CN106431399B - 无铅压电陶瓷粉体及其制备方法 - Google Patents

无铅压电陶瓷粉体及其制备方法 Download PDF

Info

Publication number
CN106431399B
CN106431399B CN201610654806.1A CN201610654806A CN106431399B CN 106431399 B CN106431399 B CN 106431399B CN 201610654806 A CN201610654806 A CN 201610654806A CN 106431399 B CN106431399 B CN 106431399B
Authority
CN
China
Prior art keywords
ceramic powder
piezoelectric ceramic
lead
potassium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610654806.1A
Other languages
English (en)
Other versions
CN106431399A (zh
Inventor
吴丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Arts and Science
Original Assignee
Hunan University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Arts and Science filed Critical Hunan University of Arts and Science
Priority to CN201610654806.1A priority Critical patent/CN106431399B/zh
Publication of CN106431399A publication Critical patent/CN106431399A/zh
Application granted granted Critical
Publication of CN106431399B publication Critical patent/CN106431399B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种无铅压电陶瓷粉体及其制备方法,所述制备方法包括以下步骤:步骤1)将原料按化学式(Na0.52K0.48)(Nb0.86V0.14)O3的配比进行称量、配料;步骤2)将Nb2O5通过处理制得Nb(OH)5沉淀;步骤3)将Na2CO3、K2CO3分别与EDTA混合得钠及钾的螯合物;步骤4)将步骤3中得到的钠及钾的螯合物、步骤2中得到的Nb(OH)5与V2O5和氨水充分混合,然后对上述混合物进行烧结合成铌酸钾钠基陶瓷粉体。通过本发明的无铅压电陶瓷粉体的制备方法制备得到了结晶性较好,颗粒尺度小且均匀,具有良好烧结活性的无铅压电陶瓷粉体。

Description

无铅压电陶瓷粉体及其制备方法
技术领域
本发明涉及一种无铅压电陶瓷粉体的制备方法及一种极化后的无铅压电陶瓷粉体。
背景技术
压电陶瓷是一类在电子行业应用广泛的高新技术材料。但目前大规模使用的是锆钛酸铅Pb(Zr,Ti)O3基压电陶瓷(称为PZT基压电陶瓷),PZT基压电陶瓷中Pb含量高达60wt.%以上,在其制备、使用、废弃过程中都会对人类身体健康及其生存环境造成危害。因此研发压电性能优异,环境友好的无铅压电陶瓷是一项迫切的、具有重要社会意义的课题。
(K,Na)NbO3(称为KNN基压电陶瓷)是一类重要的无铅压电陶瓷材料体系,由于其优良的压电、铁电性能以及环境友好性等优点,被认为是最有潜力取代铅基压电陶瓷的候选材料之一。但用传统烧结工艺制备的KNN陶瓷致密度不高,压电性能也较差。
无铅压电陶瓷粉体的粒度直接影响烧结后KNN陶瓷的致密度,因此如何制备小粒径的无铅压电陶瓷粉体是提高KNN陶瓷压电性能的关键。
另外,无铅压电陶瓷粉体也可以通过特殊的生产工艺,使无铅压电陶瓷粉体颗粒产生压电效应。目前而言,尚未有生产具有压电效应的无铅压电陶瓷粉体的报道。
发明内容
有鉴于此,本发明的目的之一是提供一种无铅压电陶瓷粉体的制备方法,该制备方法的特点是可得到纳米尺度的无铅压电陶瓷粉体颗粒,且制备过程中无需研磨,也无需采用800℃以上的高温来合成粉体,从而解决了现有无铅压电陶瓷粉体粒度大、压电性能差以及制备过程能耗高的技术问题。
本发明通过以下技术手段解决上述技术问题:
本发明的一种无铅压电陶瓷粉体的制备方法,制备所述无铅压电陶瓷粉体所用的原料为化学纯Na2CO3、K2CO3、Nb2O5、V2O5,该陶瓷的成分组成可用化学式表示为:(Na0.52K0.48)(Nb0.89V0.11)O3,所述制备方法包括以下步骤:步骤1)将原料按化学式(Na0.52K0.48)(Nb0.86V0.14)O3的配比进行称量、配料;步骤2)将Nb2O5在沸水浴条件下溶解于HF中,向其中加入适量的草酸铵溶液充分混合后,向溶液中加入氨水产生Nb(OH)5沉淀,该沉淀在60-75℃陈化、过滤,得到Nb(OH)5;步骤3)将Na2CO3、K2CO3分别与EDTA混合得钠及钾的螯合物;步骤4)将步骤3中得到的钠及钾的螯合物、步骤2中得到的Nb(OH)5与V2O5和氨水充分混合,然后对上述混合物进行烧结合成铌酸钾钠基陶瓷粉体。
进一步,步骤4中的烧结温度为400-600摄氏度,保温3-4h。
进一步,还包括对铌酸钾钠基陶瓷粉体的极化方法,所述方法包括:将步骤4得到的铌酸钾钠基陶瓷粉体置于微波环境中,调整微波频率使其与铌酸钾钠基陶瓷粉体之间产生谐振,当微波加热升温至80-100℃时,对粉体加压3000-4000伏/毫米(粉体厚度),保持温度10-50分钟。
本发明的目的之二是提供一种极化后的无铅压电陶瓷粉体。
本发明的有益效果:
1)通过本发明的无铅压电陶瓷粉体的制备方法制备得到了结晶性较好,颗粒尺度小且均匀,具有良好烧结活性的无铅压电陶瓷粉体。
2)本发明的无铅压电陶瓷粉体中含有V元素,由此压电陶瓷粉体制成的压电陶瓷对低强度高频率的声波具有较高的灵敏度和响应速度。
3)本发明的无铅压电陶瓷粉体的制备方法中采用了微波辅助极化方法,通过微波与无铅压电陶瓷粉体之间的谐振及微波加热效应可显著降低矫顽场Ec,使得极化电压得以显著降低,从而降低了废品率。
具体实施方式
以下将结合具体实施例对本发明进行详细说明:
实施例1无铅压电陶瓷粉体的制备方法
以化学纯Na2CO3、K2CO3、Nb2O5、V2O5为原料,以HF、草酸铵、氨水和EDTA为中间辅料,采用以下步骤制备无铅压电陶瓷粉体:步骤1)将原料按化学式(Na0.52K0.48)(Nb0.86V0.14)O3的配比进行称量、配料;步骤2)将Nb2O5在沸水浴条件下溶解于HF中,向其中加入适量的草酸铵溶液充分混合后,向溶液中加入氨水产生Nb(OH)5沉淀,该沉淀在70℃陈化、过滤,得到Nb(OH)5;步骤3)将Na2CO3、K2CO3分别与EDTA混合得钠及钾的螯合物;步骤4)将步骤3中得到的钠及钾的螯合物、步骤2中得到的Nb(OH)5与V2O5和氨水充分混合,然后对上述混合物进行烧结,烧结温度为500摄氏度,保温3-4h合成铌酸钾钠基陶瓷粉体;将步骤4得到的铌酸钾钠基陶瓷粉体置于微波环境中,调整微波频率使其与铌酸钾钠基陶瓷粉体之间产生谐振,当微波加热升温至80-100℃时,对粉体加压3500伏/毫米(粉体厚度),保持温度30分钟,退火后得极化后的无铅压电陶瓷粉体。
实施例2无铅压电陶瓷粉体的制备方法
以化学纯Na2CO3、K2CO3、Nb2O5、V2O5为原料,以HF、草酸铵、氨水和EDTA为中间辅料,采用以下步骤制备无铅压电陶瓷粉体:步骤1)将原料按化学式(Na0.52K0.48)(Nb0.86V0.14)O3的配比进行称量、配料;步骤2)将Nb2O5在沸水浴条件下溶解于HF中,向其中加入适量的草酸铵溶液充分混合后,向溶液中加入氨水产生Nb(OH)5沉淀,该沉淀在60℃陈化、过滤,得到Nb(OH)5;步骤3)将Na2CO3、K2CO3分别与EDTA混合得钠及钾的螯合物;步骤4)将步骤3中得到的钠及钾的螯合物、步骤2中得到的Nb(OH)5与V2O5和氨水充分混合,然后对上述混合物进行烧结,烧结温度为400摄氏度,保温4h合成铌酸钾钠基陶瓷粉体;将步骤4得到的铌酸钾钠基陶瓷粉体置于微波环境中,调整微波频率使其与铌酸钾钠基陶瓷粉体之间产生谐振,当微波加热升温至95℃时,对粉体加压3700伏/毫米(粉体厚度),保持温度25分钟,退火后得极化后的无铅压电陶瓷粉体。
对从上述实施例中获得的无铅压电陶瓷粉体进行电学性能测试。结果如下:
实施例 d<sub>33</sub>(pC/N) kp(%) εr ρr(%) Pr(μC/cm2) Tc(℃)
1 370 40 741 87 20 450
2 375 42 860 88 22 459
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (2)

1.一种无铅压电陶瓷粉体的制备方法,制备所述无铅压电陶瓷粉体所用的原料为化学纯Na2CO3、K2CO3、Nb2O5、V2O5,该陶瓷的成分组成可用化学式表示为:(Na0.52K0.48)(Nb0.89V0.11)O3,其特征在于,所述制备方法包括以下步骤:
步骤1)将原料按化学式(Na0.52K0.48)(Nb0.86V0.14)O3的配比进行称量、配料;
步骤2)将Nb2O5在沸水浴条件下溶解于HF中,向其中加入适量的草酸铵溶液充分混合后,向溶液中加入氨水产生Nb(OH)5沉淀,该沉淀在60-75℃陈化、过滤,得到Nb(OH)5
步骤3)将Na2CO3、K2CO3分别与EDTA混合得钠及钾的螯合物;
步骤4)将步骤3中得到的钠及钾的螯合物、步骤2中得到的Nb(OH)5与V2O5和氨水充分混合,然后对上述混合物进行烧结合成铌酸钾钠基陶瓷粉体;其中,烧结温度为400-600摄氏度,保温3-4h;之后将步骤4得到的铌酸钾钠基陶瓷粉体进行极化,具体地,将步骤4得到的铌酸钾钠基陶瓷粉体置于微波环境中,调整微波频率使其与铌酸钾钠基陶瓷粉体之间产生谐振,当微波加热升温至80-100℃时,对粉体加压3000-4000伏/毫米,其中,单位毫米为粉体厚度;保持温度10-50分钟。
2.一种根据权利要求1中所述的制备方法制备得到的极化后的无铅压电陶瓷粉体。
CN201610654806.1A 2016-08-10 2016-08-10 无铅压电陶瓷粉体及其制备方法 Active CN106431399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610654806.1A CN106431399B (zh) 2016-08-10 2016-08-10 无铅压电陶瓷粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610654806.1A CN106431399B (zh) 2016-08-10 2016-08-10 无铅压电陶瓷粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN106431399A CN106431399A (zh) 2017-02-22
CN106431399B true CN106431399B (zh) 2020-02-07

Family

ID=58184449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610654806.1A Active CN106431399B (zh) 2016-08-10 2016-08-10 无铅压电陶瓷粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN106431399B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666741B (zh) * 2021-08-10 2022-11-01 内蒙古工业大学 一种钒掺杂铌酸钠压电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857436A (zh) * 2010-06-12 2010-10-13 中国地质大学(武汉) 一类铌酸钾钠基无铅压电陶瓷粉体及其制备方法
CN102276257A (zh) * 2011-03-22 2011-12-14 南京航空航天大学 一种制备铌酸钾钠无铅压电陶瓷粉体的方法
CN102651492A (zh) * 2012-04-13 2012-08-29 江苏贝孚德通讯科技股份有限公司 微波极化器
CN105272244A (zh) * 2015-10-23 2016-01-27 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095751A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 非鉛圧電性セラミック粉末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857436A (zh) * 2010-06-12 2010-10-13 中国地质大学(武汉) 一类铌酸钾钠基无铅压电陶瓷粉体及其制备方法
CN102276257A (zh) * 2011-03-22 2011-12-14 南京航空航天大学 一种制备铌酸钾钠无铅压电陶瓷粉体的方法
CN102651492A (zh) * 2012-04-13 2012-08-29 江苏贝孚德通讯科技股份有限公司 微波极化器
CN105272244A (zh) * 2015-10-23 2016-01-27 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN106431399A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Wang et al. Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics
CN102515760B (zh) 一种高性能铌酸钾钠基无铅压电陶瓷的制备方法
CN100548919C (zh) 一种低温制备Bi3TiNbO9微纳米压电铁电粉体的方法
Meng et al. Piezoelectric materials: Properties, advancements, and design strategies for high-temperature applications
CN105837210A (zh) 铌锑酸钾钠系无铅压电陶瓷及其制备方法
CN103102154A (zh) Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料
Yang et al. Investigation of CuO‐Doped NKN Ceramics with High Mechanical Quality Factor Synthesized by a B‐Site Oxide Precursor Method
CN106431399B (zh) 无铅压电陶瓷粉体及其制备方法
CN101661990B (zh) 具高d33无铅压电陶瓷-聚合物压电复合材料的制备方法
Parija et al. Structural and electromechanical study of Bi0. 5Na0. 5TiO3-BaTiO3 solid-solutions
CN105198411A (zh) 大应变低驱动电场弛豫-铁电复合无铅压电陶瓷及其制备方法
CN116553927A (zh) 一种无铅压电陶瓷及制备方法
CN104119077A (zh) 一种水热法一步合成无铅压电K0.1Na0.9NbO3 粉体的方法
CN104985738A (zh) 聚偏氟乙烯基复合材料的制备方法
CN107162593A (zh) 一种铌酸钾钠无铅压电陶瓷的制备方法
Du et al. High piezoelectricity in PFN–PNN–PZT quaternary ceramics achieved via composition optimization near morphotropic phase boundary
CN103693680B (zh) 一种制备钛酸钡类化合物的方法
CN103664168B (zh) 一种BCTZ-xLa体系多功能电子陶瓷的制备方法
CN101386426B (zh) 一种无铅压电铌酸钾钠薄膜的制备方法
CN106278263B (zh) 无铅压电陶瓷薄膜的制备方法
CN103145417A (zh) 一种高性能低成本铌酸钾钠基无铅压电陶瓷及其制备方法
CN103979953A (zh) 一种新型稀土改性微波介质陶瓷及其制备方法
CN103979957B (zh) 一种提高退极化温度的钛酸铋钠-钛酸铋钾-钛酸钡三元陶瓷的制备方法
CN113620707A (zh) 一种用于功率型压电元件的稀土掺杂铌酸钾钠基无铅压电陶瓷及其制备工艺
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant