CN106430296A - 一种H2Ti4O9纳米片及纳米BaTiO3的制备方法 - Google Patents

一种H2Ti4O9纳米片及纳米BaTiO3的制备方法 Download PDF

Info

Publication number
CN106430296A
CN106430296A CN201610841664.XA CN201610841664A CN106430296A CN 106430296 A CN106430296 A CN 106430296A CN 201610841664 A CN201610841664 A CN 201610841664A CN 106430296 A CN106430296 A CN 106430296A
Authority
CN
China
Prior art keywords
preparation
nanometer sheet
reaction
nanometer
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610841664.XA
Other languages
English (en)
Other versions
CN106430296B (zh
Inventor
胡登卫
苗磊
栾巧巧
翟乐
王冬梅
窦树梅
凡明锦
杨得锁
陈强
温普红
郭进宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Caineng Additive Electronic Technology Co.,Ltd.
Original Assignee
Baoji University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoji University of Arts and Sciences filed Critical Baoji University of Arts and Sciences
Priority to CN201610841664.XA priority Critical patent/CN106430296B/zh
Publication of CN106430296A publication Critical patent/CN106430296A/zh
Application granted granted Critical
Publication of CN106430296B publication Critical patent/CN106430296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种H2Ti4O9纳米片及纳米BaTiO3的制备方法。该方法以K2Ti4O9·3H2O为主要原料,首先与盐酸进行离子交换反应得到H2Ti4O9·nH2O,然后分别用正丙胺溶液进行剥离反应,得到H2Ti4O9·nH2O纳米片胶体,将所得纳米片胶体与Ba(OH)2·8H2O进行水热处理得到BaTiO3。本发明具有无毒、价格低廉、性能稳定、吸附力强等特点,为开发功能材料开辟了新的途径。

Description

一种H2Ti4O9纳米片及纳米BaTiO3的制备方法
技术领域
本发明属于纳米陶瓷材料的制备技术领域,具体而言,涉及一种H2Ti4O9纳米片及纳米BaTiO3的制备技术。
背景技术
钛酸钡(BTO)具有优异的压电、介电和铁电性能,因此其在微电子以及光电子领域具有广泛的运用,例如多层陶瓷电容器(MLCC),铁电随机存取储存器(FRAM)和铁电场效应晶体管(FDRAM)等。层状钛酸钡材料由于其具有独特的层状微观构造,所以可以用来制备含有基质层和层间超细半导体粒子的纳米复合材料,因此钛酸钡还是一种重要的功能材料。
目前合成钛酸钡的方法有很多,包括高温固相烧结法,溶胶-凝胶法和水热合成法。总的来说可以分为固相法和液相法两大类。固相烧结法是指将固体反应原料按照配比混合,采用研磨的方法使之粉碎并均匀混合,然后在高温下使之反应制备的方法。高温固相法生产钛酸钡的主要原料是碳酸钡和二氧化钛。此方法成本低,产量高,仍是合成钛酸钡粉体的重要方法。但是该方法所得到的钛酸钡产物纯度不够高,粉体颗粒尺寸大,不能对产物形貌进行精确控制。
溶胶-凝胶法则是一种以液相反应为基础,将金属醇盐或者无机醇水解并使之溶胶凝胶化,然后将其干燥并烧结得到粉体的一种方法。与传统的固相烧结法相比,这种方法得到的钛酸钡纯度高,粉体尺寸小。但是无法得到一维结构的钛酸钡纳米线(纤维),无法满足实验科研领域对钛酸钡一维纳米材料的需求。
水热合成法制备钛酸钡是通过在高温高压的条件下合成钛酸钡,这种方法一般在特定的反应釜中进行。通过改变温度和压力以及原料的配比,可以对得到的钛酸钡进行形貌及尺寸进行控制,例如纳米线,纳米粒子等。但是水热法得到的纳米线的长径比相对较小,且无法控制纳米线之间的相互排列。
随着21世纪工业化程度的提高,环境问题日益严重,制约了人类的可持续发展,成为人们关注的焦点。在这种背景之下,减小化工生产的污染源是当今绿色化学最主要的研究方向。
发明内容
本发明的目的在于一方面提供了一种制备较小较薄H2Ti4O9纳米片的制备方法,以及由该H2Ti4O9纳米片制备钛酸钡纳米粉末的方法。用本发明制备的钛酸盐纳米材料在绿色化学中占着重要的位置,它具有无毒、价格低廉、性能稳定、吸附力强等特点。
具体地,为了实现本发明的上述技术目的,发明人通过大量试验研究并不懈探索,最终获得了如下技术方案:
一种H2Ti4O9纳米片的制备方法,该方法包括如下步骤:
(1)以K2Ti4O9·3H2O为原料,与盐酸溶液进行离子交换反应,抽滤,洗涤,干燥,得到粉末状H2Ti4O9·nH2O;
(2)用正丙胺溶液对步骤(1)所得粉末状H2Ti4O9·nH2O进行剥离反应,得到H2Ti4O9·nH2O纳米片。
优选地,如上所述H2Ti4O9纳米片的制备方法,其中步骤(1)中所述的盐酸溶液的浓度为0.2~0.6mol/L。
优选地,如上所述H2Ti4O9纳米片的制备方法,其中步骤(1)中采用去离子水洗涤反应产物。
优选地,如上所述H2Ti4O9纳米片的制备方法,其中步骤(1)中干燥的温度为45-60℃,干燥时间为12~48h。
优选地,如上所述H2Ti4O9纳米片的制备方法,其中步骤(2)中所述正丙胺溶液的质量分数为10%~15%。
优选地,如上所述H2Ti4O9纳米片的制备方法,其中步骤(2)中所述的反应温度为90~100℃,反应时间为24~60h。
一种纳米BaTiO3的制备方法,该方法包括如下步骤:
(1)以K2Ti4O9·3H2O为原料,与浓度0.2~0.6mol/L的盐酸溶液进行离子交换反应,抽滤,用去离子水洗涤,45-60℃干燥12~48h,得到粉末状H2Ti4O9·nH2O;
(2)用质量分数10%~15%的正丙胺溶液对步骤(1)所得粉末状H2Ti4O9·nH2O进行剥离反应,反应温度为90~100℃,反应时间为24~60h,得到H2Ti4O9·nH2O纳米片;
(3)将步骤(2)所得H2Ti4O9·nH2O纳米片与Ba(OH)2·8H2O进行水热法反应得到纳米BaTiO3
优选地,如上所述纳米BaTiO3的制备方法,其中步骤(3)中所述的反应温度为100℃,反应时间为12h。
与现有技术相比,本发明以K2Ti4O9·3H2O为主要原料,首先与盐酸进行离子交换反应得到H2Ti4O9·nH2O,然后用特定浓度的正丙胺溶液在一定温度下进行剥离反应,得到H2Ti4O9·nH2O纳米片胶体,再将所得纳米片胶体与Ba(OH)2·8H2O进行水热处理得到BaTiO3。用本发明制备的钛酸盐纳米材料在绿色化学中占着重要的位置,它具有无毒、价格低廉、性能稳定、吸附力强等特点。在日常应用中不仅不会产生污染,而且因其具有较强的吸附能力所以会吸附污染源。所得钛酸盐还表现出较好的介电性质和铁电性质,因此可应用于层电容器、热敏电阻、光电设备、机电设备、传感器、动态随机存储器和领域效应晶体管等方面。
附图说明
图1是制备纳米BaTiO3的反应机理图。
图2是酸交换得到H2Ti4O9·nH2O的SEM图。
图3是在常温和100℃下由丙胺剥离的纳米片的SEM图,其中a为常温,b为100℃。
图4是剥离前后的FT-IR对比图,其中a为剥离前,b为剥离后。
图5是四甲基氢氧化铵和丙胺制备BaTiO3的XRD对比图,其中a为四甲基氢氧化铵,b为丙胺。
图6是丙胺在100℃下剥离的纳米片反应12h、24h、48h制备BaTiO3的XRD对比图,其中a为12h,b为24h,c为48h。
图7是丙胺在100℃下剥离的纳米片反应12h、24h制备BaTiO3的SEM对比图,其中a为12h,b为24h。
具体实施方式
下面通过具体实施例对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。另外,实施例中未注明具体技术操作步骤或条件者,均按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:H2Ti4O9·nH2O的制备
用电子天平称取4g的K2Ti4O9·3H2O于1000mL的烧杯中,加入500mL浓度为0.5mol/L的盐酸溶液并放入磁子,用保鲜膜包裹住烧杯口以防HCl挥发,在常温条件下将烧杯放到磁力搅拌器上,搅拌速度为600r/min,反应3天后,用砂芯漏斗抽滤同时用大量去离子水洗涤掉过量的盐酸,抽滤后重复上述步骤,最后将所得到的产品放于电热恒温鼓风干燥箱中50℃条件下干燥24h后得到质子化的H2Ti4O9·nH2O,产品为白色粉末状。
结果分析:由图2可知H2Ti4O9·nH2O呈纤维状,分布均匀,纳米纤维宽度大约是220纳米,长度大约为10微米,厚度大约为70纳米。
实施例2:H2Ti4O9·nH2O的剥离
(1)100℃剥离
称取0.2g质子化的H2Ti4O9·nH2O样品,加入到容积为70mL的聚四氟反应釜中,再向其中加入10mL质量分数为12.5%的丙胺溶液,并放入磁子。在磁力搅拌器上反应,设置温度100℃,搅拌速度300r/min,反应48h。将丙胺溶液采用相同浓度的四甲基氢氧化铵溶液代替后,重复上述步骤。
(2)常温剥离
称取0.2g质子化的H2Ti4O9·nH2O样品,加入到容积为20mL的小瓶中,再向其中加入10mL质量分数为12.5%的丙胺溶液,并放入磁子。在磁力搅拌器上反应,设置常温条件下搅拌速度是300r/min,反应48h,最后用激光灯照射测试丁达尔效应。将丙胺溶液采用相同浓度的四甲基氢氧化铵溶液代替后,重复上述步骤。
结果分析:由图3可得丙胺在不同温度下剥离的纳米片的表面形貌与剥离前一样都是纤维状,并且表现为层状结构,但其形貌没有剥离前规整,晶粒尺寸也有着明显的变化。丙胺在常温条件下剥离H2Ti4O9·nH2O得到的H2Ti4O9·nH2O纳米片的宽度大约为250nm,长度大约在0.3到3μm之间,厚度大约是30nm。而丙胺在100℃条件下剥离H2Ti4O9·nH2O得到的H2Ti4O9·nH2O纳米片的宽度大约为260nm,长度大约是2.4μm,厚度大约是20nm。所以丙胺在100℃条件下剥离H2Ti4O9·nH2O得到的H2Ti4O9·nH2O纳米片的形貌更为整齐,剥离的更为彻底。
图4中(a)和(b)最大的区别在于图(b)中出现了伸缩振动吸收在3500~3100cm-1的N-H变形振动,这是由于丙胺掺杂于H2Ti4O9·nH2O晶体结构中,氮元素与氢元素形成了氮氢键,发生了振动伸缩。而且在1000~500cm-1出现了几组吸收峰为Ti-O八面体的吸收振动峰,剥离前后样品的这几组吸收峰的位置均没有发生明显的变化,只有强度稍微增加。说明样品在丙胺掺杂后还具有优良稳定性的伸缩振动峰,剥离前后较为相似的红外谱图说明丙胺以一种比较为均匀的方式进入到H2Ti4O9·nH2O的晶格中,并且对晶体结构的影响很小。
实施例3:纳米BaTiO3的制备
称取0.2g的Ba(OH)2·8H2O置于容积为70mL的聚四氟反应釜中,用移液枪依次加人4mL去离子水和2mL无水乙醇,在磁力搅拌器上搅拌10min后,再用移液枪加入2mL H2Ti4O9·nH2O纳米片胶体(实施例2制备,即用12.5%丙胺溶液在100℃下剥离得到),置于磁力搅拌器上。设置反应温度为100℃,搅拌速度为300r/min,分别反应12h、24h和48h。反应结束后用砂芯漏斗抽滤,先用10mL浓度为0.5mol/L的冰醋酸洗涤,再用去离子水洗涤,在电热恒温鼓风干燥箱中50℃条件下干燥12h后得到白色粉末产品。并且尝试用回流装置制备BaTiO3,将上述反应物置于呈有硅油的圆底烧瓶里在磁力搅拌器上进行回流反应,反应条件与上述相同。
结果分析:由图5可知(a)和(b)特征峰的位置都符合(JCPDS 31-0174BaTiO3),所以产物都为BaTiO3,但是(a)图中2θ在25°到30°之间出现了一个杂峰,经分析可能是空气中的CO2与Ba(OH)2·8H2O反应生成的BaCO3。而且(b)图中特征峰的衍射强度明显高于(a),说明由丙胺剥离的H2Ti4O9·nH2O纳米片与Ba(OH)2·8H2O反应24h生成的BaTiO3的结晶性优于由四甲基氢氧化铵剥离的H2Ti4O9·nH2O纳米片与Ba(OH)2·8H2O反应生成的BaTiO3
由图6可知H2Ti4O9·nH2O纳米片与Ba(OH)2·8H2O反应时间为24h生成BaTiO3的XRD图在2θ为5°到10°之间的峰为前驱体H2Ti4O9·nH2O纳米片的特征峰,则反应没有完全进行,反应时间为48h生成BaTiO3的XRD图在2θ为15°到20°之间多了一个杂峰,经分析可能是Ti9O17或Ti6O11,原因可能是H2Ti4O9·nH2O纳米片转换成了钛的氧化物,说明24h和48h的反应时间均不适合。而且反应时间为12h生成BaTiO3的XRD图谱较为平滑,没有杂峰,所以反应时间为12h的结果最佳。
由图7可知H2Ti4O9·nH2O纳米片与Ba(OH)2·8H2O反应12h和24h生成的BaTiO3形貌规整,都呈扁平的椭圆形块状,颗粒分布比较均匀。反应时间为12h的粒径大小约是110nm,反应时间为24h的粒径大小约为140nm,说明反应时间为12h生成的BaTiO3晶粒更小,结晶性更好。
实施例4:择优取向性纳米BaTiO3陶瓷的制备
采用反应模板晶粒生长法(RTGG)制备择优取向性纳米BaTiO3陶瓷。称取本发明实施例3制备的板状纳米BaTiO3粉体1g,与3g溶剂(甲苯:无水乙醇=6:4,体积比)、0.20g聚醋酸乙烯以及100μL邻苯二甲酸二丁酯于20mL的球磨瓶中,并加入四分之三瓶子体积的直径为5mm的氧化锆珠子,球磨12-48h。然后将合成的料浆用流延机铺在PET薄膜上。待干燥后,将薄膜揭下叠成长和宽都为15mm左右并在0.2MPa恒压下保持3min。上述所得的膜片置于垫板上,于箱式电炉中烧结,在电炉控制器中输入预先设计的温度曲线,先从室温升到500℃,恒温3小时,接着升温到900℃,恒温3-9小时;继续升温到1350℃,恒温3小时。最后,随炉冷却到室温。测定制备的择优取向性纳米BaTiO3陶瓷的物理参数,结果如表1所示。
表1:不同第二阶段恒温时间制备择优取向性纳米BaTiO3陶瓷的物理参数比较

Claims (8)

1.一种H2Ti4O9纳米片的制备方法,该方法包括如下步骤:
(1)以K2Ti4O9·3H2O为原料,与盐酸溶液进行离子交换反应,抽滤,洗涤,干燥,得到粉末状H2Ti4O9·nH2O。
(2)用正丙胺溶液对步骤(1)所得粉末状H2Ti4O9·nH2O进行剥离反应,得到H2Ti4O9·nH2O纳米片。
2.根据权利要求1所述H2Ti4O9纳米片的制备方法,其特征在于,步骤(1)中所述的盐酸溶液的浓度为0.2~0.6mol/L。
3.根据权利要求1所述H2Ti4O9纳米片的制备方法,其特征在于,步骤(1)中采用去离子水洗涤反应产物。
4.根据权利要求1所述H2Ti4O9纳米片的制备方法,其特征在于,步骤(1)中干燥的温度为45-60℃,干燥时间为12~48h。
5.根据权利要求1所述H2Ti4O9纳米片的制备方法,其特征在于,步骤(2)中所述正丙胺溶液的质量分数为10%~15%。
6.根据权利要求1所述H2Ti4O9纳米片的制备方法,其特征在于,步骤(2)中所述的反应温度为90~100℃,反应时间为24~60h。
7.一种纳米BaTiO3的制备方法,该方法包括如下步骤:
(1)以K2Ti4O9·3H2O为原料,与浓度0.2~0.6mol/L的盐酸溶液进行离子交换反应,抽滤,用去离子水洗涤,45-60℃干燥12~48h,得到粉末状H2Ti4O9·nH2O;
(2)用质量分数10%~15%的正丙胺溶液对步骤(1)所得粉末状H2Ti4O9·nH2O进行剥离反应,反应温度为90~100℃,反应时间为24~60h,得到H2Ti4O9·nH2O纳米片;
(3)将步骤(2)所得H2Ti4O9·nH2O纳米片与Ba(OH)2·8H2O进行水热法反应得到纳米BaTiO3
8.根据权利要求7所述纳米BaTiO3的制备方法,其特征在于,步骤(3)中所述的反应温度为100℃,反应时间为12h。
CN201610841664.XA 2016-09-22 2016-09-22 一种H2Ti4O9纳米片及纳米BaTiO3的制备方法 Active CN106430296B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610841664.XA CN106430296B (zh) 2016-09-22 2016-09-22 一种H2Ti4O9纳米片及纳米BaTiO3的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610841664.XA CN106430296B (zh) 2016-09-22 2016-09-22 一种H2Ti4O9纳米片及纳米BaTiO3的制备方法

Publications (2)

Publication Number Publication Date
CN106430296A true CN106430296A (zh) 2017-02-22
CN106430296B CN106430296B (zh) 2017-11-24

Family

ID=58166624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610841664.XA Active CN106430296B (zh) 2016-09-22 2016-09-22 一种H2Ti4O9纳米片及纳米BaTiO3的制备方法

Country Status (1)

Country Link
CN (1) CN106430296B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825872A (zh) * 2019-03-01 2019-05-31 宝鸡文理学院 一维高性能BaTiO3/SrTiO3纳米复合介观晶体的可控制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698508A (zh) * 2009-10-23 2010-04-28 北京工业大学 一种制备二氧化钛纳米层片的方法
CN102616840A (zh) * 2012-04-01 2012-08-01 温普红 由剥离纳米片制备暴露特定晶面过渡金属氧化物纳米单晶的方法
CN103483897A (zh) * 2013-10-17 2014-01-01 盐城工学院 基于缓蚀剂插层纳米钛酸载体的自修复涂层的制备方法
CN104193323A (zh) * 2014-08-25 2014-12-10 哈尔滨工业大学 SrTiO3/ TiO2复合热电陶瓷材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698508A (zh) * 2009-10-23 2010-04-28 北京工业大学 一种制备二氧化钛纳米层片的方法
CN102616840A (zh) * 2012-04-01 2012-08-01 温普红 由剥离纳米片制备暴露特定晶面过渡金属氧化物纳米单晶的方法
CN103483897A (zh) * 2013-10-17 2014-01-01 盐城工学院 基于缓蚀剂插层纳米钛酸载体的自修复涂层的制备方法
CN104193323A (zh) * 2014-08-25 2014-12-10 哈尔滨工业大学 SrTiO3/ TiO2复合热电陶瓷材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QI FENG, ET AL.: ""Hydrothermal soft chemical synthesis of BaTiO3 and titanium oxide with cocoon-like particle morphology"", 《J MATER SCI》 *
年季强等: ""微波胺基化四钛酸材料的合成研究"", 《硅酸盐通报》 *
王昕等: ""表面有机化钛酸材料的制备及吸附染料性能"", 《南京工业大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825872A (zh) * 2019-03-01 2019-05-31 宝鸡文理学院 一维高性能BaTiO3/SrTiO3纳米复合介观晶体的可控制备方法
CN109825872B (zh) * 2019-03-01 2020-09-25 宝鸡文理学院 一维高性能BaTiO3/SrTiO3纳米复合介观晶体的可控制备方法

Also Published As

Publication number Publication date
CN106430296B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN104058461B (zh) 一种铜铁矿结构CuFeO2晶体材料的低温制备方法
CN104828858B (zh) 基于球磨制备纳米钛酸钡粉末的方法
CN107151029A (zh) 一种四方相钛酸钡粉体的溶胶‑水热法制备工艺
CN103523824B (zh) 一种光催化用纳米片状铁电材料的制备方法
CN103553589B (zh) 一种制备CaCu3Ti4O12陶瓷材料的方法
Zhang et al. Fabrication of Monodispersed 5‐nm BaTiO3 Nanocrystals with Narrow Size Distribution via One‐Step Solvothermal Route
Zhang et al. Synthesis of tetragonal BaTiO3 nano-particle via a novel tartaric acid co-precipitation process
Tian et al. Phase evolutions and electric properties of BaTiO 3 ceramics by a low-temperature sintering process
Wang et al. Coprecipitation Synthesis of MgO‐Doped ZrO2 Nano Powder
Bagchi et al. A simple sol–gel approach to synthesize nanocrystalline 8 mol% yttria stabilized zirconia from metal-chelate precursors: Microstructural evolution and conductivity studies
Hagiwara et al. Fabrication of dense (Bi 1/2 K 1/2) TiO 3 ceramics using hydrothermally derived fine powders
Chen et al. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method
CN111072065A (zh) 一种[111]取向的钛酸锶模板材料及其制备方法
CN101050118A (zh) 一种制备钙钛矿陶瓷粉体的方法
Gu et al. Reactions in preparing Bi4Ti3O12 ultrafine powders by sol-gel process
CN113716954A (zh) 一种具有抗菌性能四方相钛酸钡陶瓷粉体的制备方法
CN106430296A (zh) 一种H2Ti4O9纳米片及纳米BaTiO3的制备方法
CN104001493A (zh) 一种八面体形貌的PbTiO3-TiO2复合纳米光催化剂的制备方法
CN107814567B (zh) 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法
CN107275475B (zh) 一种TiO2@PZT纳米线阵列/聚合物的复合介电材料及其制备方法
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
CN107673403A (zh) 一种层状钛酸锶的制备方法
CN104941539B (zh) 钙钛矿型复合氧化物纳米晶体胶的制备方法
CN106892450A (zh) 一种通过La离子掺杂合成PbTiO3圆片的方法
Zhang et al. Processing and characterization of lead zirconate titanate nanopowders by a simple water‐based sol–gel method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240118

Address after: Room 026, F2006, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province, China, 710086

Patentee after: Shaanxi Caineng Additive Electronic Technology Co.,Ltd.

Address before: 721000 No.1 Gaoxin Avenue, Baoji City, Shaanxi Province

Patentee before: BAOJI University OF ARTS AND SCIENCES

TR01 Transfer of patent right