CN106432782A - 具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法 - Google Patents

具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法 Download PDF

Info

Publication number
CN106432782A
CN106432782A CN201610627430.5A CN201610627430A CN106432782A CN 106432782 A CN106432782 A CN 106432782A CN 201610627430 A CN201610627430 A CN 201610627430A CN 106432782 A CN106432782 A CN 106432782A
Authority
CN
China
Prior art keywords
solvent
porous polymer
integral material
polymer
polymer integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610627430.5A
Other languages
English (en)
Other versions
CN106432782B (zh
Inventor
王波
陈薇薇
李真真
张路曈
翟婉丽
刘春太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201610627430.5A priority Critical patent/CN106432782B/zh
Publication of CN106432782A publication Critical patent/CN106432782A/zh
Application granted granted Critical
Publication of CN106432782B publication Critical patent/CN106432782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/283Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum a discontinuous liquid phase emulsified in a continuous macromolecular phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明属于多孔聚合物材料领域,具体涉及一种具有鸟巢状结构的疏水多孔聚合物整体材料。本发明提供一种多孔聚合物整体材料,所述多孔聚合物整体材料具有鸟巢状结构,鸟巢状结构是指由纤维状骨架和三维连通孔组成的结构。本发明所得的多孔聚合物整体材料具有鸟巢状结构,且具有良好的疏水性能;并且本发明制得的多孔聚合物整体材料孔径分布窄,比表面积大;此外,本发明方法制备工艺简单、无需复杂设备、效率高,所采用的溶剂萃取和冷冻干燥法能完整保留材料的多孔结构;选用的基体材料为聚合物,性能优异,来源广,成本低廉,易于推广应用。

Description

具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法
技术领域
本发明属于多孔聚合物材料领域,具体涉及一种具有鸟巢状结构的疏水多孔聚合物整体材料。
背景技术
多孔聚合物整体材料作为一种新型材料,因具有传质效率佳、吸附速率快、易化学改性等优点而成为材料领域新的研究热点。由于融合了多孔材料和聚合物基体的优异性能,多孔聚合物整体材料在近年来发展迅速并受到了工业界和学术界的广泛关注,已在色谱分离、油水分离、催化剂载体等领域得到应用。
目前,多孔聚合物整体材料的制备多采用自由基聚合方法,聚合过程中快速增长的聚合物链之间的相互作用远大于聚合物链与致孔溶剂之间的相互作用,导致聚合物相和溶剂相之间的相分离过程加快,最终形成的多孔聚合物整体材料微观结构通常为颗粒堆积结构;这种内部多孔结构的不均匀性会造成通透性降低、涡流扩散大、比表面积较低及表面结合位点不均一等缺点,从而限制了其在一些领域的应用。
鉴于此,有些研究者提出了制备具有规则的三维连续网络骨架结构的多孔聚合物整体材料,采用逐步聚合(Macromolecules,2005,38(24):9901-9903)和活性自由基聚合(Advanced Materials,2006,18(18):2407-2411)的方法。然而,这两种方法都有很大的局限性:逐步聚合的单体可选择范围很窄;活性自由基聚合条件要求太高,操作不便。
针对上述缺陷,申请号为200910241992.6的专利申请公开了一种多孔聚合物整体分离材料及其制备方法,其采用自由基聚合反应方法制备,通过在普通自由基聚合体系内加入两亲嵌段共聚物来调节反应体系的相分离过程,从而得到具有三维网络骨架结构的聚合物整体材料。
现有技术中尚未有具有鸟巢状结构的多孔聚合物整体材料的相关报道。
发明内容
本发明的目的在于提供一种多孔聚合物整体材料,所得材料具有鸟巢状结构,并且具有良好的疏水性。
本发明的技术方案:
本发明要解决的第一个技术问题是提供一种多孔聚合物整体材料,所述多孔聚合物整体材料具有鸟巢状结构,鸟巢状结构是指由纤维状骨架和三维连通孔组成的结构。
进一步,所述多孔聚合物整体材料为疏水性的。所述多孔聚合物整体材料任意横截面与水的接触角>90°。
进一步,所述多孔聚合物整体材料的原料及其配比为:聚合物︰溶剂︰非溶剂=5~10重量份︰80~100体积份︰1~20体积份。非溶剂即聚合物的不良溶剂。
进一步,所述聚合物为聚碳酸酯(PC)、聚丁二酸丁二醇酯(PBS)、聚羟基丁酸酯(PHB)、聚乳酸(PLA)、聚偏氟乙烯(PVDF)、聚丙烯腈(PAN)或聚甲基丙烯酸甲酯(PMMA)中的一种;所述溶剂为四氢呋喃(THF)、二甲基亚砜(DMSO)、甲苯、二甲基甲酰胺、二甲苯、三氯甲烷、环己烷、二氯甲烷或二氧六环中的一种;所述非溶剂为去离子水、甲醇、乙醇或丙酮中的一种。
优选的,所述聚合物为聚碳酸酯;所述溶剂为四氢呋喃或三氯甲烷;所述非溶剂为去离子水、甲醇或乙醇。
优选的,所述多孔聚合物整体材料的原料及配比为:聚碳酸酯︰四氢呋喃︰去离子水=7~8重量份︰100体积份︰7~9体积份。
更优选的,所述聚合物为双酚A型聚碳酸酯,溶剂为四氢呋喃,非溶剂为去离子水。
进一步,当所述聚合物为双酚A型聚碳酸酯,溶剂为四氢呋喃,非溶剂为去离子水时,所述多孔聚合物整体材料基于BET测试法得到的比表面积为90~100m2/g。
进一步,当所述聚合物为双酚A型聚碳酸酯,溶剂为四氢呋喃,非溶剂为去离子水时,所述多孔聚合物整体材料任意横截面的水接触角为135°~145°。
本发明要解决的第二个技术问题是提供上述多孔聚合物整体材料的制备方法,将聚合物、溶剂和非溶剂通过非溶剂诱导相分离(NIPS)和热诱导相分离(TIPS)相结合的方法制备得到多孔聚合物整体材料。
进一步,上述多孔聚合物整体材料的制备方法包括如下步骤:
a、将聚合物溶于溶剂中,搅拌获得澄清稳定的聚合物溶液;
b、将步骤a所得的聚合物溶液冷却至室温,在搅拌条件下加入非溶剂;
c、非溶剂添加完毕后,将聚合物溶液置于-20~10℃(优选为-15~5℃)环境中恒温处理直至完成相分离,然后去除残余溶剂,再经冷冻干燥即得多孔聚合物整体材料;
其中,聚合物、溶剂和非溶剂的比例为:聚合物︰溶剂︰非溶剂=5~10重量份︰80~100体积份︰1~20体积份。
步骤a中,搅拌过程中进行加热,加热温度低于溶剂的沸点。
步骤c中,聚合物溶液置于15~5℃的环境中恒温处理。
步骤c中,聚合物溶液恒温处理20~24h。
步骤c中,去除残余溶剂的方法为:相分离完成后将所得材料浸泡于水中,至残余溶剂被水完全置换。
进一步,当聚合物为双酚A型聚碳酸酯,溶剂为四氢呋喃,非溶剂为去离子水时,步骤a中加热温度为40℃,采用磁力搅拌;步骤b中非溶剂的加入采用逐滴添加的方式,搅拌条件为磁力搅拌;步骤c中聚合物溶液置于4℃环境中恒温处理(即相分离温度为4℃);残余溶剂的萃取过程中浸泡天数为3天,每天更换3次水;冷冻干燥的方法为:低温低压条件下冷冻干燥48h,温度为-10~-100℃,压力为0.1~1Pa。
本发明的有益效果:
本发明所得的多孔聚合物整体材料具有鸟巢状结构(由纤维状骨架和三维连通孔组成),且具有良好的疏水性能。另外,其还具有以下优点:
1、本发明制得的多孔聚合物整体材料孔径分布窄,比表面积大;
2、本发明方法制备工艺简单、无需复杂设备、效率高,所采用的溶剂萃取和冷冻干燥法能完整保留材料的多孔结构;
3、本发明选用的基体材料为聚合物,性能优异,来源广,成本低廉,易于推广应用。
附图说明
图1a本发明实施例1制备的多孔PC整体材料的扫描电子显微镜图片;图1b本发明实施例2制备的多孔PC整体材料的扫描电子显微镜图片;由图1a和图1b可知:本发明制得的多孔整体材料具有典型的鸟巢状结构。
图2a本发明实施例1制备的多孔PC整体材料的氮气吸附/脱附等温线;图2b本发明实施例1制备的多孔PC整体材料的孔径分布图。
图3本发明实施例1制备的多孔PC整体材料的水接触角测试图。
具体实施方式
本发明通过选取适当的聚合物/溶剂/非溶剂三元体系和相分离温度,采用非溶剂诱导相分离(NIPS)和热诱导相分离(TIPS)相结合的方法(即热影响非溶剂诱导相分离法(TINIPS))制备出一种具有鸟巢状结构的疏水多孔聚合物整体材料。本发明所得鸟巢状结构较三维网络骨架结构其优越性体现在:比表面积大、易获得疏水性能、孔隙率高,骨架和孔结构连通性好;从而为多孔聚合物整体材料拓宽了应用范围。本发明中,热影响非溶剂诱导相分离法(TINIPS)是在非溶剂诱导相分离法(NIPS)中引入新的变量——“热”,即通过加入非溶剂然后降温的方式引发相分离的一种制备方法。本发明结合TINIPS法和冷冻干燥技术,可以完整地保留材料内部的多孔结构,制备效率高且有利于批量化生产。
本发明所述多孔聚合物整体材料的制备方法,可采用以下具体实施步骤:
1)、聚合物溶液制备:将一定质量的聚合物溶于一定体积的溶剂中,加热搅拌获得澄清稳定的聚合物溶液;
2)、添加非溶剂:将步骤a所得的聚合物溶液冷却至室温,在搅拌条件下加入非溶剂;
3)、相分离:非溶剂添加完毕后,将溶液置入冰箱中,于一定相分离温度条件下恒温24h,相分离完成后即得到多孔聚合物整体材料;
4)、残余溶剂萃取:将步骤3所得多孔聚合物整体材料浸泡于水中,至残余溶剂被水完全置换;
5)、冷冻干燥:将步骤4所得的多孔聚合物整体材料冷冻干燥48~72h。
本发明中,低温低压干燥的目的是避免高温干燥造成的材料收缩,保护材料的原始多孔结构不被破坏。
本发明中,多孔结构的形成遵循旋节线分相相分离机理,形成过程如下:相分离发生前(上述方法中的c步骤前),在搅拌作用下聚合物溶液中的各组分都均匀地分散在体系中,任何区域都有几乎相当的机率产生聚合物富相或溶剂富相,因此聚合物富相和溶剂富相在相分离发生初期呈现双连续形态;随着相分离的进行(上述方法中的c步骤),由于溶剂富相的聚集和生成速率更快,溶剂富相迅速变为液滴状并分布在聚合物富相中;为进一步降低相界面间表面张力,溶剂富相液滴逐渐合并和长大形成不规则形状液滴,随后的形貌演化遵循奥斯特瓦尔德熟化机理和粗化机理,溶剂液滴尺寸不断变大;最后,体系达到新的热力学平衡状态,相分离结束,微观结构固定,形成具有纤维状骨架和三维连通孔的鸟巢状结构。
下面给出的实施例是对本发明的具体描述,有必要指出的是以下实施例只用于对本发明作进一步说明,并非对本发明作任何形式上的限制,该领域技术熟练人员根据上述本发明内容做出的非本质的改进和调整,如改变原料等仍属于本发明的保护范围。
下面给出的实施例是对本发明的具体描述,本发明中,实施例1和例2中所用的聚合物为双酚A型聚碳酸酯(PC),牌号Wonderlite PC-110,台湾奇美实业公司生产;四氢呋喃(THF),分析纯,天津富宇精细化工有限公司生产;去离子水,东莞纳百川去离子水处理设备有限公司生产。
实施例1具有鸟巢状结构的疏水多孔聚合物整体材料的制备
具体制备步骤为:
(1)聚合物溶液制备:将7g PC粒料溶于100ml THF溶剂中,40℃加热并磁力搅拌至溶解完全,得到浓度为0.07g/ml的聚合物溶液;
(2)添加非溶剂:聚合物溶液冷却至室温后,磁力搅拌条件下逐滴加入去离子水,每100mL聚合物溶液添加非溶剂7mL;
(3)相分离:将溶液倒入试管并置于冰箱中,保持一定的相分离温度(4℃),此时发生相分离,逐渐形成白色圆柱状多孔聚合物整体材料;
(4)溶剂萃取:24h后取出试管并置于500mL水中浸泡,每天更换水3次,浸泡3天至残余有机溶剂被水完全取代;
(5)冷冻干燥:在-90℃和0.8Pa条件下冷冻干燥48h,得到多孔PC整体材料。
实施例2具有鸟巢状结构的疏水聚合物多孔整体材料的制备
具体制备步骤为:
(1)聚合物溶液制备:将8g PC粒料溶于100ml THF溶剂中,40℃加热并磁力搅拌至溶解完全,得到浓度为0.08g/ml的聚合物溶液;
(2)添加非溶剂:聚合物溶液冷却至室温后,磁力搅拌条件下逐滴加入去离子水,每100mL聚合物溶液添加非溶剂7mL;
(3)相分离:将溶液倒入试管并置于冰箱中,保持一定的相分离温度(4℃),此时发生相分离,逐渐形成白色圆柱状多孔聚合物整体材料;
(4)溶剂萃取:24h后取出试管并置于500mL水中浸泡,每天更换水3次,浸泡3天至残余有机溶剂被水完全取代;
(5)冷冻干燥:在-90℃和和0.8Pa条件下冷冻干燥48h,得到多孔PC整体材料。
微观结构测试:
将所制得的多孔聚合物整体材料用手术刀切开并暴露横截面,经过横截面喷金处理后,利用JSM-7500F型场发射扫描电子显微镜对材料断面微观形貌进行观测,图1a和图1b分别为实施例1和例2所得多孔聚合物整体材料的扫描电镜图片。由图1a和图1b可知:本发明制得的多孔整体材料具有典型的鸟巢状结构,鸟巢状结构由纤维状骨架和三维连通孔组成。其中,实施例1制得的多孔整体材料孔与骨架尺寸均匀、连通性好;实施例2制得的多孔整体材料孔和骨架差异较大,形貌较均匀。另外,实验得出,PMMA、PVDF、PLA在采用前述具体实施方式列举的步骤即使用TINIPS方法,均能得到具有鸟巢状结构的疏水多孔聚合物整体材料。
性能测试:
为考察本发明制备的多孔聚合物整体材料的比表面积和孔径分布,使用ASAP2020比表面积测定仪(美国康塔公司)进行测试。本发明实施例1制备的多孔聚合物整体材料的氮气吸附/脱附等温线和孔径分布图分别见图2a和图2b。从图2a中可以看出,本发明所得具有鸟巢状结构的多孔聚合物整体材料吸附等温线为IV型,迟滞回环为H1型,证实材料具有圆柱形或楔形的介孔结构。从图2a中可以看出,本发明得到的多孔聚合物整体材料具有窄的孔径分布。此外,利用Brunauer-Emmett-Teller(BET)法计算得到实施例1所得多孔聚合物材料的比表面积为95.02m2/g。以上结果表明本发明所得的具有鸟巢状结构的疏水多孔聚合物整体材料为具有大比表面和窄孔径分布的多孔材料。
为测试本发明制备的多孔聚合物整体材料的疏水性能,使用Powereach JC2000C接触角测定仪(上海中晨数字技术设备有限公司)进行测试,多孔聚合物整体材料横截面的水接触角测试结果见图3。结果表明本发明实施例1制备的多孔聚合物整体材料横截面的水接触角为143.9°,证实材料具备优异的疏水性能。
本发明通过选择适当的聚合物/溶剂/非溶剂三元体系和相分离温度,采用TINIPS法,制备出一种具有鸟巢状结构的疏水多孔聚合物整体材料。与传统的多孔聚合物整体材料相比,采用TINIPS法,一方面制备过程简单、无需复杂设备和模板,另一方面材料多孔结构易于调控且具有优异的疏水性能,可以满足各种不同的需求和拓宽材料的适用范围。

Claims (10)

1.多孔聚合物整体材料,其特征在于,所述多孔聚合物整体材料具有鸟巢状结构,鸟巢状结构是指由纤维状骨架和三维连通孔组成的结构。
2.根据权利要求1所述多孔聚合物整体材料,其特征在于,所述多孔聚合物整体材料为疏水性的;进一步,所述多孔聚合物整体材料任意横截面与水的接触角>90°。
3.根据权利要求1或2所述多孔聚合物整体材料,其特征在于,所述多孔聚合物整体材料的原料及其配比为:聚合物︰溶剂︰非溶剂=5~10重量份︰80~100体积份︰1~20体积份。
4.根据权利要求1或2所述多孔聚合物整体材料,其特征在于,
所述聚合物为聚碳酸酯、聚丁二酸丁二醇酯、聚羟基丁酸酯、聚乳酸、聚偏氟乙烯、聚丙烯腈或聚甲基丙烯酸甲酯;
所述溶剂为四氢呋喃、二甲基亚砜、甲苯、二甲基甲酰胺、二甲苯、三氯甲烷、环己烷、二氯甲烷或二氧六环;
所述非溶剂为去离子水、甲醇、乙醇或丙酮;
优选的,所述聚合物为聚碳酸酯;所述溶剂为四氢呋喃或三氯甲烷;所述非溶剂为去离子水、甲醇或乙醇;更优选的,所述聚合物为双酚A型聚碳酸酯,溶剂为四氢呋喃,非溶剂为去离子水。
5.根据权利要求4所述多孔聚合物整体材料,其特征在于,所述多孔聚合物整体材料的原料及配比为:聚碳酸酯︰四氢呋喃︰去离子水=7~8重量份︰100体积份︰7~9体积份。
6.根据权利要求5所述多孔聚合物整体材料,其特征在于,所述多孔聚合物整体材料基于BET测试法得到的比表面积为90~100m2/g;和/或:
所述多孔聚合物整体材料任意横截面的水接触角为135°~145°。
7.权利要求1~6任一项所述多孔聚合物整体材料的制备方法,其特征在于,将聚合物、溶剂和非溶剂通过非溶剂诱导相分离和热诱导相分离相结合的方法制备得到。
8.根据权利要求7所述多孔聚合物整体材料的制备方法,其特征在于,所述制备方法包括如下步骤:
a、将聚合物溶于溶剂中,搅拌获得澄清稳定的聚合物溶液;
b、将步骤a所得的聚合物溶液冷却至室温,在搅拌条件下加入非溶剂;
c、非溶剂添加完毕后,将聚合物溶液置于-20~10℃环境中恒温处理直至完成相分离,然后去除残余溶剂,再经冷冻干燥即得多孔聚合物整体材料。
9.根据权利要求8所述多孔聚合物整体材料的制备方法,其特征在于,步骤a中,搅拌过程中进行加热,加热温度低于溶剂的沸点;或:
步骤c中,聚合物溶液置于-15~5℃的环境中恒温处理;或:
步骤c中,聚合物溶液恒温处理20~24h;或:
步骤c中,去除残余溶剂的方法为:相分离完成后将所得材料浸泡于水中,至残余溶剂被水完全置换。
10.根据权利要求9所述多孔聚合物整体材料的制备方法,其特征在于,当聚合物为双酚A型聚碳酸酯,溶剂为四氢呋喃,非溶剂为去离子水时,步骤a中加热温度为40℃,采用磁力搅拌;步骤b中非溶剂的采用逐滴加入的方式,搅拌条件为磁力搅拌;步骤c中聚合物溶液置于4℃环境中恒温处理;残余溶剂的萃取过程中浸泡天数为3天,每天更换3次水;冷冻干燥的方法为:低温低压条件下冷冻干燥48h,温度为-10~-100℃,压力为0.1~1Pa。
CN201610627430.5A 2016-08-01 2016-08-01 具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法 Active CN106432782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610627430.5A CN106432782B (zh) 2016-08-01 2016-08-01 具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610627430.5A CN106432782B (zh) 2016-08-01 2016-08-01 具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106432782A true CN106432782A (zh) 2017-02-22
CN106432782B CN106432782B (zh) 2019-04-26

Family

ID=58184580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610627430.5A Active CN106432782B (zh) 2016-08-01 2016-08-01 具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106432782B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163288A (zh) * 2017-05-10 2017-09-15 郑州大学 超疏水三维多孔聚合物基复合材料及其制备方法
CN110218423A (zh) * 2019-06-03 2019-09-10 东华镜月(苏州)纺织技术研究有限公司 一种聚乳酸/聚己内酯三维多孔复合整体柱材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792379A (zh) * 2005-11-03 2006-06-28 同济大学 热致相分离制备有机和无机纳米复合组织工程支架材料的方法
CN101396641A (zh) * 2008-10-31 2009-04-01 孟广祯 复合热致相分离制膜方法
CN102500300A (zh) * 2011-11-23 2012-06-20 浙江大学 一种混合相分离制备聚合物多孔微球的方法
CN103159977A (zh) * 2011-12-13 2013-06-19 西安瑞捷生物科技有限公司 一种聚乳酸多孔支架材料的制备方法
CN105295265A (zh) * 2015-12-07 2016-02-03 郑州轻工业学院 一种改性聚偏氟乙烯超疏水材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792379A (zh) * 2005-11-03 2006-06-28 同济大学 热致相分离制备有机和无机纳米复合组织工程支架材料的方法
CN101396641A (zh) * 2008-10-31 2009-04-01 孟广祯 复合热致相分离制膜方法
CN102500300A (zh) * 2011-11-23 2012-06-20 浙江大学 一种混合相分离制备聚合物多孔微球的方法
CN103159977A (zh) * 2011-12-13 2013-06-19 西安瑞捷生物科技有限公司 一种聚乳酸多孔支架材料的制备方法
CN105295265A (zh) * 2015-12-07 2016-02-03 郑州轻工业学院 一种改性聚偏氟乙烯超疏水材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163288A (zh) * 2017-05-10 2017-09-15 郑州大学 超疏水三维多孔聚合物基复合材料及其制备方法
CN107163288B (zh) * 2017-05-10 2019-03-29 郑州大学 超疏水三维多孔聚合物基复合材料及其制备方法
CN110218423A (zh) * 2019-06-03 2019-09-10 东华镜月(苏州)纺织技术研究有限公司 一种聚乳酸/聚己内酯三维多孔复合整体柱材料及其制备方法

Also Published As

Publication number Publication date
CN106432782B (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Yoneda et al. Facile fabrication of poly (methyl methacrylate) monolith via thermally induced phase separation by utilizing unique cosolvency
CN104562292B (zh) 多孔微纳米pet纤维的制备方法
CN103981633A (zh) 一种多孔纳米纤维无纺布的制备方法
Arthanareeswaran et al. Effect of additives concentration on performance of cellulose acetate and polyethersulfone blend membranes
Yang et al. Microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent—camphene
CN106432782A (zh) 具有鸟巢状结构的疏水多孔聚合物整体材料及其制备方法
CN107096396A (zh) 一种聚偏氟乙烯中空纤维微孔滤膜及其制备方法
Fan et al. pH and thermal-dependent ultrafiltration membranes prepared from poly (methacrylic acid) grafted onto polyethersulfone synthesized by simultaneous irradiation in homogenous phase
CN109316973A (zh) 一种含聚乙烯亚胺和聚甲基丙烯酸甲酯复合膜制膜配方及其制备方法
CN107096395A (zh) 一种增强型聚偏氟乙烯中空纤维微孔滤膜及其制备方法
KR20210027155A (ko) 비수용성 고분자의 다공질체의 제조 방법
CN110218423A (zh) 一种聚乳酸/聚己内酯三维多孔复合整体柱材料及其制备方法
CN106422799A (zh) 双溶剂法制备具有分级孔结构的薄膜
Liu et al. Self-organized ordered microporous thin films from grafting copolymers
Song et al. Ethanol‐responsive characteristics of polyethersulfone composite membranes blended with poly (N‐isopropylacrylamide) nanogels
Xing et al. Fabrication and characterization of cellulose triacetate porous membranes by combined nonsolvent-thermally induced phase separation
CN108159898A (zh) 热致相分离法制备聚丙烯腈基微孔膜的方法
CN108014658A (zh) 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔明胶膜的制备方法
CN114904404A (zh) 一种基于MOF-808(Zr)的混合基质正渗透膜及其制备方法
CN110975649A (zh) 一种改性聚偏氟乙烯超滤膜及其制备方法
CN104607061B (zh) 制备乙烯-四氟乙烯共聚物膜的方法
CN106883447B (zh) 一种高强度聚合物膜、制备方法和稀释剂的应用
Yu et al. An efficient preparation of porous polymeric microspheres by solvent evaporation in foam phase
CN105220245A (zh) 一种适宜电纺聚四氟乙烯超细纤维膜的纺丝溶液
Yang et al. Chiral PLLA particles with tunable morphology and lamellar structure for enantioselective crystallization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant