分离装置之间进行循环。
进一步地,过热段产生的全部或部分过热蒸汽为蒸汽动力循环泵提供驱动动力,以便蒸发段产生的汽液混合体的中液体在蒸发段与气液分离装置之间进行循环。
进一步地,蒸汽动力循环泵与气液分离装置为一体化的结构。由此可以避免过多的管路连接、简化结构,减少热损失,提高效率。
进一步地,直接蒸汽发生设备产生的全部或部分蒸汽态的传热介质为蒸汽动力循环泵提供驱动动力,以便液态的传热介质在直接蒸汽发生设备与储热设备之间进行循环。
进一步地,储热设备产生的全部或部分蒸汽态的传热介质为蒸汽动力循环泵提供驱动动力,以促使液态的传热介质在汽轮发电机与储热设备之间进行循环。
进一步地,汽轮机为多级汽轮机,多级汽轮机的最上级或中级气缸的排出的蒸汽为蒸汽动力循环泵提供驱动动力,以促使液态的传热介质在多级汽轮机与直接蒸汽发生设备之间进行循环。
进一步地,利用蒸汽动力循环泵促使液态的传热介质在直接蒸汽发生设备与储热设备之间和/或在汽轮发电机与储热设备之间和/或在多级汽轮机与直接蒸汽发生设备之间进行循环。
进一步地,利用蒸汽动力循环泵排出的蒸汽态的传热介质促动汽轮机运行和/或携带热能并把热能传递给储热设备。
本发明还提供了一种太阳能光热电站系统,其包括直接蒸汽发生设备、储热设备、汽轮机和蒸汽动力循环泵,蒸汽动力循环泵由蒸汽态的传热介质驱动,并且用于促动液态的传热介质在直接蒸汽发生设备内和/或在直接蒸汽发生设备与储热设备之间和/或在汽轮发电机与储热设备之间和/或在多级汽轮机与直接蒸汽发生设备之间进行循环,蒸汽态的传热介质来源于太阳能光热电站系统的直接蒸汽发生设备、储热设备和/或汽轮机。
根据本发明的用于循环液态传热介质的方法利用太阳能光热电站系统的蒸汽态传热介质作为蒸汽动力循环泵的驱动动力,实施该太阳能光热电站系统的热 力循环,运行期间无需任何外部能量,利用少量的蒸汽便可为蒸汽动力循环泵提供充足的驱动动力,整个过程几乎不对外部散失能量,达到高效节能的目的。
同时,蒸汽动力循环泵的驱动动力与从直接蒸汽发生装置所得的热量有一定对应关系,所得热量越大循环流量也越大,因此本方法使得太阳能光热电站系统具备一定自适应能力,无需外部控制,整体运行简单稳定可靠。
根据本发明的用于循环液态传热介质的方法克服了现有技术中采用电动循环泵所造成的造价高、耗电多、控制复杂、热损失严重等缺点,大幅度地减少太阳能光热电站系统的用电,降低了液态的传热介质在直接蒸汽发生设备内循环、在直接蒸汽发生设备与储热设备之间循环、在汽轮发电机与储热设备之间循环和/或在多级汽轮机与直接蒸汽发生设备之间循环所需花费的成本,因此本发明的用于循环液态传热介质的方法具有很高的实用价值和商业价值。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1为直通式的DSG集热回路的结构示意图;
图2为间接注入式的DSG集热回路的结构示意图;
图3为再循环式的DSG集热回路的结构示意图;
图4示意性地显示了根据本发明的太阳能光热电站系统的第一个实施例;
图5示意性地显示了根据本发明的太阳能光热电站系统的第二个实施例;
图6示意性地显示了根据本发明的太阳能光热电站系统的第三个实施例;
图7示意性地显示了根据本发明的太阳能光热电站系统的第四个实施例;
图8示意性地显示了根据本发明的太阳能光热电站系统的第五个实施例。
在附图中相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明作进一步说明。
在太阳能光热电站系统中,实施直接蒸汽发生技术(DSG)的直接蒸汽发生设备所使用的传热介质为水和/或有机工质。其中,所述有机工质可为卤代烃、氢氯氟烃、氢氟烃和烷烃其中一种或几种,当然有机工质也可选为其他。需要说明的是,下面描述的液态的传热介质虽然强调是水,但也应当理解为其也可以是有 机工质或有机工质与水的混合物。
图4为根据本发明的太阳能光热电站系统的第一个实施例。太阳能光热电站系统包括能够实施DSG的直接蒸汽发生设备和蒸汽动力循环泵。该直接蒸汽发生设备包括蒸发段201、过热段202以及设于两段之间的气液分离装置203。同时,该直接蒸汽发生设备还包括主要由水箱208、注水泵209和调节阀210构成的外部注入机构。该外部注入机构可为蒸发段201补充水量。其中,蒸汽动力循环泵的进气口204与气液分离装置203的蒸汽出口相连,出气口205与过热段202相连,进水口206与气液分离装置203的出水口相连,而出水口207与蒸发段201相连。
在运行过程中,蒸发段201所产生的水-蒸汽(即汽液混合体)的传热介质经气液分离装置203进行气液分离,所分离的水依靠自身重力保存在气液分离装置203内,而所分离的饱和蒸汽由气液分离装置203的出气口排出,并利用部分或全部的饱和蒸汽为蒸汽动力循环泵提供动力,以便给蒸发段201进行补水。若只是利用部分饱和蒸汽,那么剩余蒸汽还可以用于完成其他功能。具体讲述运行过程,在蒸发段201出口的水-蒸汽运行至气液分离装置203进行气液分离后,所分离的饱和蒸汽将进入到蒸汽动力循环泵的进气口204,利用这部分饱和蒸汽为蒸汽动力循环泵提供驱动动力,蒸汽动力循环泵叶片转动并带动转子转动,转子驱动同轴连接的叶轮,转动的叶轮将气液分离装置203内的水从进水口206吸入,然而从出水口207排出,排出的水进入到蒸发段201内再次接收热量。其中,做功后的蒸汽可从蒸汽动力循环泵的出气口205排出,排出的蒸汽将进入到过热段202内实施过热处理。通过这种方式,可促使水在直接蒸汽发生设备内进行循环,具体是在蒸发段201与气液分离装置203之间进行循环。
在一个优选的实施例中,在气液分离装置203内可布置有液位检测器(属于本领域的常规产品)。直接蒸汽发生设备可通过液位检测器的数据调节调节阀210和/或注水泵209,以将水箱208内的水输送至蒸发段201,向蒸发段201补充所需的水量。
图5为根据本发明的太阳能光热电站系统的第二个实施例。第二实施例与第一实施例的结构基本相同,主要区别就是蒸汽动力循环泵的位置。在第二个实施例中把蒸汽动力循环泵设置在气液分离装置203的内部。具体地说,蒸汽动力循环泵布置在气液分离装置203内,并且蒸汽动力循环泵与气液分离装置203为一 体化结构,由此降低管路连接的数量,简化结构,降低热损失,从而可以提高效率。
在运行过程中,蒸发段201排出的水-蒸汽(即汽液混合体)的传热介质直接进入到蒸汽动力循环泵的进气口204,利用部分或全部的传热介质为蒸汽动力循环泵的转动提供驱动动力,转动的蒸汽动力循环泵通过进水口20直接从气液分离装置203内的底部吸入水,然而通过出水口206排入到蒸发段201,以便向蒸发段201内补充所需的水量。其中,做功后的蒸汽可从蒸汽动力循环泵的出气口205排出,排出的蒸汽将与气液分离装置203所分离的蒸汽混合并一同进入到过热段202内实施过热处理。通过这种方式,也可促使水在直接蒸汽发生设备内进行循环,具体是在蒸发段201与气液分离装置203之间进行循环。
同样地,气液分离装置203内也可布置有液位检测器。直接蒸汽发生设备可通过液位检测器的数据调整调节阀210和/或注水泵209,以将水箱208内的水输送至蒸发段201,从而向蒸发段201补充所需的水量。
图6为根据本发明的太阳能光热电站系统的第三个实施例。太阳能光热电站系统包括能够实施DSG的直接蒸汽发生设备306、储热设备301(例如储热罐)和蒸汽动力循环泵。其中,蒸汽动力循环泵的进气口302与直接蒸汽发生设备306的出气口相连,出气口303与储热设备301的进气口相连,进水口304与储热设备301的出水口相连,而出水口305与直接蒸汽发生设备306相连。优选地,储热设备301的进气口也与直接蒸汽发生设备306的出气口相连,以便储热设备301存储直接蒸汽发生设备306所产生的热量。
在运行过程中,直接蒸汽发生设备306产生的蒸汽可直接进入到储热设备301内进行相变存热,把热量存储在储热设备301内。然而,直接蒸汽发生设备306产生的全部或部分蒸汽直接通过蒸汽动力循环泵的进气口302进入到蒸汽动力循环泵内,利用这部分蒸汽为蒸汽动力循环泵提供驱动动力,蒸汽为蒸汽动力循环泵通过进水口304从储热设备301内吸出水,然后通过出水口305排出到冷凝器内,将冷却后重新回到直接蒸汽发生设备306中,通过这种方式促使水在储热设备301与直接蒸汽发生设备之间进行循环。其中,做功后的蒸汽将通过蒸汽动力循环泵的出气口303运行至储热罐301内,在储热设备301内进行相变存热,把热量存储在储热设备301内,以便降低热损失,提高热能的使用率。
图7为根据本发明的太阳能光热电站系统的第四个实施例。如图7所示,太 阳能光热电站系统包括由汽轮机603和发电机307组成的汽轮发电机、冷凝器308、储热设备301和蒸汽动力循环泵。其中,蒸汽动力循环泵的进气口302与储热设备301的出气口相连,出气口303与汽轮发电机相连,进水口304与冷凝器308相连,而出水口305与储热设备301的进水口相连。当然,储热设备301还可同时连接汽轮发电机,以促使汽轮发电机进行快速发电。
在实际运行过程中,储热设备301产生的全部或部分蒸汽可作为汽轮发电机运行所需的动力。另外,储热设备301产生的全部或部分蒸汽也可为蒸汽动力循环泵提供驱动动力。具体地讲,储热设备301产生的全部或部分蒸汽通过进气口302直接进入到蒸汽动力循环泵内,利用这部分蒸汽为蒸汽动力循环泵提供驱动动力,运行的蒸汽动力循环泵将通过进水口304从冷凝器308内吸出水,然后通过出水口305排回到储热设备301内,以便水在储热设备301吸热后再次生成蒸汽,由此可促使水在汽轮发电机与储热设备301之间进行循环。其中,做功后的蒸汽将通过蒸汽动力循环泵的出气口303进入到汽轮发电机内,例如协同其他来源的蒸汽推动汽轮发电机进行发电,提高热能利用率。
图8为根据本发明的太阳能光热电站系统的第五个实施例。太阳能光热电站系统包括直接蒸汽发生设备408、由汽轮机401和发电机402组成的汽轮发电机、冷凝器403和蒸汽动力循环泵。汽轮机401可选为多级汽轮机,蒸汽动力循环泵的进气口404与多级汽轮机的最上级或中级气缸相连,出气口404与多级汽轮机上进气口404所连的气缸的下级气缸的相连,进水口406与冷凝器403相连,出水口407与直接蒸汽发生设备408的进水口相连。
在实际运行过程中,直接蒸汽发生设备408产生的部分或全部蒸汽直接驱动多级汽轮机401做功,其中一部分部分蒸汽在做功后直接通过多级汽轮机401的出口进入到冷凝器403内进行冷凝,另一个部分从最上级或中级气缸排出并进入到蒸汽动力循环泵内,为蒸汽动力循环泵提供驱动动力。运行的蒸汽动力循环泵将通过进水口406从冷凝器403内吸出水,然后通过出水口407把水直接排入到蒸汽发生设备408内,实现水在直接蒸汽发生设备408与多级汽轮机401之间的循环。其中,蒸汽动力循环泵通过出气口405排出的蒸汽可为汽轮机401的所述下级气缸提供蒸汽,实施蒸气的循环利用,提高蒸汽的利用率,降低热损失。
根据本发明的太阳能光热电站系统的第六个实施例的系统包括直接蒸汽发生设备、储热设备、汽轮机和蒸汽动力循环泵。蒸汽动力循环泵通过蒸汽态的传 热介质驱动,并且用于促动液态的传热介质在直接蒸汽发生设备内、在直接蒸汽发生设备与储热设备之间、在汽轮发电机与储热设备之间和/或在多级汽轮机与直接蒸汽发生设备之间进行循环。其中,蒸汽态的传热介质来源于太阳能光热电站系统的直接蒸汽发生设备、储热设备和/或汽轮机。另外,所述蒸汽动力循环泵的出气口排出的蒸汽态的传热介质可用于促动所述汽轮机运行,当然也可通过蒸汽态的传热介质来携带热能并把热能传递给储热设备,以便降低热损失,提高热能使用率。
总之,根据本发明的太阳能光热电站系统所使用的用于循环液态传热介质的方法克服了现有技术中采用电动循环泵所造成的造价高、耗电多、控制复杂、热损失严重等缺点,大幅度地减少太阳能光热电站系统的用电,降低了液态的传热介质在直接蒸汽发生设备内循环、在直接蒸汽发生设备与储热设备之间循环、在汽轮发电机与储热设备之间循环和/或在多级汽轮机与直接蒸汽发生设备之间循环所需花费的成本(主要原因是省电),因此根据本发明的太阳能光热电站系统以及其所使用的用于循环液态传热介质的方法具有很高的实用价值和商业价值。
需要说明的是,本发明实施例是以水作为传热工质描述太阳能光热电站系统蒸汽动力循环方式,以有机工质作为传热介质的太阳能光热电站系统蒸汽动力循环方式与上述实施例描述的过程相同,本发明不再做多余阐述。另外,本发明附图中只显示了一种气液分离装置,但本发明并不局限于附图中所示的气液分离装置,根据实际需要还可变换不同结构的气液分离装置。
显而易见,在不偏离本发明的真实精神和范围的前提下,在此描述的本发明可以有许多变化。因此,所有对于本领域技术人员来说显而易见的改变,都应包括在本权利要求书所涵盖的范围之内。本发明所要求保护的范围仅由所述的权利要求书进行限定。

Claims (15)

  1. 一种用于循环液态传热介质的方法,其中,包括利用太阳能光热电站系统产生的蒸汽态的传热介质作为蒸汽动力循环泵的驱动动力,以使所述太阳能光热电站系统中的液态的传热介质进行循环运动。
  2. 根据权利要求1所述的方法,其中,所述蒸汽态的传热介质来源于太阳能光热电站系统的直接蒸汽发生设备、储热设备和/或汽轮机。
  3. 根据权利要求1所述的方法,其中,所述蒸汽态的传热介质包括汽液混合体、饱和蒸汽和/或过热蒸汽。
  4. 根据权利要求1所述的方法,其中,所述液态的传热介质为水和/或有机工质,所述有机工质为卤代烃、氢氯氟烃、氢氟烃和烷烃其中任一种或几种组合。
  5. 根据权利要求2所述的方法,其中,所述直接蒸汽发生设备包括蒸发段、过热段以及设在两段之间的气液分离装置。
  6. 根据权利要求5所述的方法,其中,所述蒸发段产生的所述蒸汽态的传热介质和所述液态的传热介质的混合体为所述蒸汽动力循环泵提供驱动动力,以便所述气液分离装置内的所述液态的传热介质在所述蒸发段与所述气液分离装置之间进行循环。
  7. 根据权利要求5所述的方法,其中,所述蒸发段产生的所述蒸汽态的传热介质和所述液态的传热介质的混合体经所述气液分离装置进行气液分离,利用分离出的全部或部分所述蒸汽态的传热介质为所述蒸汽动力循环泵提供驱动动力,以便所述气液分离装置内的分离出的所述液态的传热介质在所述蒸发段与所述气液分离装置之间进行循环。
  8. 根据权利要求5所述的方法,其中,所述过热段产生的全部或部分所述蒸汽态的传热介质为所述蒸汽动力循环泵提供驱动动力,以便所述气液分离装置内的所述液态的传热介质在所述蒸发段与所述气液分离装置之间进行循环。
  9. 根据权利要求6所述的方法,其中,所述蒸汽动力循环泵与所述气液分离装置为一体化的结构。
  10. 根据权利要求2所述的方法,其中,所述直接蒸汽发生设备产生的全部或部分所述蒸汽态的传热介质为所述蒸汽动力循环泵提供驱动动力,以便所述液态的传热介质在所述直接蒸汽发生设备与储热设备之间进行循环。
  11. 根据权利要求2所述的方法,其中,所述储热设备产生的全部或部分所述蒸汽态的传热介质为所述蒸汽动力循环泵提供驱动动力,以促使所述液态的传热介质在所述汽轮发电机与所述储热设备之间进行循环。
  12. 根据权利要求2所述的方法,其中,所述汽轮机为多级汽轮机,所述多级汽轮机的最上级或中级气缸的排出的蒸汽为所述蒸汽动力循环泵提供驱动动力,以促使所述液态的所述传热介质在所述多级汽轮机与所述直接蒸汽发生设备之间进行循环。
  13. 根据权利要求2所述的方法,其中,利用所述蒸汽动力循环泵促使液态的所述传热介质在所述直接蒸汽发生设备与储热设备之间、在所述汽轮发电机与储热设备之间和/或在所述多级汽轮机与直接蒸汽发生设备之间进行循环。
  14. 根据权利要求2所述的方法,其中,利用经过所述蒸汽动力循环泵后的所述蒸汽态的传热介质促动所述汽轮机运行和/或将其携带的热能传递给所述储热设备。
  15. 一种太阳能光热电站系统,其中,包括直接蒸汽发生设备、储热设备、汽轮机和蒸汽动力循环泵,所述蒸汽动力循环泵由蒸汽态的传热介质驱动,并且用于促动液态的所述传热介质在所述直接蒸汽发生设备内、在所述直接蒸汽发生设备与储热设备之间、在所述汽轮发电机与储热设备之间和/或在所述多级汽轮机与直接蒸汽发生设备之间进行循环,蒸汽态的所述传热介质来源于所述直接蒸汽发生设备、储热设备和/或汽轮机。
PCT/CN2015/076818 2014-04-21 2015-04-16 用于循环液态的传热介质的方法和太阳能光热电站系统 WO2015161753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410160604.2A CN105020109A (zh) 2014-04-21 2014-04-21 一种太阳能光热电站蒸汽动力循环运行方式
CN201410160604.2 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015161753A1 true WO2015161753A1 (zh) 2015-10-29

Family

ID=54331737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076818 WO2015161753A1 (zh) 2014-04-21 2015-04-16 用于循环液态的传热介质的方法和太阳能光热电站系统

Country Status (2)

Country Link
CN (1) CN105020109A (zh)
WO (1) WO2015161753A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940424A (zh) * 2017-10-16 2018-04-20 上海交通大学 一种基于光热效应的蒸汽驱动装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181899A1 (zh) * 2019-03-11 2020-09-17 深圳市爱能森科技有限公司 相变储能换热系统及加热水的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118671A1 (en) * 2001-08-06 2004-06-24 Burgos Victor Miguel Hernandez Method and apparatus for the thermo-solar distillation and transportation of water from a water table
CN101029631A (zh) * 2007-04-09 2007-09-05 施文峰 太阳能发电装置
CN103649648A (zh) * 2011-06-30 2014-03-19 巴布考克日立株式会社 太阳能锅炉以及使用了该太阳能锅炉的太阳能发电设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064945A (ja) * 1998-08-24 2000-03-03 Fuji Electric Co Ltd 地熱発電システム
CZ2003908A3 (cs) * 2003-03-31 2004-11-10 Milan Bridzík Zařízení na přeměnu tepelné energie na energii mechanickou vytvořené kombinací tepelného čerpadla a stroje na páru nebo plyn
JP2005087821A (ja) * 2003-09-16 2005-04-07 Mitsubishi Heavy Ind Ltd 淡水化装置
CN2849588Y (zh) * 2005-05-19 2006-12-20 张�诚 太阳能发电装置
DE102006022792B3 (de) * 2006-05-16 2007-10-11 Erwin Dr. Oser Umwandlung solarer Wärme in mechanische Energie mit einem Strahlverdichter
CN101344075B (zh) * 2008-08-15 2011-07-27 天津大学 自复叠式太阳能低温朗肯循环系统
JP5885614B2 (ja) * 2012-07-31 2016-03-15 株式会社東芝 蒸気タービンプラント、その制御方法、およびその制御システム
CN103147944B (zh) * 2013-01-29 2015-01-07 华北电力大学 一种两段式塔式太阳能热发电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118671A1 (en) * 2001-08-06 2004-06-24 Burgos Victor Miguel Hernandez Method and apparatus for the thermo-solar distillation and transportation of water from a water table
CN101029631A (zh) * 2007-04-09 2007-09-05 施文峰 太阳能发电装置
CN103649648A (zh) * 2011-06-30 2014-03-19 巴布考克日立株式会社 太阳能锅炉以及使用了该太阳能锅炉的太阳能发电设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940424A (zh) * 2017-10-16 2018-04-20 上海交通大学 一种基于光热效应的蒸汽驱动装置

Also Published As

Publication number Publication date
CN105020109A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN202381129U (zh) 动力供给系统
KR101280520B1 (ko) 폐열원 전력생산 시스템
CN101696643B (zh) 热电联产低温热能回收装置及其回收方法
CN104445481B (zh) 一种余热电水联产系统
CN201560812U (zh) 热电联产低温热能回收装置
CN104727871B (zh) 一种有机朗肯‑斯特林机联合循环发电系统及其使用方法
CN103670556B (zh) 一种双工质循环余热发电系统
CN104929709B (zh) 太阳能湿空气循环电水联产系统
CN103670888B (zh) 一种热水余压余热回收系统
CN101705849B (zh) 低温余热发电系统乏汽冷凝过程自藕冷源热泵循环装置
CN109595045B (zh) 用于超超临界二次再热机组高效及灵活供热的储能系统
CN110078904B (zh) 一种聚酯酯化蒸汽余热利用方法及装置
JP6837993B2 (ja) 低温蒸気から電力を生成するシステム
WO2015161753A1 (zh) 用于循环液态的传热介质的方法和太阳能光热电站系统
CN104727867A (zh) 中低温余热的利用方法及其降压吸热式蒸汽动力循环系统
CN105626170B (zh) 一种采用多级热泵的大热电比热电联产系统及其工作方法
CN103953404A (zh) 利用燃气轮机排气余热的有机朗肯循环发电装置
CN204552849U (zh) 带有抽气回热的卡琳娜和有机郎肯热电联合循环系统
CN206469540U (zh) 焦化系统及其余热回收系统
CN205858429U (zh) 汽轮机蒸汽余热回收系统
CN103726999B (zh) 太阳能地热能联合循环发电系统及其使用方法
CN207212423U (zh) 一种有机朗肯循环发电装置
CN106766362A (zh) 焦化系统及其余热回收系统
CN101788141A (zh) 一种吸收式回热器及其在电厂回热循环系统中的应用
CN203796340U (zh) 利用燃气轮机排气余热的有机朗肯循环发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783711

Country of ref document: EP

Kind code of ref document: A1