CN106406093A - 超声波电机伺服控制系统不对称滞回补偿控制装置及方法 - Google Patents

超声波电机伺服控制系统不对称滞回补偿控制装置及方法 Download PDF

Info

Publication number
CN106406093A
CN106406093A CN201610889716.0A CN201610889716A CN106406093A CN 106406093 A CN106406093 A CN 106406093A CN 201610889716 A CN201610889716 A CN 201610889716A CN 106406093 A CN106406093 A CN 106406093A
Authority
CN
China
Prior art keywords
asymmetric
expressed
hysteretic behavior
control
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610889716.0A
Other languages
English (en)
Other versions
CN106406093B (zh
Inventor
傅平
程敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201610889716.0A priority Critical patent/CN106406093B/zh
Publication of CN106406093A publication Critical patent/CN106406093A/zh
Application granted granted Critical
Publication of CN106406093B publication Critical patent/CN106406093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明涉及一种超声波电机伺服控制系统不对称滞回补偿控制装置及方法,该装置包括控制系统、基座和设于基座上的超声波电机,超声波电机一侧输出轴与光电编码器连接,另一侧输出轴与飞轮惯性负载连接,飞轮惯性负载的输出轴经联轴器与力矩传感器连接,光电编码器、力矩传感器的信号输出端分别接至控制系统。该控制装置包括不对称滞回补偿控制器和电机组成,整个控制方法建立在补偿控制器的基础上,在控制器的设计上也以辨识误差最小为其调整函数,从而能获得更好的控制效能。该装置及其控制系统不仅控制准确度高,而且结构简单、紧凑,使用效果好。

Description

超声波电机伺服控制系统不对称滞回补偿控制装置及方法
技术领域
本发明涉及电机控制器领域,特别是一种超声波电机伺服控制系统不对称滞回补偿控制装置及方法。
背景技术
现有的超声波电机伺服控制系统的设计中由于速度死区的存在,使得系统的性能受到影响,对周期重复信号控制时有一定的误差。
为了改善系统的跟随性能,我们设计了基于速度死区补偿的超声波电机伺服控制系统。从速度跟随的实作结果中,我们发现系统在速度关系基本是线性,且参数的变动、噪声、交叉耦合的干扰和摩擦力等因素几乎无法对于速度输出造成影响,故基于速度死区补偿的超声波电机伺服控制系统能有效的增进系统的控制效能,并进一步减少系统对于不确定性的影响程度,因此电机的力矩与速度控制可以获得较好的动态特性。
发明内容
本发明的目的在于提供一种基于速度死区补偿的超声波电机伺服控制系统,该装置及其控制系统不仅控制准确度高,而且结构简单、紧凑,使用效果好。
为实现上述目的,本发明的技术方案是:一种超声波电机伺服控制系统不对称滞回补偿控制装置,包括控制系统、基座和设于基座上的超声波电机,其特征在于:所述超声波电机一侧输出轴与光电编码器相连接,另一侧输出轴与飞轮惯性负载相连接,所述飞轮惯性负载的输出轴经联轴器与力矩传感器相连接,所述光电编码器的信号输出端、所述力矩传感器的信号输出端分别接至控制系统;所述控制系统包括一不对称补偿控制器。
进一步的,所述控制系统包括超声波电机驱动控制电路,所述超声波电机驱动控制电路包括控制芯片电路和驱动芯片电路,所述光电编码器的信号输出端与所述控制芯片电路的相应输入端相连接,所述控制芯片电路的输出端与所述驱动芯片电路的相应输入端相连接,以驱动所述驱动芯片电路,所述驱动芯片电路的驱动频率调节信号输出端和驱动半桥电路调节信号输出端分别与所述超声波电机的相应输入端相连接;所述不对称补偿控制器设置于控制芯片电路中。
进一步的,所述联轴器为一弹性联轴器。
本发明还提供一种超声波电机伺服控制系统不对称滞回补偿控制方法,其特征在于,包括以下步骤:建立一不对称滞回数学模型,在不对称滞回数学模型的基础进行不对称补偿控制,从而使得系统力矩速度的特性接近线性关系,通过在减小辨识动态误差的同时也使得伺服系统滞回最小,具体包括以下步骤:步骤S1:超声波电机驱动系统的动态方程可以写为:其中Ap=-B/J,BP=J/Kt>0,CP=-1/J;B为阻尼系数,J为转动惯量,Kt为电流因子,Tf(v)为摩擦阻力力矩,TL为负载力矩,U(t)是电机的输出力矩,θr(t)为通过光电编码器测量得到的位置信号;步骤S2:建立一不对称滞回模型;步骤S3:输入信号v(t)先经过逆不对称系统,其输出作为控制信号进入不对称系统,使用不对称补偿控制使得系统力矩速度的特性接近线性关系。
进一步的,步骤S2具体包括以下步骤:步骤S21:所述不对称滞回模型结合了函数Sr和密度函数p(r)描述迟滞的非线性,v(t)为输入信号,Φ[v](t)为不对称滞回系统的输出信号,r为系统待辨识的初始参数,所述不对称滞回模型为:
p(r)为密度函数,Sr[v](t)为函数,其定义如下:
Sr[v](t)=s(v(t),Sr[v](ti)),
对于ti<t<ti+1且0≤i≤N-1,
s(v,z)=max(vl-r,min(vr(v)+r,z))
不对称滞回模型的输出表示为:
步骤S22:当输入单调递增或者单调递减时,不对称滞回模型的输出分别表示为∏+[v](t)和∏-[v](t):
当输入单调递增或者单调递减时,Fr[v](t)的输出表示为:
因此,式(2.45)表示为:
然后,得到式(2.45)为:
式(2.52)进一步的表示为:
因为包络函数γl和γr是可逆的,因此式(2.53)表示为:
得到不对称滞回模型的输出表示为:
不对称滞回模型的输出∏-[v](t)表示为:
然后,将密度函数和Fr[v](t)代入逆不对称滞回模型的输出方程,得到方程为:
逆不对称滞回模型由初始加载曲线得到:
修改后的初始加载曲线不对称滞回模型表示为:
不对称滞回模型的密度函数表示为:
不对称滞回模型表示为:
上述公式表明,不对称滞回模型由初始加载曲线表示,逆不对称滞回模型表示为:
其中是逆模型的阈值而表示的是改进的逆初始载荷曲线;
步骤S23:不对称滞回模型表示为:
该模型(2.63)的逆表示为:
所以,逆不对称滞回模型表示为:
为了得到逆模型的参数,用下面方程:
当j=1,2,Kn且r0=0时,F[v]等于信号的输入v:
Fr=0[v]=v (2.67)
当j=0,不对称滞回模型的输出为:
∏[v](t)=p(0)v (2.68)
因此,当r0=0时,逆不对称滞回模型表示为:
-1[v](t)=(p(0))-1v (2.69)
改变阈值r,初始加载曲线表示为:
当且仅当p0=p(0)时;
以类似的方式改变初始加载曲线的阈值r,得:
当且仅当时;
逆的阈值是正的,并且与正的阈值相关;
式(2.66)的导数关于阈值表示为:
逆密度函数的权重用不对称模型表示为:
与现有技术相比,本发明的有益效果为:使用不对称补偿控制的超声波电机伺服控制器,系统在力矩速度跟踪效果上有着显著的改善且参数的变动、噪声、交叉耦合的干扰和摩擦力等因素几乎无法对于运动系统效果造成影响,故基于不对称补偿控制的超声波电机伺服控制系统能有效的增进系统的控制效能,并进一步减少系统对于不确定性的影响程度,提高了控制的准确性,可以获得较好的动态特性。此外,该装置设计合理,结构简单、紧凑,制造成本低,具有很强的实用性和广阔的应用前景。
附图说明
图1是本发明实施例的结构示意图。
图2是本发明实施例的控制电路原理图。
图中,1-光电编码器,2-光电编码器固定支架,3-超声波电机输出轴,4-超声波电机,5-超声波电机固定支架,6-超声波电机输出轴,7-飞轮惯性负载,8-飞轮惯性负载输出轴,9-弹性联轴器,10-力矩传感器,11-力矩传感器固定支架,12-基座,13-控制芯片电路,14-驱动芯片电路,15、16、17-光电编码器输出的A、B、Z相信号,18、19、20、21-驱动芯片电路产生的驱动频率调节信号,22-驱动芯片电路产生的驱动半桥电路调节信号,23、24、25、26、27、28-控制芯片电路产生的驱动芯片电路的信号,29-超声波电机驱动控制电路。
具体实施方式
下面结合附图和具体实施例对本发明做进一步解释。
本发明提供一种超声波电机伺服控制系统不对称滞回补偿控制装置,如图1所示,包括基座12和设于基座12上的超声波电机4,所述超声波电机4一侧输出轴3与光电编码器1相连接,另一侧输出轴6与飞轮惯性负载7相连接,所述飞轮惯性负载7的输出轴8经弹性联轴器9与力矩传感器10相连接,所述光电编码器1的信号输出端、所述力矩传感器10的信号输出端分别接至控制系统。所述控制系统包括一不对称补偿控制器。
上述超声波电机4、光电编码器1、力矩传感器10分别经超声波电机固定支架5、光电编码器固定支架2、力矩传感器固定支架11固定于所述基座12上。
如图2所示,上述控制系统包括超声波电机驱动控制电路29,所述超声波电机驱动控制电路29包括控制芯片电路13和驱动芯片电路14,所述光电编码器1的信号输出端与所述控制芯片电路13的相应输入端相连接,所述控制芯片电路13的输出端与所述驱动芯片电路14的相应输入端相连接,以驱动所述驱动芯片电路14,所述驱动芯片电路14的驱动频率调节信号输出端和驱动半桥电路调节信号输出端分别与所述超声波电机4的相应输入端相连接。所述驱动芯片电路14产生驱动频率调节信号和驱动半桥电路调节信号,对超声波电机输出A、B两相PWM的频率、相位及通断进行控制。通过开通及关断PWM波的输出来控制超声波电机的启动和停止运行;通过调节输出的PWM波的频率及两相的相位差来调节电机的最佳运行状态。所述不对称补偿控制器(图中未画出)设置于控制芯片电路中。
本发明还提供一种基于不对称补偿控制的超声波电机伺服控制方法,由基于不对称补偿控制的超声波电机伺服控制器和电机来估测未知的滞回特性动态函数。
本发明通过建立一不对称滞回数学模型,在不对称滞回数学模型的基础进行不对称补偿控制,从而使得系统力矩速度的特性接近线性关系,通过在减小辨识动态误差的同时也使得伺服系统滞回最小,具体包括以下步骤:步骤S1:超声波电机驱动系统的动态方程可以写为:其中Ap=-B/J,BP=J/Kt>0,CP=-1/J;B为阻尼系数,J为转动惯量,Kt为电流因子,Tf(v)为摩擦阻力力矩,TL为负载力矩,U(t)是电机的输出力矩,θr(t)为通过光电编码器测量得到的位置信号;步骤S2:建立一不对称滞回模型;步骤S3:输入信号v(t)先经过逆不对称滞回系统,其输出作为控制信号进入不对称滞回系统,使用不对称补偿控制使得系统力矩速度的特性接近线性关系。
当电机的负载力矩较大时,电机力矩-速度特性的滞回不对称,为了减少此现象造成的影响,我们使用不对称滞回补偿控制对其进行控制。
不对称滞回模型的建模包括以下步骤:
不对称滞回模型结合了函数Sr和密度函数p(r)描述迟滞的非线性,v(t)为输入信号,Φ[v](t)为不对称滞回系统的输出信号,r为系统待辨识的初始参数。它表示为:
p(r)为密度函数。Sr[v](t)为函数,其定义如下:
Sr[v](t)=s(v(t),Sr[v](ti)),
对于ti<t<ti+1且0≤i≤N-1,
s(v,z)=max(vl-r,min(vr(v)+r,z))
不对称滞回模型的输出可以表示为:
当输入单调递增或者单调递减时,不对称滞回模型的输出分别可以表示为∏+[v](t)和∏-[v](t):
当输入单调递增或者单调递减时,Fr[v](t)的输出可表示为:
因此,式(2.45)可以表示为:
然后,可以得到式(2.45)为:
式(2.52)可以进一步的表示为:
因为包络函数γl和γr是可逆的,因此式(2.53)可以表示为:
因此可以得到不对称滞回模型的输出可以表示为:
不对称滞回模型的输出∏-[v](t)可以表示为:
然后,将密度函数和Fr[v](t)代入逆不对称滞回模型的输出方程,可得到方程为:
逆不对称滞回模型可由初始加载曲线得到:
修改后的初始加载曲线不对称滞回模型可以表示为:
不对称滞回模型的密度函数可以表示为:
不对称滞回模型可以表示为:
上述公式表明,不对称滞回模型可以由初始加载曲线表示。逆不对称滞回模型可以表示为:
其中是逆模型的阈值而表示的是改进的逆初始载荷曲线。
下面讨论逆不对称滞回模型的参数阈值和密度函数的影响。不对称滞回模型可以表示为:
该模型(2.63)的逆可以表示为:
所以,逆不对称滞回模型可以表示为:
为了得到逆模型的参数,可以用下面方程:
当j=1,2,Kn且r0=0时,F[v]等于信号的输入v:
Fr=0[v]=v (2.67)
当j=0,不对称滞回模型的输出为:
∏[v](t)=p(0)v (2.68)
因此,当r0=0时,逆不对称滞回模型可以表示为:
-1[v](t)=(p(0))-1v (2.69)
改变阈值r,初始加载曲线可以表示为:
当且仅当p0=p(0)时;
以类似的方式改变初始加载曲线的阈值r,可得:
当且仅当时;
逆的阈值是正的,并且与正的阈值相关。
式(2.66)的导数关于阈值可以表示为:
那么可以得出结论,逆密度函数的权重可以用不对称滞回模型可以表示为:
当系统工作时,输入信号v(t)先经过逆不对称滞回系统,其输出作为控制信号进入不对称滞回系统。由稳定性理论可以证明,上述系统是稳定的。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (5)

1.一种超声波电机伺服控制系统不对称滞回补偿控制装置,包括控制系统、基座和设于基座上的超声波电机,其特征在于:所述超声波电机一侧输出轴与光电编码器相连接,另一侧输出轴与飞轮惯性负载相连接,所述飞轮惯性负载的输出轴经一联轴器与力矩传感器相连接,所述光电编码器的信号输出端、所述力矩传感器的信号输出端分别接至控制系统;所述控制系统包括一不对称补偿控制器。
2.根据权利要求1所述的超声波电机伺服控制系统不对称滞回补偿控制装置,其特征在于:所述控制系统包括超声波电机驱动控制电路,所述超声波电机驱动控制电路包括控制芯片电路和驱动芯片电路,所述光电编码器的信号输出端与所述控制芯片电路的相应输入端相连接,所述控制芯片电路的输出端与所述驱动芯片电路的相应输入端相连接,以驱动所述驱动芯片电路,所述驱动芯片电路的驱动频率调节信号输出端和驱动半桥电路调节信号输出端分别与所述超声波电机的相应输入端相连接;所述不对称补偿控制器设置于控制芯片电路中。
3.根据权利要求1所述的超声波电机伺服控制系统不对称滞回补偿控制装置,其特征在于:所述联轴器为一弹性联轴器。
4.一种超声波电机伺服控制系统不对称滞回补偿控制方法,其特征在于,包括以下步骤:建立一不对称滞回数学模型,在不对称滞回数学模型的基础进行不对称补偿控制,从而使得系统力矩速度的特性接近线性关系,通过在减小辨识动态误差的同时也使得伺服系统滞回最小,具体包括以下步骤:
步骤S1:超声波电机驱动系统的动态方程可以写为:其中Ap=-B/J,BP=J/Kt>0,CP=-1/J;B为阻尼系数,J为转动惯量,Kt为电流因子,Tf(v)为摩擦阻力力矩,TL为负载力矩,U(t)是电机的输出力矩,θr(t)为通过光电编码器测量得到的位置信号;
步骤S2:建立一不对称滞回模型;
步骤S3:输入信号v(t)先经过逆不对称滞回系统,其输出作为控制信号进入不对称滞回系统,使用不对称补偿控制使得系统力矩速度的特性接近线性关系。
5.根据权利要求4所述的超声波电机伺服控制系统不对称滞回补偿控制方法,其特征在于:步骤S2具体包括以下步骤:
步骤S21:所述不对称滞回模型结合了函数Sr和密度函数p(r)描述迟滞的非线性,v(t)为输入信号,Φ[v](t)为不对称滞回系统的输出信号,r为系统待辨识的初始参数,所述不对称滞回模型为:
p(r)为密度函数,Sr[v](t)为函数,其定义如下:
Sr[v](t)=s(v(t),Sr[v](ti)),
对于ti<t<ti+1且0≤i≤N-1,
s(v,z)=max(vl-r,min(vr(v)+r,z))
不对称滞回模型的输出表示为:
步骤S22:当输入单调递增或者单调递减时,不对称滞回模型的输出分别表示为∏+[v](t)和∏-[v](t):
当输入单调递增或者单调递减时,Fr[v](t)的输出表示为:
因此,式(2.45)表示为:
然后,得到式(2.45)为:
式(2.52)进一步的表示为:
因为包络函数γl和γr是可逆的,因此式(2.53)表示为:
得到不对称滞回模型的输出表示为:
不对称滞回模型的输出∏-[v](t)表示为:
然后,将密度函数和Fr[v](t)代入不对称滞回逆模型的输出方程,得到方程为:
逆不对称滞回模型由初始加载曲线得到:
修改后的初始加载曲线不对称滞回模型表示为:
不对称滞回模型的密度函数表示为:
不对称滞回模型表示为:
上述公式表明,不对称滞回模型由初始加载曲线表示,逆不对称滞回模型表示为:
其中是逆不对称滞回模型的阈值而表示的是改进的逆初始载荷曲线;
步骤S23:不对称滞回模型表示为:
该不对称滞回模型(2.63)的逆表示为:
所以,逆不对称滞回模型表示为:
为了得到逆不对称滞回模型的参数,用下面方程:
当j=1,2,K n且r0=0时,F[v]等于信号的输入v:
Fr=0[v]=v (2.67)
当j=0,不对称滞回模型的输出为:
∏[v](t)=p(0)v (2.68)
因此,当r0=0时,逆不对称滞回模型表示为:
-1[v](t)=(p(0))-1v (2.69)
改变阈值r,初始加载曲线表示为:
当且仅当p0=p(0)时;
以类似的方式改变初始加载曲线的阈值r,得:
当且仅当时;
逆的阈值是正的,并且与正的阈值相关;
式(2.66)的导数关于阈值表示为:
逆密度函数的权重用不对称模型表示为:
CN201610889716.0A 2016-10-12 2016-10-12 超声波电机伺服控制系统不对称滞回补偿控制装置 Active CN106406093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610889716.0A CN106406093B (zh) 2016-10-12 2016-10-12 超声波电机伺服控制系统不对称滞回补偿控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610889716.0A CN106406093B (zh) 2016-10-12 2016-10-12 超声波电机伺服控制系统不对称滞回补偿控制装置

Publications (2)

Publication Number Publication Date
CN106406093A true CN106406093A (zh) 2017-02-15
CN106406093B CN106406093B (zh) 2019-10-11

Family

ID=59229217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610889716.0A Active CN106406093B (zh) 2016-10-12 2016-10-12 超声波电机伺服控制系统不对称滞回补偿控制装置

Country Status (1)

Country Link
CN (1) CN106406093B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842961A (zh) * 2017-04-07 2017-06-13 闽江学院 基于Stop算子的超声波电机伺服控制系统对称滞回控制方法
CN107026585A (zh) * 2017-04-24 2017-08-08 闽江学院 一种超声波电机伺服控制系统摩擦力滞回控制方法
CN107257212A (zh) * 2017-06-29 2017-10-17 闽江学院 一种基于反步和逆死区模型的输出反馈压电电机控制方法
CN113741351A (zh) * 2021-09-01 2021-12-03 闽江学院 基于改进play算子的电机伺服控制系统迟滞控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601588A (en) * 1966-05-23 1971-08-24 Foxboro Co Method and apparatus for adaptive control
EP1026818A4 (en) * 1997-10-24 2001-09-12 Yaskawa Denki Seisakusho Kk MOTOR SPEED REGULATOR AND METHOD FOR ADJUSTING THE GAIN OF SAID REGULATOR
CN101106339A (zh) * 2007-06-18 2008-01-16 河南科技大学 超声波电机闭环控制电路
CN101339407A (zh) * 2008-08-13 2009-01-07 南京航空航天大学 迟滞系统的逆系统控制方法
CN101977034A (zh) * 2010-11-08 2011-02-16 北京理工大学 Backlash自适应滤波器及其对迟滞的建模与补偿方法
CN203324452U (zh) * 2013-07-10 2013-12-04 闽江学院 超声波电机瞬态特性测试装置
CN203324811U (zh) * 2013-06-19 2013-12-04 闽江学院 行波型超声波电机伺服控制系统控制特性测试装置
CN103558843A (zh) * 2013-11-05 2014-02-05 中国航空工业集团公司西安飞机设计研究所 一种飞机伺服弹性频响试验自动调幅扫频方法
CN104796111A (zh) * 2015-05-14 2015-07-22 北京航空航天大学 一种用于动态迟滞系统建模与补偿的非线性自适应滤波器
CN105182745A (zh) * 2015-08-11 2015-12-23 浙江工业大学 一种带有死区补偿的机械臂伺服系统神经网络全阶滑模控制方法
CN105425587A (zh) * 2015-11-16 2016-03-23 北京理工大学 迟滞非线性电机辨识与控制方法
CN106655882A (zh) * 2017-03-16 2017-05-10 闽江学院 一种摩擦力参数不确定条件下超声波电机伺服控制系统滞回控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601588A (en) * 1966-05-23 1971-08-24 Foxboro Co Method and apparatus for adaptive control
EP1026818A4 (en) * 1997-10-24 2001-09-12 Yaskawa Denki Seisakusho Kk MOTOR SPEED REGULATOR AND METHOD FOR ADJUSTING THE GAIN OF SAID REGULATOR
CN101106339A (zh) * 2007-06-18 2008-01-16 河南科技大学 超声波电机闭环控制电路
CN101339407A (zh) * 2008-08-13 2009-01-07 南京航空航天大学 迟滞系统的逆系统控制方法
CN101977034A (zh) * 2010-11-08 2011-02-16 北京理工大学 Backlash自适应滤波器及其对迟滞的建模与补偿方法
CN203324811U (zh) * 2013-06-19 2013-12-04 闽江学院 行波型超声波电机伺服控制系统控制特性测试装置
CN203324452U (zh) * 2013-07-10 2013-12-04 闽江学院 超声波电机瞬态特性测试装置
CN103558843A (zh) * 2013-11-05 2014-02-05 中国航空工业集团公司西安飞机设计研究所 一种飞机伺服弹性频响试验自动调幅扫频方法
CN104796111A (zh) * 2015-05-14 2015-07-22 北京航空航天大学 一种用于动态迟滞系统建模与补偿的非线性自适应滤波器
CN105182745A (zh) * 2015-08-11 2015-12-23 浙江工业大学 一种带有死区补偿的机械臂伺服系统神经网络全阶滑模控制方法
CN105425587A (zh) * 2015-11-16 2016-03-23 北京理工大学 迟滞非线性电机辨识与控制方法
CN106655882A (zh) * 2017-03-16 2017-05-10 闽江学院 一种摩擦力参数不确定条件下超声波电机伺服控制系统滞回控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李飞等: "《考虑滞回非线性的飞行姿态backstepping全局滑模控制》", 《系统工程与电子技术》 *
王栋等: "《基于梯形算子的AFM 驱动器非对称迟滞性校正》", 《仪器仪表学报》 *
韩清凯等: "《一种不对称滞回受迫振动系统及其分析》", 《振动工程学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842961A (zh) * 2017-04-07 2017-06-13 闽江学院 基于Stop算子的超声波电机伺服控制系统对称滞回控制方法
CN107026585A (zh) * 2017-04-24 2017-08-08 闽江学院 一种超声波电机伺服控制系统摩擦力滞回控制方法
CN107026585B (zh) * 2017-04-24 2019-07-09 闽江学院 一种超声波电机伺服控制系统摩擦力滞回控制方法
CN107257212A (zh) * 2017-06-29 2017-10-17 闽江学院 一种基于反步和逆死区模型的输出反馈压电电机控制方法
CN107257212B (zh) * 2017-06-29 2019-03-29 闽江学院 一种基于反步和逆死区模型的输出反馈压电电机控制方法
CN113741351A (zh) * 2021-09-01 2021-12-03 闽江学院 基于改进play算子的电机伺服控制系统迟滞控制方法
CN113741351B (zh) * 2021-09-01 2023-03-14 闽江学院 基于改进play算子的电机伺服控制系统迟滞控制方法

Also Published As

Publication number Publication date
CN106406093B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN106406093A (zh) 超声波电机伺服控制系统不对称滞回补偿控制装置及方法
CN106208807B (zh) 基于观测器的超声波电机伺服控制系统滞回补偿控制方法
CN105827168A (zh) 基于滑模观测的永磁同步电机控制方法及系统
CN110752806B (zh) 改进趋近律的内置式永磁同步电机的滑模转速控制方法
CN105811826A (zh) 一种感应电机新型趋近律滑模控制方法
CN108336935B (zh) 一种反步控制协同eso的直线电机控制方法
CN108818541A (zh) 一种柔性关节机器人的自适应神经网络跟踪控制方法
CN112202374B (zh) 音圈电机微定位平台、运动控制方法、装置和系统
CN105337546A (zh) 基于变阶次分数阶滑模的永磁同步电机控制装置及方法
CN115102452A (zh) 基于分段函数更新遗忘因子的永磁同步电机参数辨识方法
CN104270046A (zh) 一种基于转速-电流二维模糊模型自学习的电机控制方法
CN106655882B (zh) 一种超声波电机伺服控制系统滞回控制方法
CN110209046B (zh) 一种基于干扰观测器的滚压设备压力控制方法
CN107026585B (zh) 一种超声波电机伺服控制系统摩擦力滞回控制方法
CN108649852B (zh) 一种改进电流环的永磁同步电机控制方法
CN109120181A (zh) 一种基于增益限制补偿器的超声波电机伺服控制系统极限环抑制设计方法
CN103427754A (zh) 无轴承异步电机转子径向位移直接控制器
CN106787940B (zh) 一种改进的超声波电机反步自适应伺服控制方法
CN109217716B (zh) 基于预滑动摩擦力模型的超声波电机轮廓控制器
CN106253744B (zh) 超声波电机力矩滞回控制方法
CN203278695U (zh) 基于双电感双电容的超声波电机全桥驱动电路
CN109245644B (zh) 一种永磁同步电机的鲁棒两自由度控制器的实现方法
CN109240269A (zh) 一种用于并联机构的动态性能分析方法
CN109067271A (zh) 一种基于鲁棒扰动补偿方案的直流电机伺服控制方法
CN113741351B (zh) 基于改进play算子的电机伺服控制系统迟滞控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant