CN106397599A - 二价双特异性抗体杂交蛋白的表达和制备方法 - Google Patents

二价双特异性抗体杂交蛋白的表达和制备方法 Download PDF

Info

Publication number
CN106397599A
CN106397599A CN201610100217.9A CN201610100217A CN106397599A CN 106397599 A CN106397599 A CN 106397599A CN 201610100217 A CN201610100217 A CN 201610100217A CN 106397599 A CN106397599 A CN 106397599A
Authority
CN
China
Prior art keywords
antibody
chain
heavy chain
expression
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610100217.9A
Other languages
English (en)
Other versions
CN106397599B (zh
Inventor
韩雷
朱建伟
陈俊生
丁凯
谢跃庆
江华
路慧丽
张宝红
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jacki (tianjin) Biological Medicine Co Ltd
Jecho Laboratories Inc
Shanghai Jiaotong University
Original Assignee
Jacki (tianjin) Biological Medicine Co Ltd
Jecho Laboratories Inc
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jacki (tianjin) Biological Medicine Co Ltd, Jecho Laboratories Inc, Shanghai Jiaotong University filed Critical Jacki (tianjin) Biological Medicine Co Ltd
Priority to CN201610100217.9A priority Critical patent/CN106397599B/zh
Priority to EP16891286.3A priority patent/EP3418305B1/en
Priority to PCT/CN2016/110290 priority patent/WO2017143838A1/zh
Priority to US16/079,003 priority patent/US11535674B2/en
Publication of CN106397599A publication Critical patent/CN106397599A/zh
Application granted granted Critical
Publication of CN106397599B publication Critical patent/CN106397599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/90Fusion polypeptide containing a motif for post-translational modification
    • C07K2319/92Fusion polypeptide containing a motif for post-translational modification containing an intein ("protein splicing")domain

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种生物技术领域的二价双特异性抗体杂交蛋白的表达和制备方法。本发明将二价双特异性抗体及其免疫杂合蛋白的各部分分别在合适的原核或真核细胞系统中表达,经高效的亲和层析纯化分离,然后在体外在intein剪接的条件下进行剪接,达到制备二价双特异性抗体及免疫杂合蛋白的产物的目的。本方法具有生产效率高,适和应用的面广,并有利于产物分离纯化。用此方法制备的产物具有二价双特异免疫亲和力和细胞毒性的生物活性,是制备定向攻击癌症或其他疾病的生物药物的一种新方法。

Description

二价双特异性抗体杂交蛋白的表达和制备方法
技术领域
本发明属于生物技术领域,具体涉及一种二价双特异性抗体杂交蛋白的表达和制备方法。
背景技术
双特异性抗体是指可以同时识别两个抗原或者两个表位的一个抗体分子,诸如能够结合两种以上抗原的双特异性或者多特异型抗体在本领域中是已知的,可以通过细胞融合法,化学修饰法,基因重组等法,在真核表达系统或者在原核表达系统中获得。
药理学研究揭示,多数复杂疾病都涉及多种与疾病相关的信号通路,例如肿瘤坏死因子TNF、白介素6等多种促炎症细胞因子同时介导免疫炎性疾病,而肿瘤细胞的增殖往往是由多个生长因子受体的异常上调造成的。单一信号通路的阻断通常疗效有限,而且容易形成耐药性。在肿瘤治疗方面,由于多数癌细胞表面的MHC的表达下调甚至缺失,从而逃逸免疫杀伤。双功能抗体可以同时结合免疫细胞,和肿瘤细胞,将免疫细胞富集定位到肿瘤上去。因此,开发能够同时结合两个不同靶点的双功能抗体及其类似物,长期以来成为新结构抗体研发的重要领域。
双功能抗体的一个重要机制是介导T细胞杀伤。近年来,随着对癌细胞免疫逃逸机制认识的深入和肿瘤免疫治疗(cancer immunotherapy)的兴起,激活T细胞的抗体药物研究备受重视。通常认为有效激活T细胞需要双重信号,第一信号来自抗原提呈细胞上MHC-抗原复合物与T细胞受体TCR-CD3的结合,第二信号为T细胞与抗原提呈细胞表达的共刺激分子相互作用后产生的非抗原特异性共刺激信号。由于多数癌细胞表面的MHC的表达下调甚至缺失,从而逃逸免疫杀伤。CD3×双功能抗体则能够分别结合T细胞表面CD3分子和癌细胞表面抗原,从而拉近细胞毒性T细胞(cytotoxicT cell,Tc或CTL)与癌细胞的距离,引导T细胞直接杀伤癌细胞,而不再依赖于T细胞的双重激活信号(Baeuerle.P.A.,Cancer Res(癌症研究)69(2009)4941-4944)。CD3×双功能抗体独特的T细胞激活方式被认为是其作用机制上的重大优势。
双功能抗体的另一个重要的作用机制是同时结合双靶点,阻断双信号通路。该机制的应用范围更为广泛,包括肿瘤、自身免疫性疾病、抑制血管生长和抗感染等方面的治疗。以在细胞生理过程中发挥重要调节作用的跨膜酪氨酸激酶受体HER家族为例,该家族包括HER1(erbB1、EGFR),HER2(erbB2、NEU),HER3(erbB3)及HER4(erbB4)等成员,在很多上皮来源的实体瘤细胞表面异常高表达,是肿瘤靶向治疗的重要靶点。已经上市的抗体有结合HER2D4结构域的赫赛汀单抗、结合HER2D2结构域的帕妥珠单抗(Perjeta)以及结合HER1/EGFR的爱必妥单抗(Erbitux)等,广泛应用于乳腺癌、胃癌、结直肠癌等实体瘤的临床治疗。研究揭示,HER家族成员自身或不同成员之间的同源或异源二聚体激活细胞内信号,促进细胞增殖、肿瘤发展。赫赛汀抗体阻断HER2受体同源二聚,但不能阻断HER2与其他受体间的异源二聚。HER2与HER3是HER家族激活初始致癌信号的最强二聚体形式,在临床上将能够阻断该二聚化的帕妥珠单抗与赫赛汀联用,取得了比单个抗体更好的疗效,揭示了双靶点阻断的临床效果(Kristjansdottir.K.,Expert Opin biol Ther(生物治疗的专家意见)10(2010)243-250)。
断裂型蛋白质内含子(split intein)是由N-端蛋白质剪接区域(In,N-fragment ofintein)和C-端蛋白质剪接区域(Ic,C-fragment of intein)两部分组成,表达前体蛋白质的基因被分裂在两个开放阅读框中,断裂位点是在蛋白质内含子序列的内部。N-端蛋白质外显子(En)与断裂型蛋白质内含子的N-端(In)的基因形成融合基因,翻译形成的融合蛋白称为N-端前体蛋白质。而断裂型蛋白质内含子的C-端(Ic)与C-端蛋白质外显子(Ec)的表达基因形成融合基因,翻译后产生的融合蛋白称为C-端前体蛋白质。单独的断裂型蛋白质内含子的N-端(In)或C-端(Ic)不具有蛋白质剪接功能,但是在蛋白质翻译以后,N-端前体蛋白质中的In与C-端前体蛋白质的Ic通过互相识别以非共价键结合,形成有功能的蛋白质内含子,能够催化蛋白质反式剪接反应,以肽键将两个分离的蛋白质外显子(En、EC)连接起来(Ozawa.T.,Nat Biotechbol(自然技术)21(2003)287-93)。
蛋白质反式剪接(protein/ram-splicing)是指由断裂型蛋白质内含子介导的蛋白质剪接反应。在这种类型的剪接过程中,首先是断裂蛋白质内含子的N-端片段(In)和C-端片段(Ic)相互识别并以非共价键结合,一者结合后正确折脊其结构,重建活性中心的断裂行蛋白质内含子按照典型的蛋白质剪接途径完成蛋白质剪接反应,将两侧的蛋白质外显子的连接(Saleh.L.,Chemical Record(化学档案)6(2006)183-193)。
最近已经开发了广泛多样的重组双特异性抗体形式,例如通过融合例如IgG抗体形式和单链结构域的四价双特异性抗体(参见例如Coloma,M.J.,等,NatureBiotech.(自然生物技术)15(1997)159-163;WO 2001077342;和Morrison,S.,L.,Nature Biotech.(自然生物技术)25(2007)1233-1234)。由于与天然抗体结构相差大,进入体内之后会引起强烈的免疫反应以及较短的半衰期。
此外,开发了能够结合两种以上抗原的若干其他新型形式,其中抗体中心结构(IgA,IgD,IgE,IgG或IgM)不再保持的小分子抗体。诸如双抗体、三链抗体或四链抗体,微型抗体(minibodies),若干单链形式(scFv双-scFv)(Holliger,P.,等,Nature Biotech(自然生物技术)23(2005)1126-1136;Fischer,N.,和Léger,O.,Pathobiology(病理学)74(2007)3-14;Shen,J.,等,J.Immunol.Methods(免疫学方法杂志)318(2007)65-74;Wu,C.,等.,Nature Biotech(自然生物技术)25(2007)1290-1297)。虽然这种将抗体的核心结合区域通过linker(连接肽)与其它抗体核心结合区相连接,虽然对双特异性抗体改造的优势明显,但是也存一些作为药物应用的问题,大大限制了其成药。实际上,这些外源可能引起针对连接肽本身或者蛋白质和连接肽的免疫反应,容易出现免疫风暴。此外,这些连接肽灵活的本质是使的期更倾向于蛋白质的水解分裂,这潜地导致抗体稳定性差,易于聚集,高的免疫原性以及很短的半衰期。例如安进公司的blinatumomab血液中的半衰期只有1.25小时,必须通过注射泵24小时持续给药才能达到治疗效果,大大限制了其应用(Bargou,R和Leo.E.,Scince(科学)321(2008)974-7)。此外人们希望保留抗体的效应功能,诸如CDC(补体依赖的细胞毒性)或者ADCC(细胞毒作用)与血管内壁FcRn(Fc受体)结合的半衰期延长,这些功能必须通过Fc区来介导。
因此,理想的双特异性抗体是开发结构与天然存在抗体(如IgA,IgD,IgE,IgG,IgM)极度相似双特异性抗体,并且其与人抗体序列具有最小的偏离的人源化双特异性抗体以及全人源的双特异性抗体。
1983年首次利用杂交瘤融合技术(quadrom),获得了与天然抗体非常类似的双特异性抗体(Milstein,C和A.C.cuello,Nature(自然),305(1983)537-40)。在所述杂交融合技术中,将两个不同的鼠源单克隆杂交瘤细胞株融合,融合后抗体的生成会存在10种不同的抗体类型,其中只有一种是所需要的双特异性抗体。由于错配产物与目的产物的理化性质十分相似,且目的产物的含量极低,其意味着需要先进的纯化程序来完成,(Morrison,S.L.,Nature Biotech(自然生物技术25(2007)1233-1234)。例如2009年在欧洲上市的双特异性抗体Catumaxomab(Removab)由于抗体时鼠源种属,注射入人体内会发生严重的免疫风暴现象,限制了其前景(Framton.JE.,Drugs(药物)72(2012)1399-410)。同样的利用基因重组表达技术,重链错配和轻链错配现象仍然不能得到解决。
为了解决重链错配问题,提出了“Knobs-into-Holes(杵-进入-臼)”理论,其目的在于通过在抗体的CH3区引入突变,改变接触界面,来迫使两个不同的抗体重链配对。在一条CH3上大空间结构的氨基酸被突变成短侧脸的氨基酸,以形成“Hole(臼)”,相反的,将大侧链的氨基酸引入另一个CH3区域,以形成“Knobs(杵)”。通过共表达两条重链和两条轻链(必须适合于这两条重链)异型二聚体(杵-臼)比同型二聚体(杵-杵)(臼-臼)产率高(Ridgway,J.B.,Protein Eng.(蛋白质工程)9(1996)617-621;和WO96/027011)尽管这种形式非常有吸引力,但是目前不存在临床应用数据,这种策略的一个重要制约是两个母体抗体的轻链必须相同,以防止轻链错配和形成杂质分子。针对轻链错配问题,通过突变改变抗体结合的特异性形成“Two-in-One”二价双特异性抗体,使得同一个抗体特异性结合域可以与两种抗原的结合,这种抗体对每个靶点的结合都是二价的,虽然可以再连接和激活型靶点中得到期望效果,但是对于阻断抗原作用存在一定不足,并且这种方法需要针对每两个抗体序列进行大量的突变等基因工程改造,不能够达到简单通用的目的(Bostrom,J.,Scince(科学)323(2009)1610-1614;Schaefer,G.,Cancer Cell(癌细胞)20(2011)472-486)。此外crossmab(杂交抗体)方法可以优化轻链错配问题,但是将其中一条Fab的轻链和重链的部分结构域互换,形成crossmab(杂交抗体)可以很好的解决,但是杂交抗体含有非天然的结构域连接,失去了天然的抗体结构(Schaefer,W.,Pro.Natl.Acad.Sci.USA(美国科学院院刊)108(2011)1187-1192)。
美国Genentech(基因泰克)公司利用分别表达两个half-antibody(半抗体)的大肠杆菌共培养的方法得到双特异性抗体,但是这种方法表达出来的抗体是没有糖基化修饰的,将影响其ADCC效应以及血液中的半衰期,限制了其成药可能性(Spiess,C.,Nature Biotechnol(自然技术)31(2013)753-758)。为了生产与天然结构相似的,并且含有糖基化修饰的双特异性抗体,Fab的界面处经过结构分析定向基因突变,同时采用“Knobs-into-Holes(杵-进入-臼)”技术通过顺势转染293E细胞来解决轻链错配和重链错配问题,得到了极大的改进,但是该方法必须每一个抗体都经过建立晶体模型来设计适合的突变筛选位点,不能够通用与一切双特异性抗体的构建(Levis,S.M.,Nature Biotechnol(自然技术)32(2014)191-198)。此外cFAE“半抗体交换技术”,通过在CH3区引入突变可以定向半抗体重新结合,通过体外还原将抗体还原为半抗体,再通过氧化为完整抗体,解决了重链错配和轻链错配问题,但是会存在5%的错配现象无法解决,也无法通过纯化方法去除,杂组份的存在极大的限制了cFAE作为药物使用的可能(Labrijin,A.F.,Nature protocol(自然操作方法)9(2014)2045-2463)。
人们致力于建立一种生产双特异性抗体的方法,不存在非天然的结构域,结构与天然抗体(IgA,IgD,IgE,IgG或IgM)结构及其相似,具有Fc结构域,结构完整稳定性好,并且保留了CDC(补体依赖的细胞毒性)或者ADCC(细胞毒作用),并且有FcRn(Fc受体)结合活性体内半衰期长,免疫原性降低;不引入任何形式的linker(连接肽),提高抗体分子稳定性,降低在体内的免疫反应;可以用于生产人源化的双特异性抗体,以及全人序列的双特异性抗体,序列与人源抗体跟接近,可以有效降低免疫反应的发生;通过哺乳动物细胞表达系统生产,有糖基化修饰,有更好的生物学功能,且更加稳定,体内半衰期长;有效避免了重链错配,错配率可降低为0%,有效避免轻链错配,轻链错赔率可降低为0%;是一种通用型双特异性抗体的构建方法,没有抗体亚型(IgG,IgA,IgM,IgD,IgE,IgM,以及轻链κ和λ型)的限制性,不需要根据具体的靶点设计不同的突变,可以用于构建任何双特异性的抗体。
发明内容
本发明的目的在于针对上述现有技术存在的不足,提供一种新型二价双特异性抗体杂交蛋白的表达和制备方法。本发明首次将双特异性抗体分割为结合抗原A,和结合抗原B两部分,如(图2,图3)所示,分别表达,然后通过断裂蛋白内含肽的反式剪接功能将A和B两部分连接成为完整的抗体。A部分含有A抗体的轻链,A抗体的完整重链,以及N端融合了IC的Fc链;B部分含有B抗体的轻链,和C端融合有IN的B抗体的VH+CH1链。
本发明的目的是通过以下技术方案来实现的:
本发明涉及一种二价双特异性抗体的表达和制备方法,所述二价双特异性抗体包括特异性结合第一抗原的抗体的第一轻链、第一重链,特异性结合第二抗原的抗体的第二轻链、第二重链;所述方法包括如下步骤:
S1、将所述二价双特异性抗体的表达序列进行拆分,获得A部分抗体和B部分抗体;所述A部分抗体包括第一轻链、第一重链和N端融合了IC的第二重链的Fc链;所述B部分抗体包括第二轻链和C端融合有IN的第二重链的VH+CH1链,;
S2、经全基因合成构建哺乳动物细胞表达载体,分别获得A部分抗体的表达载体和B部分抗体的表达载体;
S3、转染试剂介导A部分抗体的表达载体转染哺乳动物细胞,或者稳定表达A部分的稳转细胞株,表达获得A部分抗体;转染试剂介导B部分抗体的表达载体转染哺乳动物细胞,或稳定表达B部分的稳转细胞株,表达获得B部分抗体;
S4、分别纯化所得的A部分抗体和B部分抗体,进行A部分抗体和B部分抗体的体外反式剪接,即得所述二价双特异性抗体。
优选的,所述第一重链的CH3结构域的界面生成了凸起,所述凸起可以定位在所述N端融合了IC的第二重链的Fc链的CH3结构域的界面内的凹洞中。
优选的,在第一重链的CH3结构域将366位的苏氨酸突变为色氨酸以形成所述凸起;在N端融合了IC的第二重链的Fc链的CH3结构域将366位的苏氨酸突变为丝氨酸,368位的亮氨酸突变为丙氨酸,407位的酪氨酸突变为缬氨酸以形成所述凹洞。
优选的,在第一重链的CH3结构域将354位的丝氨酸突变为半胱氨酸;在N端融合了IC的第二重链的Fc链的CH3结构域将349位的酪氨酸突变为半胱氨酸。
优选的,所述第一重链的CH3结构域的界面生成了凹洞,在所述凹洞内可以定位在所述N端融合了IC的第二重链的Fc链的CH3结构域的界面生成的凸起。
优选的,在第一重链的CH3结构域将366位的苏氨酸突变为丝氨酸,368位的亮氨酸突变为丙氨酸,407位的酪氨酸突变为缬氨酸以形成凹洞;在N端融合了IC的第二重链的Fc链的CH3结构域将366位的苏氨酸突变为色氨酸以形成凸起。
优选的,在第一重链的CH3结构域将349位的酪氨酸突变为半胱氨酸;在N端融合了IC的第二重链的Fc链的CH3结构域将354位的丝氨酸突变为C半胱氨酸。
本发明为了提高CH3区域结合的稳定性,将“Knobs”(凸起)链上354位的S(丝氨酸)突变为C(半胱氨酸),“Holes”(凹洞)链上349位的Y(酪氨酸)突变为C(半胱氨酸)以引入一对重链间二硫键增强重链间的稳定性。
优选的,步骤S2中,经全基因合成构建哺乳动物细胞表达载体具体为:按照拆分设计好的基因序列,进行化学全合成,并且通过PCR在起始密码子和终止密码子两侧加入限制性内切酶酶切位点,分别插入含有CMV启动子的哺乳动物细胞表达载体中,亚克隆测序质粒抽提即可。
优选的,步骤S3中,所述转染哺乳动物细胞为瞬时转染293-E、293-F或CHO哺乳动物细胞,或者为稳定转染CHO哺乳动物细胞。
优选的,步骤S4中,所述体外反式剪接为在巯基化合物存在条件下进行的断裂intein介导的体外反式剪接。
优选的,所述体外反式剪接作用的温度为4℃~37℃,时间为5~120min,巯基化合物的浓度为0.05~2mM。
优选的,步骤S4中,还包括将剪接所得产物进行亲和层析纯化的步骤。
本发明还涉及一种二价双特异性抗体的免疫杂交蛋白的表达和制备方法,所述二价双特异性抗体基于上述的方法制备,所述免疫杂交蛋白的表达和制备方法包括如下步骤:
B1、将所述免疫杂交蛋白的表达序列进行拆分,获得蛋白分子、A部分抗体和B部分抗体;所述A部分抗体包括第一轻链、第一重链和第二重链的Fc链,该Fc链的N端融合了IC;所述B部分抗体包括第二轻链和第二重链的VH+CH1链,该VH+CH1链的C端融合了IN;所述蛋白分子的一端融合了IN,所述第二重链的Fc链、第一重链的Fc链中至少一条Fc链的C端融合了IC;
B2、经全基因合成构建真核或原核生物表达载体,用瞬转或稳转方法分别表达、制备获得A部分抗体和B部分抗体;
B3、纯化后,进行A部分抗体、B部分抗体和蛋白分子的体外反式剪接,即得所述免疫杂交蛋白。
B4、或未经纯化的A部分抗体,B部分抗体和蛋白分子的体外反式剪接,及得到所述免疫杂交蛋白,后经纯化得到所述免疫杂交蛋白。
与现有技术相比,本发明具有如下有益效果:
1)不存在非天然的结构域,结构与天然抗体(IgA,IgD,IgE,IgG或IgM)结构及其相似,具有Fc结构域,结构完整稳定性好,并且保留了CDC(补体依赖的细胞毒性)或者ADCC(细胞毒作用),并且有FcRn(Fc受体)结合活性体内半衰期长,免疫原性降低;
2)不引入任何形式的linker(连接肽),提高抗体分子稳定性,降低在体内的免疫反应;
3)可以用于生产人源化的双特异性抗体,以及全人序列的双特异性抗体,序列与人源抗体跟接近,可以有效降低免疫反应的发生;
4)通过哺乳动物细胞表达系统生产,有糖基化修饰,有更好的生物学功能,且更加稳定,体内半衰期长;
5)有效避免了重链错配,错配率可降低为0%,有效避免轻链错配,轻链错赔率可降低为0%;
6)是一种通用型双特异性抗体的构建方法,没有抗体亚型(IgG,IgA,IgM,IgD,IgE,IgM,以及轻链κ和λ型)的限制性,不需要根据具体的靶点设计不同的突变,可以用于构建任意双特异性的抗体。
7)本发明也可以应用于Fc片段残缺的双特异性抗体构建,比如Fc区域仅留下部分CH2区,或者留下完整的CH2区域和部分CH3区域。
8)本发明也可以应用于Fab片段残存的双特异性抗体构建,比如A部分为Scfv,B部分为Fab;A部分为Fab,B部分为Scfv;或者A部分为ScfvB部分为Scfv。同时保留完整Fc区域或者残缺Fc区域的双特异性抗体构建。
9)本发明可应用于图5中C组所指示类型的小分子抗体片段,与D组所指示类型的小分子片段抗体,通过断裂intein介导反式剪接形成的双特异性抗体构建。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为断裂蛋白质内含子介导的蛋白质反式剪接示意图;
图2为双特异性抗体分割为A抗体重链Knob型、Fc hole型和B抗体部分示意图;
图3为双特异性抗体分割为A抗体重链Hole型、Fc Knob型和B抗体部分示意图;
图4为双特异性抗体制备流程图;
图5为片段型双特异性抗体构建示意图;
图6为抗体A轻链示意图;
图7为抗体A Knob重链示意图;
图8为抗体A Hole Fc链示意图;
图9为抗体B重链和IN示意图;
图10为抗体B轻链示意图;
图11为抗体A Hole重链示意图;
图12为抗体A Hole Fc链示意图;
图13为pCEP4表达载体图谱;
图14为双特异性抗体A部分抗体三表达载体共同转染纯化产物SDS-PAGE电泳图;
图15为双特异性抗体B部分抗体三表达载体共同转染纯化产物SDS-PAGE电泳图;
图16为断裂intein介导抗体A部分和抗体B部分剪接(一型)示意图;
图17为断裂intein介导抗体A部分和抗体B部分剪接(二型)示意图;
图18为不同DTT浓度(mM)下断裂intein的诱导双特异性抗体反式剪接示意图;
图19为不同温度(℃)下断裂intein的诱导双特异性抗体反式剪接示意图;
图20为不同反应时间(min)下断裂intein的诱导双特异性抗体反式剪接示意图;
图21为ProteinA(蛋白A)亲和纯化双特异性抗体SDS-PAGE电泳图。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
本发明涉及的术语解释:
抗体:指完整的单克隆抗体。所述完整抗体由两对“轻链”(LC)和“重链”(HC)(所述轻链(LC)/重链对缩写为LC/HC)组成。所述抗体的轻链和重链是由若干结构域组成的多肽。在完整抗体中,每条重链包括重链可变区(缩写为HCVR或VH)和重链恒定区。重链恒定区包括重链恒定结构域CH1、CH2和CH3(抗体类型IgA,IgD,和IgG)和任选地,重链恒定结构域CH4(抗体类型IgE和IgM)。每条轻链包括轻链可变结构域VL和轻链恒定结构域CL。一种天然存在的完整抗体,即IgG抗体的结构显示在例如图1中。可变结构域VH和VL可以进一步再分为高变区,称为互补性决定区(CDR),它们之间分布有更加保守的区域,称为构架区(FR)。每个VH和VL由三个CDR和四个FR组成,以以下顺序从氨基端向羧基端排列:FR1,CDR1,FR2,CDR2,FR3,CDR3,FR4((Janeway,C.A.,Jr.等.,Immunobiology(免疫学),第5版,加兰出版社(Garland Publishing)(2001);和Woof J,Burton D Nat Rev Immunol(自然免疫学综述)4(2004)89-99)。两对重链和轻链(HC/LC)能够特异性结合相同抗原。因此所述完整抗体是二价、单特异性抗体。所述“抗体”包括例如小鼠抗体、人抗体、嵌合抗体、人源化抗体和遗传改造的抗体(变异或突变抗体),条件是保持它们的特有特性。特别优选人或人源化抗体,尤其作为重组的人或人源化抗体。存在5种由希腊字母表示的哺乳动物抗体重链类型:α,δ,ε,γ,和μ(Janeway,C.A.,Jr.,等.,Immunobiology(免疫学),第5版,加兰出版社(Garland Publishing)(2001))。存在的重链的类型定义抗体的类型;这些链分别存在于IgA,IgD,IgE,IgG,和IgM抗体中(Rhoades RA,Pflanzer RG(2002).Human Physiology(人体生理学),第4版,汤姆森知识(ThomsonLearning))。不同的重链在尺寸和组成上不同;α和γ含有约450个氨基酸,而μ和ε具有约550个氨基酸。每条重链具有两种区域,即恒定区和可变区。恒定区在相同同种型的所有抗体中相同,但在不同同种型的抗体中不同。重链γ,α和δ具有由3个恒定结构域CH1、CH2和CH3(处于一条线上)组成的恒定区和用于增加灵活性的铰链区(Woof,J.,Burton D Nat Rev Immunol(自然免疫学综述)4(2004)89-99);重链μ和ε具有由4个恒定结构域CH1、CH2、CH3和CH4组成的恒定区(Janeway,C.A.,Jr.,等.,Immunobiology(免疫学),第5版,加兰出版社(Garland Publishing)(2001))。重链的可变区在由不同B细胞产生的抗体中不同,但对由单种B细胞或B细胞克隆产生的所有抗体都是相同的。每条重链的可变区长约110个氨基酸且由单抗体结构域组成。在哺乳动物中,仅存在两类轻链,其称为λ和κ。轻链具有两个连续的结构域:一个恒定结构域CL和一个可变结构域VL。轻链的近似长度是211-217个氨基酸。优选地,轻链是κ轻链,且恒定结构域CL优选是Cκ。
抗体的Fc部分:是熟练的技术人员公知的术语,并基于抗体的木瓜蛋白酶裂解而定义。按照本发明的抗体包含如Fc部分,优选源自人来源的Fc部分和优选人恒定区的全部其他部分。抗体的Fc部分直接参与补体活化,C1q结合,C3活化和Fc受体结合。尽管抗体对补体系统的影响取决于特定的条件,但是与C1q的结合由Fc部分中确定的结合位点所导致。所述结合位点是现有技术中已知的且记述在例如Lukas,T.J.,等.,J.Immunol.(免疫学杂志)127(1981)2555-2560;Brunhouse,R.,和Cebra,J.J.,Mol.Immunol.(分子免疫学)16(1979)907-917;Burton,D.R.,等.,Nature(自然)288(1980)338-344;Thommesen,J.E.,等.,Mol.Immunol.(分子免疫学)37(2000)995-1004;Idusogie,E.E.,等.,J.Immunol.(免疫学杂志)164(2000)4178-4184;Hezareh,M.,等.,J.Virol.(病毒学杂志)75(2001)12161-12168;Morgan,A.,等.,Immunology(免疫学)86(1995)319-324;和EP 0 307 434中。所述结合位点是例如L234,L235,D270,N297,E318,K320,K322,P331和P329(按照Kabat的EU目录编号)。亚型IgG1,IgG2和IgG3的抗体通常表现出补体活化,C1q结合和C3活化,而IgG4不活化补体系统,不结合C1q且不活化C3。
人源化抗体:指这样的抗体,其中的构架或“互补性决定区”(CDR)已经被修饰为包括与亲本免疫球蛋白的特异性相比特异性不同的免疫球蛋白的CDR。例如将鼠CDR移植到人抗体的构架区以制备“人源化抗体”。(Riechmann,L.,等,自然(Nature)332(1988)323-327;和Neuberger,M.S.,等,自然(Nature)314(1985)268-270)。
人抗体:包括具有源自人种系免疫球蛋白序列的可变区和恒定区的抗体。
重组人抗体:通过重组方法制备、表达、产生或分离的所有人抗体,诸如分离自宿主细胞,诸如NS0或CHO细胞的抗体或分离自人免疫球蛋白基因的转基因动物(例如小鼠)的抗体,或利用转染到宿主细胞中的重组表达载体表达的抗体,这种重组人抗体具有处于重排形式的可变区和恒定区。
可变区结构域(轻链(VL)的可变区,重链(VH)的可变区)直接参与抗体与抗原结合的每对轻链和重链对。可变人轻链和重链的结构域具有相同的通用结构且每个结构域包括4个构架(FR)区,所述构架区的序列普遍保守,其通过3个“高变区”(或互补性决定区,CDRs)相连接。构架区采用β-折叠构象且CDR可以形成连接β-折叠结构的环。每条链中的CDR通过构架区保持其三维结构并与来自另一条链的CDR一起形成抗原结合位点。
二价双特异性抗体:指如上所述的抗体,其中两对重链和轻链(HC/LC)中的每对特异性结合不同的抗原,即第一重链和第一轻链(源自针对A抗原的抗体)特异性共同结合抗原A,且第二重链和第二轻链(源自针对B抗原的抗体)特异性共同结合B抗原;所述二价双特异性抗体能够同时特异性结合两种不同的抗原,且不超过两种抗原,与其相对照的是,一方面仅能够结合一种抗原的单特异性抗体和另一方面例如能够同时结合四种抗原分子的四价、四特异性抗体。
断裂intein:断裂型蛋白质内含子(split intein)是由N-端蛋白质剪接区域(In,N-fragment of intein)和C-端蛋白质剪接区域(Ic,C-fragment of intein)两部分组成,表达前体蛋白质的基因被分裂在两个开放阅读框中,断裂位点是在蛋白质内含子序列的内部。N-端蛋白质外显子(En)与断裂型蛋白质内含子的N-端(In)的基因形成融合基因,翻译形成的融合蛋白称为N-端前体蛋白质。而断裂型蛋白质内含子的C-端(Ic)与C-端蛋白质外显子(Ec)的表达基因形成融合基因,翻译后产生的融合蛋白称为C-端前体蛋白质。单独的断裂型蛋白质内含子的N-端(In)或C-端(Ic)不具有蛋白质剪接功能,但是在蛋白质翻译以后,N-端前体蛋白质中的In与C-端前体蛋白质的Ic通过互相识别以非共价键结合,形成有功能的蛋白质内含子,能够催化蛋白质反式剪接反应,以肽键将两个分离的蛋白质外显子(En、EC)连接起来(Ozawa.T.,Nat Biotechbol(自然技术)21(2003)287-93)
反式剪接:蛋白质反式剪接(protein/ram-splicing)是指由断裂型蛋白质内含子介导的蛋白质剪接反应。在这种类型的剪接过程中,首先是断裂蛋白质内含子的N-端片段(In)和C-端片段(Ic)相互识别并以非共价键结合(图1),一者结合后正确折脊其结构,重建活性中心的断裂行蛋白质内含子按照典型的蛋白质剪接途径完成蛋白质剪接反应,将两侧的蛋白质外显子的连接(Saleh.L.,Chemical Record(化学档案)6(2006)183-193)。
IN:单独的断裂型蛋白内含子的N-端部分。
IC:单独的断裂型蛋白内含子的C-端部分。
瞬时转染:瞬时转染(transient transfection)是将DNA导入真核细胞的方式之一。在瞬时转染中,重组DNA导入感染性强的细胞系以获得目的基因暂时但高水平的表达。转染的DNA不必整合到宿主染色体,可在比稳定转染较短时间内收获转染的细胞,并对溶解产物中目的基因的表达进行检测。
本发明具体涉及一种新型二价双特异性抗体杂交蛋白的表达和制备方法。本发明首次将双特异性抗体分割为结合抗原A,和结合抗原B两部分,如(图2,图3)所示,分别表达,然后通过断裂蛋白内含肽的反式剪接功能将A和B两部分连接成为完整的抗体。A部分含有A抗体的轻链,A抗体的完整重链,以及N端融合了IC的Fc链;B部分含有B抗体的轻链,和C端融合有IN的B抗体的VH+CH1链。本发明首次将断裂intein的反式剪接功能与双特异性抗体的构建结合,通过将分别表达纯化的A和B两部分抗体,通过断裂intein的反式剪接功能连接成为完整的抗体,这种双特异性抗体与天然存在的抗体分子结构及其相似,避免了因为结构差异引起的抗体分子不稳定,以及体内免疫原性高的情况。首先将获得的抗体表达序列进行分析拆分,经过全基因合成构建哺乳动物细胞表达载体,将纯化所得的载体分别瞬时转染293E,293F,CHO等哺乳动物细胞,或者稳定转染CHO等哺乳动物细胞。将发酵液分别收集,通过proteinL亲和层析纯化,纯化所得A和B两组份体外反式剪接,剪接所得产物进行proteinA亲和层析,即可得到较纯的双特异性抗体所示,工艺流程如(图4)所示。
本发明也可以应用于Fc片段残缺的双特异性抗体构建,比如Fc区域仅留下部分CH2区,或者留下完整的CH2区域和部分CH3区域。此外,可以应用于任意两种类型的抗体片段的连接,成为新型双特异性抗体,如(图5)所示,C部分任意一种形式的抗体片段,都可以通过断裂intein的反式剪接作用于D部分任意一种形式的抗体片段连接。
本发明的新型二价双特异性抗体杂交蛋白的表达和制备方法的具体步骤如下:
1、表达载体构建。
为了构建表达载体,关于人免疫球蛋白轻链和重链的核苷酸序列的一般信息在Kabat,E.A.,等.,免疫目的的蛋白质序列(Sequences of Proteins ofImmunologicalInterest),第5版,公众健康服务,国家健康研究所(Public HealthService,National Institutes of Health),Bethesda,MD.(1991))以及drugbank数据库中提供。按照EU编号对抗体链的氨基酸进行编号和提及(Edelman,G.M.,等.,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)63(1969)78-85;Kabat,E.A.,等.,免疫目的的蛋白质序列(Sequences of Proteins of Immunological Interest),第5版,公众健康服务,国家健康研究所(Public Health Service,NationalInstitutes of Health),Bethesda,MD.(1991))。所需基因区段通过化学合成制备的寡核苷酸制备。600-1800bp长的基因区段通过包括PCR扩增的寡核苷酸的退火和连接来装配,并随后通过所指出的限制位点例如KpnI/BamHI等克隆到表达载体中,亚克隆的基因片段的DNA序列通过DNA测序验证。Infomax载体NTI版本8.0(Infomax’sVectorNTI Advance suite version 8.0)用于序列构建、作图、分析、注解和说明。
1.1.为了解决重链错配问题,引入了“Knobs-into-Holes(杵-进入-臼)”和去除一条重链的VH和CH1区域在CH2的N铰链区端融合IC(断裂intein的C段),从而彻底阻止了重链形成无法纯化去除的重链同源二聚体组份。为了引入“Knobs-into-Holes(杵-进入-臼)”结构,在一条CH3区域将366位的T(苏氨酸)突变为W(色氨酸)形成“Knobs”结构;同时在另一条重链CH3区域将366位的T(苏氨酸)突变为S(丝氨酸),368位的L(亮氨酸)突变为A(丙氨酸),407位的Y(酪氨酸)突变为V(缬氨酸)以形成“Holes”结构;此外为了提高CH3区域结合的稳定性,将“Knobs”链上354位的S(丝氨酸)突变为C(半胱氨酸),“Holes”链上349位的Y(酪氨酸)突变为C(半胱氨酸)以引入一对重链间二硫键增强重链间的稳定性。
1.2.为了引入断裂intein,在抗体B的重链铰链区将抗体B的重链分割为Fc区和VH+CH1区,并且在CH1区的C端融合IN(断裂intein的N段),同时在CH2的N端融合IC(断裂intein的C段)。
1.3.a.如(图6)所示抗体A的轻链的序列为天然抗体A轻链序列;如(图7)所示在抗体A重链的CH3区域将366位的T(苏氨酸)突变为W(色氨酸)形成“Knobs”结构同时354位的S(丝氨酸)突变为C(半胱氨酸);如(图8)所示,抗体A的IC+Fc(Fc的N端融合断裂intein的C端)区域CH3区域将366位的T(苏氨酸)突变为S(丝氨酸),368位的L(亮氨酸)突变为A(丙氨酸),407位的Y(酪氨酸)突变为V(缬氨酸)以形成“Holes”结构,同时349位的Y(酪氨酸)突变为C(半胱氨酸);如(图9)所示抗体B的重链VH+CH1+IN(抗体的重链可变区加上CH1区在C端融合intein的N段);如(图10)所示抗体B部分的轻链为天然抗体B的轻链序列。
1.3.b.如(图6)所示抗体A的轻链的序列为天然抗体A轻链序列;如(图11)所示在抗体A重链的CH3区域将366位的T(苏氨酸)突变为S(丝氨酸),368位的L(亮氨酸)突变为A(丙氨酸),407位的Y(酪氨酸)突变为V(缬氨酸)以形成“Holes”结构,同时349位的Y(酪氨酸)突变为C(半胱氨酸);如(图12)所示抗体B的IC+Fc(Fc的N端融合断裂intein的C端)区域CH3区域将366位的T(苏氨酸)突变为W(色氨酸)形成“Knobs”结构同时354位的S(丝氨酸)突变为C(半胱氨酸);如(图9)所示抗体B的重链VH+CH1+IN(抗体的重链可变区加上CH1区在C端融合intein的N段);如(图10)所示抗体B部分的轻链为天然抗体B的轻链序列。
1.3.c.小片段抗体表达载体的构建。如(图5)所示,选择C组任意一种的抗体片段,在图中所示IN位置融合断裂intein的N端,同时选择D组任意一种抗体片段,在图中所示IC位置融合断裂intein的C端。
1.4.将上述1.3中所设计好的基因序列,进行化学全合成,并且通过PCR(聚合酶链式反应)在起始密码子和终止密码子两侧加入限制性内切酶酶切位点比如KpnI/BamHI等,分别插入含有CMV启动子的哺乳动物细胞表达载体中,亚克隆测序质粒抽提,为了瞬时转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(omega)。除抗体表达区域以外,所述载体包括:复制起点,其容许该质粒在大肠杆菌中复制和β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。抗体基因的转录单元由以下元件组成:5’末端处的特有限制性位点,来自人巨细胞病毒的即时早期增强子和启动子,在cDNA构造的情形中,随后是内含子A序列,人抗体基因的5’非翻译区,免疫球蛋白轻链(或者其他的信号肽序列)信号肽序列,具有加A信号序列的3’非翻译区,和3’末端处的特有限制性位点(图13)。
2.使用如Current Protocols in Cell Biology(当前细胞生物学方案)(2000),Bonifacino,J.S.,Dasso,M.,Harford,J.B.,Lippincott-Schwartz,J.和Yamada,K.M.(编),John Wiley&Sons,Inc中所述的标准细胞培养技术。通过在悬浮生长的HEK293-E中或在悬浮生长的HEK29-F细胞中瞬时共转染各种表达质粒来表达A和B部分抗体,如下所述。
2.1.HEK293-E系统中的瞬时转染。双特异性抗体A部分和B部分,通过分别三表达载体和二表达载体共转染HEK293-E(表达EB病毒核抗原的人胚肾细胞系293;美国典型培养物中心,保藏号ATCC#CRL-10852,Lot.959218)来生成。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日500-2000rpm 5-10min离心收集细胞,经(10-50ml)Gibco Freestyle 293培养基洗涤细胞数次,500-2000rpm 5-10min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为2-6×106个细胞/ml置于新的1L摇瓶(Coming)中。共转染各个质粒按照每106个细胞DNA用量0.25-1.5μg等摩尔比的分别编码各链基因的载体,用Gibco Freestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:2-1:6加入混匀的DNA中室温孵育5-20min,加入细胞悬液中的混合物,37℃,120rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,120rpm,5%CO2培养5-10天。直接收集上清纯化或者收集上清-80℃冷冻保存。
2.1.a.PEI介导A部分抗体三表达载体共转染HEK293-E细胞。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日500-2000rpm 5-10min离心收集细胞,经(10-50ml)Gibco Freestyle 293培养基洗涤细胞数次,500-2000rpm 5-10min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为2-6×106个细胞/ml置于新的1L摇瓶(Coming)中。编码A部分抗体三个表达载体,按照每106个细胞DNA用量0.25-1.5μg等摩尔比混匀,用GibcoFreestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:2-1:6加入混匀的DNA中室温孵育5-20min,加入细胞悬液中的混合物,37℃,120rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,120rpm,5%CO2培养5-10天,以获得A部分抗体。直接收集上清纯化,或者收集上清-80℃冷冻保存。
2.1.b.PEI介导B部分抗体两表达载体共转染HEK293-E细胞。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日1000rpm 5min离心收集细胞,经50ml Gibco Freestyle 293培养基洗涤细胞数次,1000rpm 5min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为2-6×106个细胞/ml置于新的1L摇瓶(Coming)中。编码A部分抗体两个表达载体,按照每106个细胞DNA用量0.25-1.5μg等摩尔比混匀,用Gibco Freestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:2-1:6加入混匀的DNA中室温孵育5-20min,加入细胞悬液中的混合物,37℃,120rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,120rpm,5%CO2培养5-10天,以获得B部分抗体。直接收集上清纯化,或者收集上清-80℃冷冻保存。
3.发酵液抗体的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。简言之,将抗体应用于protein L(蛋白L)亲和层析(GEhealthcare(GE健康护理))并用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH6.8-7.4)洗涤。用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE汇集单体抗体组分,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE Amicon Ultra(30MWCO)离心浓缩器浓缩,冷冻和在-20℃或-80℃保存。
3.1.三表达载体共转染的发酵液中A部分抗体的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH 6.8-7.4)与细胞过滤上清1:1混合,流过预先用PBS平衡完毕的Protein L(蛋白L)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1Mtris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图14)所示,非还原的样品103KD左右出现组装好的双特异性抗体A部分抗体;还原样品中出现55KD的重链,40KD的IC+Fc链,25KD的轻链。汇集单体抗体组分,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE Amicon Ultra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存。
3.2.两表达载体共转染的发酵液中B部分抗体的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH 6.8-7.4)与细胞过滤上清1:1混合,流过预先用PBS平衡完毕的Protein L(蛋白L)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1Mtris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE,如(图15)所示,非还原样品60KD作用出现组装好的双特异性抗体B部分;还原样品中出现35KD的VH+CH1+IN链和25KD的轻链。汇集单体抗体组分,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE Amicon Ultra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存。
4.1.断裂intein介导的A和B两部分体外反式剪接如(图16,图17)所示。步骤3中纯化所得的A和B两部分抗体,按照摩尔比1:1进行混合,同时加入0.05mM-2mM DTT或β巯基乙醇,如(图18)所示,分别加入DTT终浓度为0.01mM、0.05mM、1mM、2mM,结果显示DTT浓度为0.05mM即可诱导断裂intein反式剪接过程发生,在150KD处双特异性抗体有明显条带出现。TCEP等巯基化合物诱导断裂intein的反式剪接作用发生,4℃-37℃,以1mM DTT或TCEP浓度加入剪接反应体系,分别置于4℃、22℃、和37℃,如(图19)所示在4℃反应即可发生,22℃、和37℃反应效率较高,在150KD处双特异性抗体有明显条带出现。以1mM DTT浓度加入剪接反应体系,置于37℃下,分别静置5min、15min、30min、60min和120min,如(图20)所示,5min即有反应发生生成双特异性抗体,在60min时反应到达平台期。反应结束需要去除巯基化合物,可以通过加入双氧水等氧化剂去除,或者通过透析去除巯基化合物,此外还可以通过高倍缓冲液稀释将巯基化合物稀释到工作浓度以下,以达到终止反应的目的。反应终止取样品进行非还原SDS-PAGE检测。
4.2.断裂intein介导C和D两部分体外反式剪接方法同4.1一致。
5.1.断裂intein介导的A和B部分反式剪接产物的protein A(蛋白A)纯化。参考标准流程,从步骤4反应混合液中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mMNaCl pH 6.8-7.4)与样品合适比例混合,流过预先用PBS平衡完毕的Protein A(蛋白A)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图21)所示,非还原样品有明显的150KD条带为断裂intein介导的反式剪接而生成的双特异性抗体且纯度较高,还原样品仅出现50KD左右的重链和25KD左右的轻链。汇集单体抗体组分,如果需要,利用MILLIPORE Amicon Ultra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存或者用于更高纯度的纯化,例如离子交换层析,疏水层析,以及分子排阻层析等。
5.2.断裂intein介导的C和D部分反式剪接产物的纯化。对于C和D部分反式剪接所得产物,需要进行离子交换层析,疏水层析,分子排阻层析等重组蛋白纯化方法纯化。
具体应用见以下实施例:
实施例1、构建CD3×Her2双特异性抗体
1.1.表达载体构建
为了构建表达载体,关于人免疫球蛋白轻链和重链的核苷酸序列的一般信息在Kabat,E.A.,等.,免疫目的的蛋白质序列(Sequences of Proteins ofImmunologicalInterest),第5版,公众健康服务,国家健康研究所(Public HealthService,National Institutes of Health),Bethesda,MD.(1991))以及drugbank数据库中提供。按照EU编号对抗体链的氨基酸进行编号和提及(Edelman,G.M.,等.,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)63(1969)78-85;Kabat,E.A.,等.,免疫目的的蛋白质序列(Sequences of Proteins of Immunological Interest),第5版,公众健康服务,国家健康研究所(Public Health Service,NationalInstitutes of Health),Bethesda,MD.(1991))。CD3抗体序列来自于人源化OKT3药物序列,所需基因区段通过化学合成制备的寡核苷酸制备。600-1800bp长的基因区段通过包括PCR扩增的寡核苷酸的退火和连接来装配,并随后通过所指出的限制位点例如KpnI/BamHI等克隆到表达载体中,亚克隆的基因片段的DNA序列通过DNA测序验证。Infomax载体NTI版本8.0(Infomax’s VectorNTI Advance suite version 8.0)用于序列构建、作图、分析、注解和说明。为了解决重链错配问题,引入了“Knobs-into-Holes(杵-进入-臼)”和去除一条重链的VH和CH1区域在CH2的N铰链区端融合IC(断裂intein的C段),从而彻底阻止了重链形成无法纯化去除的重链同源二聚体组份。为了引入“Knobs-into-Holes(杵-进入-臼)”结构,在CD3抗体CH3区域将366位的T(苏氨酸)突变为W(色氨酸)形成“Knobs”结构;同时在Her2抗体重链CH3区域将366位的T(苏氨酸)突变为S(丝氨酸),368位的L(亮氨酸)突变为A(丙氨酸),407位的Y(酪氨酸)突变为V(缬氨酸)以形成“Holes”结构;此外为了提高CH3区域结合的稳定性,将“Knobs”链上354位的S(丝氨酸)突变为C(半胱氨酸),“Holes”链上349位的Y(酪氨酸)突变为C(半胱氨酸)以引入一对重链间二硫键增强重链间的稳定性。
1.1.a.以CD3抗体为A部分抗体,各链表达载体分别按照抗体A轻链设计如(图6)所示,抗体A knob重链表达载体设计如(图7)所示,抗体A Hole Fc链设计如(图8)所示;以Her2抗体为B部分抗体,各表达链分别按照抗体B重链IN设计如(图9)所示,抗体B轻链设计,如(图10)所示。
1.1.b.以CD3抗体为A部分抗体,各链表达载体分别按照抗体A轻链设计如(图6)所示,抗体A Hole重链表达载体设计如(图11)所示,抗体A Knob Fc链设计如(图12)所示;以Her2抗体为B部分抗体,各表达链分别按照抗体B重链IN设计如(图9)所示,抗体B轻链设计,如(图10)所示。
1.1.c.以Her2抗体为A部分抗体,各链表达载体分别按照抗体A轻链设计如(图6),抗体A knob重链表达载体设计如(图7)所示,抗体A Hole Fc链设计如(图8)所示;以CD3抗体为B部分抗体,各表达链分别按照抗体B重链IN设计如(图9)所示,抗体B轻链设计,如(图10)所示。
1.1.d.以Her2抗体为A部分抗体,各链表达载体分别按照抗体A轻链设计如(图6)所示,抗体A Hole重链表达载体设计如(图11)所示,抗体A Knob Fc链设计如(图12)所示;以CD3抗体为B部分抗体,各表达链分别按照抗体B重链IN设计如(图9)所示,抗体B轻链设计,如(图10)所示。
1.2.瞬时转染HEK-293E细胞表达
HEK293-E系统中的瞬时转染。双特异性抗体A部分和B部分,通过分别三表达载体和二表达载体共转染HEK293-E(表达EB病毒核抗原的人胚肾细胞系293;美国典型培养物中心,保藏号ATCC#CRL-10852,Lot.959218)来生成。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日1000rpm 5min离心收集细胞,经(50ml)Gibco Freestyle 293培养基洗涤细胞1次,1000rpm 5min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为4×106个细胞/ml置于新的1L摇瓶(Coming)中。共转染各个质粒按照每106个细胞DNA用量0.5μg等摩尔比的分别编码各链基因的载体,用Gibco Freestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:3加入混匀的DNA中室温孵育20min,加入细胞悬液中的混合物,37℃,110rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,130rpm,5%CO2培养10天。直接收集上清纯化或者收集上清-80℃冷冻保存。
1.2.a.PEI介导按照1.1.a.中构建的A部分抗体三表达载体,共转染HEK293-E细胞。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日1000rpm 5min离心收集细胞,经(50ml)Gibco Freestyle 293培养基洗涤细胞1次,1000rpm 5min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为4×106个细胞/ml置于新的1L摇瓶(Coming)中。共转染各个质粒按照每106个细胞DNA用量0.5μg等摩尔比的分别编码各链基因的载体,用GibcoFreestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:3加入混匀的DNA中室温孵育20min,加入细胞悬液中的混合物,37℃,110rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,130rpm,5%CO2培养10天。直接收集上清纯化或者收集上清-80℃冷冻保存。
1.2.b.PEI介导按照1.1.b.中构建的A部分抗体三表达载体共转染HEK293-E细胞。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日1000rpm 5min离心收集细胞,经(50ml)Gibco Freestyle 293培养基洗涤细胞1次,1000rpm 5min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为4×106个细胞/ml置于新的1L摇瓶(Coming)中。共转染各个质粒按照每106个细胞DNA用量0.5μg等摩尔比的分别编码各链基因的载体,用GibcoFreestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:3加入混匀的DNA中室温孵育20min,加入细胞悬液中的混合物,37℃,110rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,130rpm,5%CO2培养10天。直接收集上清纯化或者收集上清-80℃冷冻保存。
1.2.c.PEI介导按照1.1.c.中构建的A部分(Her2)抗体两表达载体共转染HEK293-E细胞。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日1000rpm 5min离心收集细胞,经(50ml)GibcoFreestyle 293培养基洗涤细胞1次,1000rpm 5min离心收集细胞,用150mlGibcoFreestyle 293培养基重悬细胞至细胞密度为4×106个细胞/ml置于新的1L摇瓶(Coming)中。共转染各个质粒按照每106个细胞DNA用量0.5μg等摩尔比的分别编码各链基因的载体,用Gibco Freestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:3加入混匀的DNA中室温孵育20min,加入细胞悬液中的混合物,37℃,110rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,130rpm,5%CO2培养10天。直接收集上清纯化或者收集上清-80℃冷冻保存。
1.2.d.PEI介导按照1.1.d.中构建的B部分抗体两表达载体共转染HEK293-E细胞。用SFX4HEK293培养基(HyClone)和Gibco Freestyle 293培养基(Gibco)以1:1的比例,添加100μg/ml遗传霉素(geneticin)(Gibco)培养,转染前一天用新鲜培养基将细胞稀释至1.5-2.5×106个细胞/ml培养以37℃,120rpm,5%CO2培养,以待次日转染。以1L摇瓶(Coming)为例,次日1000rpm 5min离心收集细胞,经(50ml)Gibco Freestyle 293培养基洗涤细胞1次,1000rpm 5min离心收集细胞,用150mlGibco Freestyle 293培养基重悬细胞至细胞密度为4×106个细胞/ml置于新的1L摇瓶(Coming)中。共转染各个质粒按照每106个细胞DNA用量0.5μg等摩尔比的分别编码各链基因的载体,用GibcoFreestyle 293培养基稀释DNA至(40ng/μL),DNA:PEI(polyscince阳离子转染试剂)=1:3加入混匀的DNA中室温孵育20min,加入细胞悬液中的混合物,37℃,110rpm,5%CO2转染4小时,4小时后加入等体积预热的SFX4HEK293培养基,添加100μg/ml遗传霉素(geneticin)(Gibco)继续37℃,130rpm,5%CO2培养10天。直接收集上清纯化或者收集上清-80℃冷冻保存。
1.3.发酵液抗体的Protein L(蛋白L)亲和纯化
参考标准流程,从过滤的细胞培养物上清中纯化蛋白。简言之,将抗体应用于protein L(蛋白L)亲和层析(GE healthcare(GE健康护理))并用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH 6.8-7.4)洗涤。用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE汇集单体抗体组分,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE AmiconUltra(30MWCO)离心浓缩器浓缩,冷冻和在-20℃或-80℃保存。
1.3.a.上述步骤1.2.a.细胞发酵液的Protein L(蛋白L)亲和纯化。三表达载体共转染的发酵液中A部分抗体的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH6.8-7.4)与细胞过滤上清1:1混合,流过预先用PBS平衡完毕的Protein L(蛋白L)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图14)所示,非还原的样品103KD左右出现组装好的双特异性抗体A部分抗体;还原电泳出现55KD的重链,40KD的IC+Fc链,25KD的轻链。汇集单体抗体组分,可以纯化得到主要组份是A抗体部分的纯化产品,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE AmiconUltra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存。
1.3.b.上述步骤1.2.b.细胞发酵液的Protein L(蛋白L)亲和纯化。三表达载体共转染的发酵液中A部分抗体的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH6.8-7.4)与细胞过滤上清1:1混合,流过预先用PBS平衡完毕的Protein L(蛋白L)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图14)所示,非还原的样品103KD左右出现组装好的双特异性抗体A部分抗体;还原电泳出现55KD的重链,40KD的IC+Fc链,25KD的轻链。汇集单体抗体组分,可以纯化得到主要组份是A抗体部分的纯化产品,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE AmiconUltra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存。
1.3.c.上述步骤1.2.c.细胞发酵液的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mMNaCl pH 6.8-7.4)与细胞过滤上清1:1混合,流过预先用PBS平衡完毕的Protein L(蛋白L)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图15)所示,非还原样品60KD作用出现组装好的双特异性抗体B部分;还原样品中出现35KD的VH+CH1+IN链和25KD的轻链。汇集单体抗体组分,可以纯化得到主要组份是B抗体部分的纯化产品,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE AmiconUltra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存。
1.3.d.上述步骤1.2.d.细胞发酵液的Protein L(蛋白L)亲和纯化。参考标准流程,从过滤的细胞培养物上清中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mMNaCl pH 6.8-7.4)与细胞过滤上清1:1混合,流过预先用PBS平衡完毕的Protein L(蛋白L)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图15)所示,非还原样品60KD作用出现组装好的双特异性抗体B部分;还原样品中出现35KD的VH+CH1+IN链和25KD的轻链。汇集单体抗体组分,可以纯化得到主要组份是B抗体部分的纯化产品,以用于下一步断裂intein介导的体外剪接。如果需要,利用MILLIPORE AmiconUltra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存。
1.4.断裂intein介导的A和B两部分体外反式剪接
如(图16,图17)所示,步骤3中纯化所得的A和B两部分抗体,按照摩尔比1:1进行混合,同时加入0.05mM-2mM DTT或β巯基乙醇,如(图18)所示,分别加入DTT终浓度为0.01mM、0.05mM、1mM、2mM,结果显示DTT浓度为0.05mM即可诱导断裂intein反式剪接过程发生,在150KD处双特异性抗体有明显条带出现。TCEP等巯基化合物诱导断裂intein的反式剪接作用发生,4℃-37℃,以1mMDTT或TCEP浓度加入剪接反应体系,分别置于4℃、22℃、和37℃,如(图19)所示在4℃反应即可发生,22℃、和37℃反应效率较高,在150KD处双特异性抗体有明显条带出现。以以1mMDTT浓度加入剪接反应体系,置于37℃下,分别静置5min、15min、30min、60min和120min,如(图20)所示,5min即有反应发生生成双特异性抗体,在60min时反应到达平台期。反应结束需要去除巯基化合物,可以通过加入双氧水等氧化剂去除,或者通过透析去除巯基化合物,此外还可以通过高倍缓冲液稀释将巯基化合物稀释到工作浓度以下,以达到终止反应的目的。反应终止取样品进行非还原SDS-PAGE检测。
1.5.断裂intein介导的A和B部分反式剪接产物的protein A(蛋白A)纯化
参考标准流程,从步骤4反应混合液中纯化蛋白。用PBS(在PBS中,含有20mM磷酸盐,150mM NaCl pH 6.8-7.4)与样品合适比例混合,流过预先用PBS平衡完毕的Protein A(蛋白A)亲和层析柱,上样完毕用PBS洗涤,用pH5.0的100mM柠檬酸缓冲液洗除去杂组份,在pH3.0的100mM柠檬酸缓冲液实现抗体洗脱,并随后用PH9.0的1M tris-Hcl缓冲液立即中和样品。提供部分样品进行随后的蛋白质分析例如SDS-PAGE如(图21)所示,图21为rProteinA洗脱SDS-PAGE考马斯亮蓝染色;其中,M.marker;1.上柱前(N);2.Ni柱子洗脱(N);3.rProteinA洗脱1(N);4.rProteinA洗脱2(N);5.rProteinA洗脱3(N);6.空7.上柱前(R);8.Ni柱子洗脱(R);9.rProteinA洗脱1(R)10.rProteinA洗脱2(R);N-Nonreducing非还原的;R-Reducing还原的。由图21可知,非还原样品有明显的150KD条带为断裂intein介导的反式剪接而生成的双特异性抗体且纯度较高,还原样品仅出现50KD左右的重链和25KD左右的轻链。汇集单体抗体组分,如果需要,利用MILLIPORE Amicon Ultra(30MWCO)超滤离心管浓缩,冷冻和在-20℃或-80℃保存,或者用于更高纯度的纯化,例如离子交换层析,疏水层析,以及分子排阻层析等。
综上所述,本发明中为了解决重链错配问题,引入了“Knobs-into-Holes(杵-进入-臼)”和去除一条重链的VH和CH1区域在CH2的N铰链区端融合IC(断裂intein的C段),从而彻底阻止了重链形成无法纯化去除的重链同源二聚体组份。为了引入“Knobs-into-Holes(杵-进入-臼)”结构,在一条CH3区域将366位的T(苏氨酸)突变为W(色氨酸)形成“Knobs”结构;同时在另一条重链CH3区域将366位的T(苏氨酸)突变为S(丝氨酸),368位的L(亮氨酸)突变为A(丙氨酸),407位的Y(酪氨酸)突变为V(缬氨酸)以形成“Holes”结构;此外为了提高CH3区域结合的稳定性,将“Knobs”链上354位的S(丝氨酸)突变为C(半胱氨酸),“Holes”链上349位的Y(酪氨酸)突变为C(半胱氨酸)以引入一对重链间二硫键增强重链间的稳定性。此外最重要的是,一条完整的“Knobs”重链和一条“Holes”Fc链共同表达,由于“Knobs”重链同源二聚体,“Holes”Fc同源二聚体,与目的产物“Knobs”重链和“Holes”Fc异源二聚体性质差别很大,可以很简单的分离纯化开,因此最终产物中可以完全避免了重链错配问题。
本发明首次将双特异性抗体分割为结合抗原A,和结合抗原B两部分,如(图2,图3)所示,分别表达,然后通过断裂蛋白内含肽的反式剪接功能将A和B两部分连接成为完整的抗体。两条轻链不会同时存在,两条VH+CH1链也不会同时存在,因此不会出现A的轻链结合到B的重链上的情况,也不会出现B的轻链结合到A的重链上的情况,完全避免了轻链错配的产生。
本发明首次将断裂intein的反式剪接功能与双特异性抗体的构建结合,通过将分别表达纯化的A和B两部分抗体,通过断裂intein的反式剪接功能连接成为完整的抗体,这种双特异性抗体与天然存在的抗体分子结构及其相似,避免了因为结构差异引起的抗体分子不稳定,以及体内免疫原性高的情况。
本发明是运用基因重组表达技术生产双特异性抗体,所用的序列可以是人源化的抗体序列,或者是全人的抗体序列,最终可以得到人源化或者全人的双特异性抗体。这将极大的降低了双特异性抗体体内的免疫原性,为双特异性抗体成为药物奠定了基石。
由于A抗体部分保留了完整的Fc区域,intein介导的反式剪接所得到的双特异性抗体保留完整的Fc区域,保留了抗体的效应功能,诸如CDC(补体依赖的细胞毒性)或者ADCC(细胞毒作用)与血管内壁FcRn(Fc受体)结合的半衰期延长特性。
在本发明中A和B两部分抗体,都是通过哺乳动物细胞表达系统表达,比如瞬时转染293E,293F,CHO等细胞,以及稳定转染CHO等细胞生产。哺乳动物细胞表达的产品,是具备糖基化修饰的,与天然的抗体分子更加相近,intein介导的反式剪接所得到的双特异性抗体含有良好的糖基化修饰,能够更好的维持双特异性抗体分子的稳定性,以及ADCC,CDC等抗体效应,并且体内半衰期延长,药效持续时间增长。
本发明制备双特异性抗体的方法,纯化工艺简单易于操作。首先A和B两部分均可通过亲和层析ProteinL或者ProteinA/G等高回收率的层析方法获得,intein介导的反式剪接所得到的双特异性抗体可以经过ProteinA/G等高回收率的层析方法获得,有利于接下来疏水层析,或者离子交换层析的操作。大大降低了纯化难度,可以得到高品质的产品。
由于抗体重链的CH1和CH2之间的铰链区结构灵活,且抗体Fc区一级Fab区域结构基本完全一致,所以,该方法适用于任何双特异性抗体的生产,无需根据每个抗体的性质进行性质分析,本发明完全适用于任何抗体亚型(IgG,IgA,IgM,IgD,IgE,IgM,以及轻链κ和λ型)的双特异性抗体生产,具有广泛的通用性。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (11)

1.一种二价双特异性抗体的表达和制备方法,所述二价双特异性抗体包括特异性结合第一抗原的抗体的第一轻链、第一重链,特异性结合第二抗原的抗体的第二轻链、第二重链;其特征在于,所述方法包括如下步骤:
S1、将所述二价双特异性抗体的表达序列进行拆分,获得A部分抗体和B部分抗体;所述A部分抗体包括第一轻链、第一重链和N端融合了IC的第二重链的Fc链;所述B部分抗体包括第二轻链和C端融合有IN的第二重链的VH+CH1链,;
S2、经全基因合成构建哺乳动物细胞表达载体,分别获得A部分抗体的表达载体和B部分抗体的表达载体;
S3、转染试剂介导A部分抗体的表达载体转染哺乳动物细胞,或者稳定表达A部分的稳转细胞株,表达获得A部分抗体;转染试剂介导B部分抗体的表达载体转染哺乳动物细胞,或稳定表达B部分的稳转细胞株,表达获得B部分抗体;
S4、分别纯化所得的A部分抗体和B部分抗体,进行A部分抗体和B部分抗体的体外反式剪接,即得所述二价双特异性抗体。
2.根据权利要求1所述的二价双特异性抗体的表达和制备方法,其特征在于,所述第一重链的CH3结构域的界面生成了凸起,所述凸起可以定位在所述N端融合了IC的第二重链的Fc链的CH3结构域的界面内的凹洞中。
3.根据权利要求2所述的二价双特异性抗体的表达和制备方法,其特征在于,在第一重链的CH3结构域将366位的苏氨酸突变为色氨酸以形成所述凸起;在N端融合了IC的第二重链的Fc链的CH3结构域将366位的苏氨酸突变为丝氨酸,368位的亮氨酸突变为丙氨酸,407位的酪氨酸突变为缬氨酸以形成所述凹洞。
4.根据权利要求3所述的二价双特异性抗体的表达和制备方法,其特征在于,在第一重链的CH3结构域将354位的丝氨酸突变为半胱氨酸;在N端融合了IC的第二重链的Fc链的CH3结构域将349位的酪氨酸突变为半胱氨酸。
5.根据权利要求1所述的二价双特异性抗体的表达和制备方法,其特征在于,所述第一重链的CH3结构域的界面生成了凹洞,在所述凹洞内可以定位在所述N端融合了IC的第二重链的Fc链的CH3结构域的界面生成的凸起。
6.根据权利要求5所述的二价双特异性抗体的表达和制备方法,其特征在于,在第一重链的CH3结构域将366位的苏氨酸突变为丝氨酸,368位的亮氨酸突变为丙氨酸,407位的酪氨酸突变为缬氨酸以形成凹洞;在N端融合了IC的第二重链的Fc链的CH3结构域将366位的苏氨酸突变为色氨酸以形成凸起。
7.根据权利要求6所述的二价双特异性抗体的表达和制备方法,其特征在于,在第一重链的CH3结构域将349位的酪氨酸突变为半胱氨酸;在N端融合了IC的第二重链的Fc链的CH3结构域将354位的丝氨酸突变为C半胱氨酸。
8.根据权利要求1所述的二价双特异性抗体的表达和制备方法,其特征在于,步骤S3中,所述转染哺乳动物细胞为瞬时转染293-E、293-F或CHO哺乳动物细胞,或者为稳定转染CHO哺乳动物细胞。
9.根据权利要求1所述的二价双特异性抗体的表达和制备方法,其特征在于,步骤S4中,所述体外反式剪接为在巯基化合物存在条件下进行的断裂intein介导的体外反式剪接。
10.根据权利要求1所述的二价双特异性抗体的表达和制备方法,其特征在于,步骤S4中,还包括将剪接所得产物进行纯化的步骤。
11.一种二价双特异性抗体的免疫杂交蛋白的表达和制备方法,其特征在于,所述二价双特异性抗体基于如权利要求1~10中任一项所述的方法制备,所述免疫杂交蛋白的表达和制备方法包括如下步骤:
B1、将所述免疫杂交蛋白的表达序列进行拆分,获得蛋白分子、A部分抗体和B部分抗体;所述A部分抗体包括第一轻链、第一重链和第二重链的Fc链,该Fc链的N端融合了IC;所述B部分抗体包括第二轻链和第二重链的VH+CH1链,该VH+CH1链的C端融合了IN;所述蛋白分子的一端融合了IN,所述第二重链的Fc链、第一重链的Fc链中至少一条Fc链的C端融合了IC;
B2、经全基因合成构建真核或原核生物表达载体,用瞬转或稳转方法分别表达、制备获得A部分抗体和B部分抗体;
B3、纯化后,进行A部分抗体、B部分抗体和蛋白分子的体外反式剪接,即得所述免疫杂交蛋白。
B4、或未经纯化的A部分抗体,B部分抗体和蛋白分子的体外反式剪接,及得到所述免疫杂交蛋白,后经纯化得到所述免疫杂交蛋白。
CN201610100217.9A 2016-02-23 2016-02-23 二价双特异性抗体杂交蛋白的表达和制备方法 Active CN106397599B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610100217.9A CN106397599B (zh) 2016-02-23 2016-02-23 二价双特异性抗体杂交蛋白的表达和制备方法
EP16891286.3A EP3418305B1 (en) 2016-02-23 2016-12-16 Bivalent bispecific antibody hybrid protein expression and preparation methods
PCT/CN2016/110290 WO2017143838A1 (zh) 2016-02-23 2016-12-16 二价双特异性抗体杂交蛋白的表达和制备方法
US16/079,003 US11535674B2 (en) 2016-02-23 2016-12-16 Bivalent bispecific antibody hybrid protein expression and preparation methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610100217.9A CN106397599B (zh) 2016-02-23 2016-02-23 二价双特异性抗体杂交蛋白的表达和制备方法

Publications (2)

Publication Number Publication Date
CN106397599A true CN106397599A (zh) 2017-02-15
CN106397599B CN106397599B (zh) 2020-08-07

Family

ID=58007043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610100217.9A Active CN106397599B (zh) 2016-02-23 2016-02-23 二价双特异性抗体杂交蛋白的表达和制备方法

Country Status (4)

Country Link
US (1) US11535674B2 (zh)
EP (1) EP3418305B1 (zh)
CN (1) CN106397599B (zh)
WO (1) WO2017143838A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143838A1 (zh) * 2016-02-23 2017-08-31 上海交通大学 二价双特异性抗体杂交蛋白的表达和制备方法
CN107312791A (zh) * 2017-08-11 2017-11-03 湖南农业大学 双拷贝eip表达载体及其构建方法和应用
CN109627340A (zh) * 2018-12-05 2019-04-16 上海交通大学 Cd3和prlr双特异性抗体及其构建与应用
WO2020216194A1 (zh) * 2019-04-22 2020-10-29 上海交通大学 一种用于肿瘤免疫治疗的多肽组合及其制备方法
WO2021047559A1 (zh) * 2019-09-09 2021-03-18 武汉友芝友生物制药有限公司 一种断裂型内含肽、使用其的重组多肽的制备方法
CN113544275A (zh) * 2019-03-05 2021-10-22 信达生物制药(苏州)有限公司 展示与分泌目的多肽的酵母展示系统及其用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144837A (ko) * 2019-03-28 2021-11-30 에이비 스튜디오 인코포레이티드 이종다량체 단백질 및 이의 사용 방법
JP7101433B2 (ja) * 2020-03-30 2022-07-15 国立研究開発法人医薬基盤・健康・栄養研究所 エピトープ領域架橋型バイパラトピック抗体、及びそれを製造する方法
WO2023229029A1 (ja) * 2022-05-26 2023-11-30 国立大学法人山形大学 ヘテロダイマータンパク質の製造方法、ダイマータンパク質、モノマータンパク質、および標的反応性のヘテロダイマータンパク質のスクリーニング方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046208A2 (en) * 2000-11-01 2002-06-13 Elusys Therapeutics, Inc. Method of producing biospecific molecules by protein trans-splicing
US20030157091A1 (en) * 2002-02-14 2003-08-21 Dyax Corporation Multi-functional proteins
CN101899489A (zh) * 2009-05-27 2010-12-01 南京大学 利用内含肽反式剪接模式化生产融合蛋白质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
JP6177780B2 (ja) * 2011-09-28 2017-08-09 エラ、ビオテック、ソシエダッド、アノニマEra Biotech, S.A. スプリットインテインおよびその使用
US9796967B2 (en) * 2012-08-01 2017-10-24 Ohio State Innovation Foundation Compositions related to controllable intervening protein sequences (CIPS) comprising reversible zinc-binding motifs and inteins
EP3039136B8 (en) * 2013-08-28 2020-12-16 Sangamo Therapeutics, Inc. Compositions for linking dna-binding domains and cleavage domains
CA3229275A1 (en) * 2013-12-09 2015-06-18 Sangamo Biosciences, Inc. Methods and compositions for genome engineering
DK3102673T3 (da) * 2014-02-03 2020-07-06 Sangamo Therapeutics Inc Fremgangsmåder og sammensætninger til behandling af beta-talassæmi
CN106397599B (zh) * 2016-02-23 2020-08-07 上海交通大学 二价双特异性抗体杂交蛋白的表达和制备方法
CN106397598B (zh) * 2016-02-23 2020-07-14 上海交通大学 多价多特异性抗体及免疫杂合蛋白的表达和制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046208A2 (en) * 2000-11-01 2002-06-13 Elusys Therapeutics, Inc. Method of producing biospecific molecules by protein trans-splicing
US20030157091A1 (en) * 2002-02-14 2003-08-21 Dyax Corporation Multi-functional proteins
CN101899489A (zh) * 2009-05-27 2010-12-01 南京大学 利用内含肽反式剪接模式化生产融合蛋白质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MARGARET MERCHANT等: "An efficient route to huinan bispecific IgG", 《NATURE BIOTECHNOLOGY》 *
任元涛等: "蛋白质剪接研究进展", 《生物技术通讯》 *
狄洌等: "蛋白质内含子研究进展", 《药物生物技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143838A1 (zh) * 2016-02-23 2017-08-31 上海交通大学 二价双特异性抗体杂交蛋白的表达和制备方法
US11535674B2 (en) 2016-02-23 2022-12-27 Shanghai Jiao Tong University Bivalent bispecific antibody hybrid protein expression and preparation methods
CN107312791A (zh) * 2017-08-11 2017-11-03 湖南农业大学 双拷贝eip表达载体及其构建方法和应用
CN109627340A (zh) * 2018-12-05 2019-04-16 上海交通大学 Cd3和prlr双特异性抗体及其构建与应用
CN109627340B (zh) * 2018-12-05 2021-02-12 上海交通大学 Cd3和prlr双特异性抗体及其构建与应用
CN113544275A (zh) * 2019-03-05 2021-10-22 信达生物制药(苏州)有限公司 展示与分泌目的多肽的酵母展示系统及其用途
WO2020216194A1 (zh) * 2019-04-22 2020-10-29 上海交通大学 一种用于肿瘤免疫治疗的多肽组合及其制备方法
WO2021047559A1 (zh) * 2019-09-09 2021-03-18 武汉友芝友生物制药有限公司 一种断裂型内含肽、使用其的重组多肽的制备方法

Also Published As

Publication number Publication date
EP3418305A4 (en) 2019-03-13
EP3418305B1 (en) 2020-04-22
US11535674B2 (en) 2022-12-27
CN106397599B (zh) 2020-08-07
WO2017143838A1 (zh) 2017-08-31
US20190062434A1 (en) 2019-02-28
EP3418305A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
CN106397599A (zh) 二价双特异性抗体杂交蛋白的表达和制备方法
US12077595B2 (en) Single domain antibodies that bind to CD137
CN111670051B (zh) 生物分子偶联物及其用途
CN106397598A (zh) 多价多特异性抗体及免疫杂合蛋白的表达和制备方法
CN108699136B (zh) 结合cd3和psma的异二聚抗体
ES2667893T3 (es) Anticuerpo anti-TCR alfa-beta
JP2019528051A (ja) 修飾抗原結合Fab断片及びこれを含む抗原結合分子
CN107406512A (zh) 结合cd3和cd38的异二聚体抗体
CN104955953A (zh) 高效诱导抗体重链恒定区的异源二聚体形成的ch3域变体对,其制备方法及用途
JP6633520B2 (ja) プロアポトーシス活性を有するヒトigg1由来抗体
CN111378044B (zh) 抗体融合蛋白、制备方法及其应用
JP2021528973A (ja) 抗steap1抗原結合タンパク質
EP3904392A1 (en) Bivalent bispecific antibody and prepartion method thereof, coding gene, host cell and composition
JP2022532388A (ja) 改善されたラムダ抗体
CN114269788B (zh) 一种能够与人4-1bb结合的分子及其应用
GB2576914A (en) Antigen-binding molecules comprising unpaired variable domains produced in mammals
US20240059771A1 (en) Anti-cldn-18.2 antibody and use thereof
WO2023051727A1 (zh) 结合cd3的抗体及其用途
WO2024188319A1 (zh) 抗muc17、cd3和cd28三特异性抗体
CN118139876A (zh) 结合cldn18.2的抗体及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant