CN106436419B - 一种二级高压均质制备微纳米纤维素的方法 - Google Patents

一种二级高压均质制备微纳米纤维素的方法 Download PDF

Info

Publication number
CN106436419B
CN106436419B CN201610750056.8A CN201610750056A CN106436419B CN 106436419 B CN106436419 B CN 106436419B CN 201610750056 A CN201610750056 A CN 201610750056A CN 106436419 B CN106436419 B CN 106436419B
Authority
CN
China
Prior art keywords
pressure
cellulose
micro
pressure homogeneous
nano cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610750056.8A
Other languages
English (en)
Other versions
CN106436419A (zh
Inventor
陈克复
曾劲松
王斌
李金鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610750056.8A priority Critical patent/CN106436419B/zh
Publication of CN106436419A publication Critical patent/CN106436419A/zh
Application granted granted Critical
Publication of CN106436419B publication Critical patent/CN106436419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开一种二级高压均质制备微纳米纤维素的方法,包括如下步骤:(1)将纤维素原料与稀酸溶液混合,得到纤维素悬浮液,静置,用水离心洗涤;(2)加入分散剂,低温下高压均质处理,冷冻干燥,得到微纳米纤维素晶体;(3)将微纳米纤维素晶体进行润涨处理,取出,搅拌均匀后放入超声波细胞粉碎机中进行超声处理;(4)将超声处理后的微纳米纤维素进行低温下高压均质处理,冷冻干燥。本发明采用了稀酸预处理、超声波辅助和低温下二级高压均质处理,防止物料在均质后温度过高造成的团聚,能均匀分散纤维且不严重破坏纤维素长度,有效解决了一级机械高压均质过程中压力高、易堵塞和产品尺寸不均一等问题。

Description

一种二级高压均质制备微纳米纤维素的方法
技术领域
本发明属于植物纤维材料领域,具体涉及微纳米纤维素的制备。
背景技术
植物纤维素是自然界中含量最丰富的天然高分子材料之一,由于其可再生性和对环境无污染等特性,得到了越来越广泛的关注。植物纤维素制备为微纳米纤维素后,具有植物纤维素的基本结构与性能,还具有微纳米纤维素自身的特性,如大比表面积、超强的吸附能力和高强度。
目前制备植物微纳米纤维素有机械法、化学法、生物法等。专利号为2010102139025的文件公开了一种超声结合高压匀质处理制备纳米纤维素纤维的方法,通过超声处理,解决了单纯利用机械高压匀质处理方法制备的纳米纤维素纤维的长度低、纤维直径分布不均匀、纤维间易交织成簇状微米级纤维的问题;专利号为2016100412621的文件公开了一种甲酸预处理联合高压均质制备纳米纤维素纤丝的方法,该方法采用甲酸作为纤维素原料预处理液,联合高压均质,制备出纳米纤维素;专利号为2014104037397的文件公开了一种微纳米纤维素的制备方法,采用纯物理的方法,该方法采用了高能电子束辐照,代替了传统采用酸解等化学预处理的步骤;专利号为2013106918489的文件公开了一种低结晶度的微纳米纤维素及其制备方法,通过将纤维素与NaOH溶液混合,经过冷冻后,凝固浴再生,再高压均质处理,得到低结晶度的微纳米纤维素。
高压均质法是目前制备微纳米纤维素的常用方法。采用高压均质能够将纤维素分散均匀。然而,上述现有专利技术中采用的均质处理多为一级高压均质,存在压力高,均质过程易堵塞和所得产品尺寸不均一等不足;部分专利采用纯物理法制备,工艺复杂,对设备要求较高,能耗较大;也有专利技术制备低结晶度的微纳米纤维素,与目前市场需求的高结晶度或一定结晶度的产品不符。
发明内容
本发明提出了一种有别于现有采用一级高压均质制备的微纳米纤维素的方法,提出采用稀酸预处理、超声波辅助和二级高压均质的制备植物微纳米纤维素的方案,克服了现有技术存在的上述不足,具体技术方案如下。
一种二级高压均质制备微纳米纤维素的方法,包括如下步骤:
(1)将纤维素原料与稀酸溶液混合,得到纤维素悬浮液,静置,用水离心洗涤;
(2)在步骤(1)处理后的纤维素中加入分散剂,低温下高压均质处理,冷冻干燥,得到微纳米纤维素晶体;
(3)将微纳米纤维素晶体进行润涨处理,取出,搅拌均匀后放入超声波细胞粉碎机中进行超声处理;
(4)将步骤(3)处理后的微纳米纤维素进行低温下高压均质处理,冷冻干燥。
进一步地,所述纤维素原料包括木浆、棉浆、非木浆、废纸浆和其他农林废料制成的纸浆中的一种以上。
进一步地,所述稀酸溶液的浓度根据酸的种类确定。
更进一步地,所述稀酸溶液包括硫酸、盐酸和甲酸的水溶液中的一种,质量浓度均为15%~35%。
进一步地,步骤(1),纤维素原料与稀酸溶液的质量比为1:15~1:25。
进一步地,步骤(1)中所述静置是在室温下静置2.5~4h。
进一步地,步骤(2)中所述分散剂包括马来酸酐、乙酸酐和聚乙烯酸中的一种。
进一步地,步骤(2)中,分散剂的添加量为纤维素质量的3~5%。
进一步地,步骤(2)中所述低温下高压均质处理是指在8~15℃下采用高压均质机处理,压力为60~80MPa。
进一步地,步骤(3)中所述润涨处理为高温高压润涨处理,温度为120~123℃,压力为0.1~0.3Mpa,时间为2~3h。
进一步地,步骤(3)中所述超声处理的时间为15~20分钟。
进一步地,步骤(3)中所述低温下高压均质处理为8~15℃下采用高压均质机处理,压力为80~100MPa。
进一步地,步骤(2)、(4)中,所述冷冻干燥的温度为-40~-1 0℃。
本发明采用了稀酸预处理、超声波辅助和二级高压均质处理方案,摒弃了采用一次机械高压均质处理的方法。由于二级高压均质处理有压力梯度设置,压力较低,过程连续,解决了一级机械高压均质过程中压力高,易堵塞和所得产品尺寸不均一等的问题。同时,采用两次均质,既不严重破坏纤维素长度,又能很好地均匀分散纤维。且在低温下进行均质处理有利于防止物料在均质后温度过高造成的团聚。
本发明采用的稀酸溶液预处理破坏纤维的无定形区,有效地保留结晶区。
本发明采用的超声波辅助处理可以有效地削弱纤维间的结合力,使微细纤维得以有效分离。
本发明采用的高温高压润涨处理,有利于均质处理,也避免了化学品的消耗和污染。
本发明采用的冷冻干燥,能在干燥过程中保持物料的化学和物理性质。
本发明制得的微纳米纤维素分散均一,直径为20~40nm,长度为1~2μm。
本发明所制备的植物微纳米纤维素的特殊性质,可应用于食品添加剂、军事防护用品、化妆品助剂、医药用品、特殊用途的纸和纸板、微纳米膜、微纳米吸附剂等。
本发明制备方法采用的原料包括木浆、棉浆、非木浆、废纸浆和其他农林废料制成的纸浆。
与现有技术相比,本发明具有以下有益效果和优点:
(1)采用的原料均为简单易得的植物纤维,制备工艺简单;
(2)制得的植物微纳米纤维素分散性好,产品均一;
(3)本发明采用了稀酸溶液预处理、超声波辅助和二级高压均质处理方案,实现压力梯度有配置,过程连续,解决了一级机械高压均质过程中压力高,易堵塞和所得产品尺寸不均一等的问题。
附图说明
图1是实施例1制得的微纳米纤维素的透射电镜图;
图2是实施例2制得的微纳米纤维素的透射电镜图;
图3是实施例3制得的微纳米纤维素的透射电镜图;
图4是实施例4制得的微纳米纤维素的透射电镜图。
具体实施方式
以下通过实施例,仅在于对本发明作进一步地阐述,本发明不限于以下实施例。
实施例1
(1)将50g木浆与750g质量浓度为15%的稀硫酸溶液混合,得到纤维素悬浮液,静置4h后用蒸馏水离心洗涤;
(2)在步骤(1)处理后的纤维素中加入1.5g马来酸酐,在8℃下进行高压均质,压力为60MPa;放入冷冻干燥机中,-10℃下冷冻干燥,得到微纳米纤维素晶体;
(3)将得到的微纳米纤维素晶体在120℃、0.1MPa条件下进行润涨预处理2h后,取出,搅拌均匀后放入超声波细胞粉碎机中超声处理15min;
(4)将步骤(3)处理后的微纳米纤维素在8℃低温下进行高压均质,压力为80MPa;均质处理后,放入冷冻干燥机中,-10℃下冷冻干燥,得到微纳米纤维素。
制得的微纳米纤维素如图1所示。由图1可知,制得的微纳米纤维素分散性好,尺寸均一,微纳米纤维素的直径在20~40nm,长度均在1~2μm。
实施例2
(1)将50g废纸浆与1000g质量浓度为22%的稀硫酸溶液混合,得到纤维素悬浮液,静置3h后用蒸馏水离心洗涤;
(2)在步骤(1)处理后的纤维素中加入2.0g马来酸酐,在12℃下进行高压均质,压力为65MPa;放入冷冻干燥机中,-25℃下冷冻干燥,得到微纳米纤维素晶体;
(3)将得到的微纳米纤维素晶体在121℃、0.2MPa条件下进行润涨预处理2h后,取出,搅拌均匀后放入超声波细胞粉碎机中超声处理18min;
(4)将步骤(3)处理后的微纳米纤维素在15℃低温下进行高压均质,压力为100MPa;均质处理后,放入冷冻干燥机中,-40℃下冷冻干燥,得到微纳米纤维素。
制得的微纳米纤维素如图2所示。由图2可知,制得的微纳米纤维素分散性好,尺寸均一,微纳米纤维素的直径在20~40nm,长度在1~2μm。
实施例3
(1)将40g棉浆与1000g质量浓度为35%的稀盐酸溶液混合,得到纤维素悬浮液,静置2.5h后用蒸馏水离心洗涤;
(2)在步骤(1)处理后的纤维素中加入2.0g马来酸酐,在15℃下进行高压均质,压力为80MPa;放入冷冻干燥机中,-40℃下冷冻干燥,得到微纳米纤维素晶体;
(3)将得到的微纳米纤维素晶体在123℃、0.3MPa条件下进行润涨预处理3h后,取出,搅拌均匀后放入超声波细胞粉碎机中超声处理20min;
(4)将步骤(3)处理后的微纳米纤维素在12℃低温下进行高压均质,压力为85MPa;均质处理后,放入冷冻干燥机中,-20℃下冷冻干燥,得到微纳米纤维素。
制得的微纳米纤维素如图3所示。由图3可知,制得的微纳米纤维素分散性好,尺寸均一,微纳米纤维素的直径在20~40nm,长度在1~2μm。
实施例4
(1)将60g棉浆与1200g质量浓度为25%的稀盐酸溶液混合,得到纤维素悬浮液,静置3h后用蒸馏水离心洗涤;
(2)在步骤(1)处理后的纤维素中加入2.4g马来酸酐,在10℃下进行高压均质,压力为70MPa;放入冷冻干燥机中,-15℃下冷冻干燥,得到微纳米纤维素晶体;
(3)将得到的微纳米纤维素晶体在122℃、0.3MPa条件下进行润涨预处理3h后,取出,搅拌均匀后放入超声波细胞粉碎机中超声处理20min;
(4)将步骤(3)处理后的微纳米纤维素在10℃低温下进行高压均质,压力为90MPa;均质处理后,放入冷冻干燥机中,-15℃下冷冻干燥,得到微纳米纤维素。
制得的微纳米纤维素如图4所示。由图4可知,制得的微纳米纤维素分散性好,尺寸均一,微纳米纤维素的直径在20~40nm,长度在1~2μm。
上述实施例仅在于进一步阐述本发明,而并非是对本发明的实施方式的限定,在本发明精神范围内所做的变更、替换等,均将处于本发明的保护范围之中。

Claims (7)

1.一种二级高压均质制备微纳米纤维素的方法,其特征在于,包括如下步骤:
(1)将纤维素原料与稀酸溶液混合,得到纤维素悬浮液,静置,用水离心洗涤;
(2)在步骤(1)处理后的纤维素中加入分散剂,低温下高压均质处理,冷冻干燥,得到微纳米纤维素晶体;所述低温下高压均质处理是指在8~15℃下采用高压均质机处理,压力为60~80MPa;
(3)将微纳米纤维素晶体进行润涨处理,取出,搅拌均匀后放入超声波细胞粉碎机中进行超声处理;所述超声处理的时间为15~20分钟;
(4)将步骤(3)处理后的微纳米纤维素进行低温下高压均质处理,冷冻干燥;所述低温下高压均质处理为8~15℃下采用高压均质机处理,压力为80~100MPa。
2.根据权利要求1所述的一种二级高压均质制备微纳米纤维素的方法,其特征在于,所述纤维素原料包括木浆、非木浆、废纸浆和农林废料制成的纸浆中的一种以上;所述稀酸溶液的浓度根据酸的种类确定。
3.根据权利要求1所述的一种二级高压均质制备微纳米纤维素的方法,其特征在于,所述稀酸溶液包括硫酸、盐酸和甲酸的水溶液中的一种,质量浓度均为15%~35%。
4.根据权利要求1所述的一种二级高压均质制备微纳米纤维素的方法,其特征在于,步骤(1)中,纤维素原料与稀酸溶液的质量比为1:15~1:25;所述静置是在室温下静置2.5~4h。
5.根据权利要求1所述的一种二级高压均质制备微纳米纤维素的方法,其特征在于,步骤(2)中所述分散剂包括马来酸酐、乙酸酐和聚乙烯酸中的一种,分散剂的添加量为纤维素质量的3~5%。
6.根据权利要求1所述的一种二级高压均质制备微纳米纤维素的方法,其特征在于,步骤(3)中所述润涨处理为高温高压润涨处理,温度为120~123℃,压力为0.1~0.3Mpa,时间为2~3h。
7.根据权利要求1所述的一种二级高压均质制备微纳米纤维素的方法,其特征在于,步骤(2)、(4)中,所述冷冻干燥的温度为-40 ~ -10℃。
CN201610750056.8A 2016-08-29 2016-08-29 一种二级高压均质制备微纳米纤维素的方法 Active CN106436419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610750056.8A CN106436419B (zh) 2016-08-29 2016-08-29 一种二级高压均质制备微纳米纤维素的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610750056.8A CN106436419B (zh) 2016-08-29 2016-08-29 一种二级高压均质制备微纳米纤维素的方法

Publications (2)

Publication Number Publication Date
CN106436419A CN106436419A (zh) 2017-02-22
CN106436419B true CN106436419B (zh) 2019-05-14

Family

ID=58182876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610750056.8A Active CN106436419B (zh) 2016-08-29 2016-08-29 一种二级高压均质制备微纳米纤维素的方法

Country Status (1)

Country Link
CN (1) CN106436419B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108978292B (zh) * 2018-06-27 2021-03-30 华南理工大学 一种纯物理方法制备纳米纤维素纤丝的方法及其纳米纤维素纤丝
CN109438580B (zh) * 2018-11-27 2021-04-27 陕西科技大学 一种超低酸水解纤维制备纳米纤维素晶体的方法
CN111458497A (zh) * 2020-03-23 2020-07-28 宁波海壹生物科技有限公司 一种偶联抗体乳胶的分散方法及免疫比浊试剂盒
CN111979820A (zh) * 2020-08-28 2020-11-24 扬州交石新材料科技有限公司 一种通过超临界-高压均质技术制备秸秆纳米纤维素分散液的方法
CN114457605A (zh) * 2021-12-21 2022-05-10 浙江金昌特种纸股份有限公司 一种植物纤维的机械解离方法
CN115262011B (zh) * 2022-07-29 2023-06-23 浙江农林大学 一种粉末组装的复合微纳纤维及其制备方法
CN116236607A (zh) * 2023-03-13 2023-06-09 华南理工大学 一种高强高释放的微纳米纤维素/海藻酸钠敷料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851801A (zh) * 2010-06-30 2010-10-06 东北林业大学 一种超声结合高压匀质处理制备纳米纤维素纤维的方法
CN102220718A (zh) * 2011-06-08 2011-10-19 南京林业大学 一种高压破碎低温冷却制备纳米纤维素的方法
CN102505546A (zh) * 2011-10-01 2012-06-20 中国热带农业科学院农产品加工研究所 一种均相法制备纳米纤维素的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602298B2 (ja) * 2013-11-22 2019-11-06 ザ ユニバーシティー オブ クイーンズランド ナノセルロース

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851801A (zh) * 2010-06-30 2010-10-06 东北林业大学 一种超声结合高压匀质处理制备纳米纤维素纤维的方法
CN102220718A (zh) * 2011-06-08 2011-10-19 南京林业大学 一种高压破碎低温冷却制备纳米纤维素的方法
CN102505546A (zh) * 2011-10-01 2012-06-20 中国热带农业科学院农产品加工研究所 一种均相法制备纳米纤维素的方法

Also Published As

Publication number Publication date
CN106436419A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106436419B (zh) 一种二级高压均质制备微纳米纤维素的方法
Lu et al. A mechanochemical approach to manufacturing bamboo cellulose nanocrystals
CN108659135B (zh) 一种纤维素纳米纤维或几丁质纳米纤维分散液的制备方法
De Campos et al. Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication
JP6602298B2 (ja) ナノセルロース
CN103866487B (zh) 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法
CN110130136A (zh) 一种木质纤维素纳米纤维的制备方法
CN106367455A (zh) 一种微纳米纤维素的制备方法
CN106351050B (zh) 一种碱法结合超声从草纤维中提取纤维素纳米晶体的方法
CA2931765C (en) Process for producing fibrillated cellulose material
CN105525386B (zh) 一种甲壳素纳米纤丝及其制备方法
CN105873673B (zh) 包含纳米微细化的纤维状多糖的乳液、材料及其制造方法
CN105754133A (zh) 一种纳米纤维素基生物气凝胶及其制备方法和应用
CN106832426A (zh) 一种制备纳米纤维素的方法及所得纳米纤维素
Qi et al. Nanocellulose: a review on preparation routes and applications in functional materials
CA2437616A1 (en) Manufacturing of nano-fibrils from natural fibres, agro based fibres and root fibres
Lu et al. High-yield preparation of cellulose nanofiber by small quantity acid assisted milling in glycerol
CN113718543A (zh) 一种有机酸水解结合纳米微射流均质一步法清洁制备纤维素纳米晶的方法及产物
CN110055788B (zh) 一种微纳米木质素纤维素分散液及其制备方法和用途
JP6703986B2 (ja) ミクロフィブリル化セルロースの製造方法及びミクロフィブリル化セルロース
KR20150060457A (ko) 나노피브릴화 셀룰로오스의 제조 방법
CN108912230A (zh) 一种纤维素纳米纤维及其制备方法
Di Giorgio et al. Nanocelluloses from phormium (Phormium tenax) fibers
Qian et al. Cellulose nanowhiskers from moso bamboo residues: extraction and characterization
CN106192040B (zh) 一种高长径比纤维素纳米纤维的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170825

Address after: 510640 Tianhe District, Guangdong, No. five road, No. 381,

Applicant after: South China University of Technology

Address before: 168 Guangdong, Dongguan Songshan Lake high tech Industrial Development Zone, building productivity room, room 523808

Applicant before: South China collaborative innovation academy

GR01 Patent grant
GR01 Patent grant