CN106385236A - 一种高线性度高增益的有源混频器及方法 - Google Patents

一种高线性度高增益的有源混频器及方法 Download PDF

Info

Publication number
CN106385236A
CN106385236A CN201610906433.2A CN201610906433A CN106385236A CN 106385236 A CN106385236 A CN 106385236A CN 201610906433 A CN201610906433 A CN 201610906433A CN 106385236 A CN106385236 A CN 106385236A
Authority
CN
China
Prior art keywords
transistor
current
signal
radio frequency
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610906433.2A
Other languages
English (en)
Other versions
CN106385236B (zh
Inventor
宋树祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201610906433.2A priority Critical patent/CN106385236B/zh
Publication of CN106385236A publication Critical patent/CN106385236A/zh
Application granted granted Critical
Publication of CN106385236B publication Critical patent/CN106385236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明涉及一种高线性度高增益的有源混频器及方法,包括两个主跨导放大电路接入射频差分电压信号,分别进行跨导放大转换成第一射频电流信号和第二射频电流信号,两个辅跨导放大管接入射频差分电压信号,分别进行跨导放大转换成第三射频电流信号和第四射频电流信号,第三射频电流信号和第四射频电流信号分别通过第一电流镜和第二电流镜进行电流放大,并分别与第一射频电流信号和第二射频电流信号叠加形成两个叠加射频电流信号,输入到开关级电路;负载级电路向开关级电路输出直流电流,开关级电路接入本振信号,对两个叠加射频电流信号进行周期性换向,实现混频。本发明能解决线性度与增益之间的矛盾,同时提高线性度和增益。

Description

一种高线性度高增益的有源混频器及方法
技术领域
本发明涉及混频器技术领域,特别涉及一种高线性度高增益的有源混频器及方法。
背景技术
无线通信技术中,射频接收机是必不可少的。射频前端中,混频器作为的关键部分,其性能指标将直接影响整个无线通信系统的质量。混频器的线性度通常决定了射频接收机的动态范围。
随着CMOS工艺特征尺寸不断降低,CMOS工艺的特征频率不断提高,已从几个GHz变到几十GHz,甚至上百GHz,CMOS工艺特别适合模拟电路与数字电路集成在单个芯片上,形成SOC的设计方案。MOS管尺寸的减小使得供电电压降低,功耗减小。
忽略混频器开关级电路的非理想开关特性,混频器的线性度主要由跨导输入级电路决定,其主要是MOS管的I-V非线性转换引起的,一般采用三阶交调点(IIP3)作为线性度的衡量标准。
传统的Gilbert混频器,一般采用源级电阻/电感负反馈技术来改善混频器的线性度,使跨导级的跨导对输入信号变成弱函数,达到稳定跨导的作用。主要缺点是混频器的增益大幅降低,使用电阻反馈时,还引入了输入噪声。再者现有技术中传统的吉尔伯特有源混频器线性度较差,且存在线性度与增益的折中问题,导致无法满足现代对接收机高性能的要求。
发明内容
本发明的目的是提供一种高线性度高增益的有源混频器及方法,所要解决的技术问题是:如何解决线性度与增益之间的矛盾,同时提高线性度和增益。
本发明解决上述技术问题的技术方案如下:一种高线性度高增益的有源混频器,包括第一主跨导放大电路、第二主跨导放大电路、第三阶跨导系数修正电流镜对、开关级电路和负载级电路,所述第一主跨导放大电路和第二主跨导放大电路均与所述第三阶跨导系数修正电流镜对连接,所述开关级电路分别与所述第三阶跨导系数修正电流镜对和所述负载级电路连接;所述第三阶跨导系数修正电流镜对包括第一辅跨导放大管、第二辅跨导放大管、第一电流镜和第二电流镜,第一主跨导放大电路和第二主跨导放大电路分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,分别对正端RF+的射频差分电压信号和负端RF-的射频差分电压信号进行跨导放大转换成第一射频电流信号和第二射频电流信号,所述第一辅跨导放大管和第二辅跨导放大管分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,进行跨导放大转换成第三射频电流信号和第四射频电流信号,第三射频电流信号和第四射频电流信号分别通过所述第一电流镜和第二电流镜进行电流放大转换成第五射频电流信号和第六射频电流信号,所述第五射频电流信号与第一射频电流信号叠加形成第一叠加射频电流信号;所述第六射频电流信号与第二射频电流信号叠加形成第二叠加射频电流信号,第一叠加射频电流信号和第二叠加射频电流信号输入到开关级电路,所述负载级电路接入电源电压VDD,向所述开关级电路输出直流电流,所述开关级电路接入本振信号LO-和本振信号LO+控制其导通和中断,对第一叠加射频电流信号和第二叠加射频电流信号进行周期性换向,实现混频。
本发明的有益效果是:MOS管工作在不同工作区时,I-V特性中的三阶交调电流相位相反,通过第三阶跨导系数修正电流镜对,使得第一主跨导放大电路和第二主跨导放大电路中输出电流给开关级电路中的三阶交调电流分量减小,基波电流分量增加,从而提高线性度,同时又增加了跨导输入级的跨导,进而提高了混频器的增益。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述第一主跨导放大电路包括晶体管M1和电容C1,所述晶体管M1的栅极接入射频电压信号正端RF+,所述晶体管M1的漏极分别与第一电流镜和开关级电路连接,其源极经电感L1接地;所述电容C1的一端与晶体管M1的栅极连接,另一端与第一辅跨导放大管连接。
进一步,所述第二主跨导放大电路包括晶体管M2和电容C2,所述晶体管M2的栅极接入负端RF-的射频差分电压信号,所述晶体管M2的漏极分别与第二电流镜对和开关级电路连接,其源极经电感L2接地;所述电容C2的一端与晶体管M2的栅极连接,另一端与第二辅跨导放大管连接。
采用上述进一步方案的有益效果是:第一主跨导放大电路和第二主跨导放大电路分别接入射频差分电压信号RF+和射频差分电压信号RF-,进行跨导放大,增加了跨导输入级的跨导。
进一步,所述第一电流镜包括晶体管M7和晶体管M8,所述第二电流镜包括晶晶体管M9和晶体管M10,所述晶体管M7和晶体管M8的栅极相连,所述晶体管M7和晶体管M8的源极均接入电源电压VDD;所述晶体管M8的漏极与所述晶体管M1的漏极连接;所述晶体管M9和晶体管M10的栅极相连,所述晶体管M9和晶体管M10的源极均接入电源电压VDD,所述晶体管M9的漏极与所述晶体管M2的漏极连接。
采用上述进一步方案的有益效果是:第一电流镜和第二电流镜对第三射频电流信号和第四射频电流信号分别进行放大,转换成第五射频电流信号和第六射频电流信号,提高了增益。
进一步,所述晶体管M7与所述晶体管M10的宽长比均为a1,所述晶体管M8与所述晶体管M9的宽长比均为a2,其中a2/a1=m,m为任意大于1的实数。
进一步,所述第一辅跨导放大管包括晶体管M1a,第二辅跨导放大管包括晶体管M2a,所述晶体管M1a的漏极与所述晶体管M7的漏极连接,所述所述晶体管M1a的栅极与所述电容C1连接,其源极经电感L1接地;所述晶体管M2a的漏极与所述晶体管M10的漏极连接,所述晶体管M2a的栅极与所述电容C2连接,其源极经电感L2接地。
采用上述进一步方案的有益效果是:第一辅跨导放大管和第二辅跨导放大管分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,进行跨导放大转换成第三射频电流信号和第四射频电流信号,进行辅助跨导放大,增加了跨导。
进一步,所述晶体管M1a和所述晶体管M2a的宽长比相等,所述电感L1和电感L2大小相等。
采用上述进一步方案的有益效果是:使栅极的偏置电压相同,都工作在亚阈值区。
进一步,所述负载级电路包括电容C3、电容C4、电阻R1和电阻R2,所述电阻R1的一端接入电源电压VDD,另一端与开关级电路连接;所述电容C3与所述电阻R1并联;所述电阻R2的一端接入电源电压VDD,另一端与开关级电路连接;所述电容C4与所述电阻R2并联。
采用上述进一步方案的有益效果是:使混频后的中频电流信号转换成中频电压信号,负载级还采用低通滤波器过滤掉高频的电压信号,提高隔离度。
进一步,所述开关级电路包括晶体管M3、晶体管M4、晶体管M5和晶体管M6,所述晶体管M3和晶体管M6的栅极均接入本振信号LO+,所述晶体管M4和晶体管M5的栅极相连接入本振信号LO-,所述晶体管M3的源极与所述晶体管M4的源极相连,并与所述晶体管M1的漏极连接;所述晶体管M5的源极与所述晶体管M6的源极相连,并与所述晶体管M2的漏极连接;所述晶体管M3的漏极和晶体管M5的漏极相连,并与电阻R1连接;同时混频后的中频信号IF+经所述晶体管M3的漏极和晶体管M5的漏极输出;所述晶体管M4的漏极和晶体管M6的漏极相连,并与电阻R2连接;同时混频后的中频信号IF-经所述晶体管M4的漏极和晶体管M6的漏极输出。
采用上述进一步方案的有益效果是:开关级电路对信号进行混频,实现射频信号向中频信号的转变。
本发明解决上述技术问题的另一技术方案如下:一种高线性度高增益的有源混频器的运作方法,包括以下步骤:
步骤S1.第一主跨导放大电路和第二主跨导放大电路分别接入射频差分电压信号RF+和射频差分电压信号RF-,分别对射频差分电压信号RF+和射频差分电压信号RF-进行跨导放大转换成第一射频电流信号和第二射频电流信号;
步骤S2.第三阶跨导系数修正电流镜对接入射频差分电压信号RF+和射频差分电压信号RF-,进行辅助跨导放大转换成第三射频电流信号和第四射频电流信号,并将第三射频电流信号和第四射频电流信号分别进行电流放大转换成第五射频电流信号和第六射频电流信号,将第五射频电流信号与第一射频电流信号叠加形成第一叠加射频电流信号;同时将第六射频电流信号与第二射频电流信号叠加形成第二叠加射频电流信号;
步骤S3.负载级电路接入电源电压VDD,向开关级电路输出直流电流,开关级电路接入本振信号LO-和本振信号LO+控制其导通和中断,对第一叠加射频电流信号和第二叠加射频电流信号进行周期性换向,实现混频。
本发明的有益效果是:MOS管工作在不同工作区时,I-V特性中的三阶交调电流相位相反,通过第三阶跨导系数修正电流镜对,使得第一主跨导放大电路和第二主跨导放大电路中输出电流给开关级电路中的三阶交调电流分量减小,基波电流分量增加,从而提高线性度,同时又增加了跨导输入级的跨导,进而提高了混频器的增益。
附图说明
图1为本发明一种高线性度高增益的有源混频器的电路原理图;
图2为本发明的IIP3仿真结果图;
图3为电压转换增益CG仿真图;
图4为本发明一种高线性度高增益的有源混频器的方法流程图。
附图中,各标号所代表的部件列表如下:
1、第一主跨导放大电路,2、第二主跨导放大电路,3、第三阶跨导系数修正电流镜对,4、开关级电路,5、负载级电路,6、第一辅跨导放大管,7、第二辅跨导放大管,8、第一电流镜,9、第二电流镜。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1至图3所示,一种高线性度高增益的有源混频器,包括第一主跨导放大电路1、第二主跨导放大电路2、第三阶跨导系数修正电流镜对3、开关级电路4和负载级电路5,所述第一主跨导放大电路1和第二主跨导放大电路2均与所述第三阶跨导系数修正电流镜对3连接,所述开关级电路4分别与所述第三阶跨导系数修正电流镜对3和所述负载级电路5连接;所述第三阶跨导系数修正电流镜对3包括第一辅跨导放大管6、第二辅跨导放大管7、第一电流镜8和第二电流镜9,第一主跨导放大电路1和第二主跨导放大电路2分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,分别对正端RF+的射频差分电压信号和负端RF-的射频差分电压信号进行跨导放大转换成第一射频电流信号和第二射频电流信号,所述第一辅跨导放大管6和第二辅跨导放大管7分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,进行跨导放大转换成第三射频电流信号和第四射频电流信号,第三射频电流信号和第四射频电流信号分别通过所述第一电流镜8和第二电流镜9进行电流放大转换成第五射频电流信号和第六射频电流信号,所述第五射频电流信号与第一射频电流信号叠加形成第一叠加射频电流信号;所述第六射频电流信号与第二射频电流信号叠加形成第二叠加射频电流信号,第一叠加射频电流信号和第二叠加射频电流信号输入到开关级电路5,所述负载级电路5接入电源电压VDD,向所述开关级电路4输出直流电流,所述开关级电路4接入本振信号LO-和本振信号LO+控制其导通和中断,对第一叠加射频电流信号和第二叠加射频电流信号进行周期性换向,实现混频;
MOS管工作在不同工作区时,I-V特性中的三阶交调电流相位相反,通过第三阶跨导系数修正电流镜对3,使得第一主跨导放大电路1和第二主跨导放大电路2中输出电流给开关级电路4中的三阶交调电流分量减小,基波电流分量增加,从而提高线性度,同时又增加了第一主跨导放大电路1和第二主跨导放大电路2的跨导,进而提高了混频器的增益。
上述实施例中,所述第一主跨导放大电路1包括晶体管M1和电容C1,所述晶体管M1的栅极接入射频电压信号正端RF+,所述晶体管M1的漏极分别与第一电流镜8和开关级电路4连接,其源极经电感L1接地;所述电容C1的一端与晶体管M1的栅极连接,另一端与第一辅跨导放大管6连接;所述第二主跨导放大电路2包括晶体管M2和电容C2,所述晶体管M2的栅极接入负端RF-的射频差分电压信号,所述晶体管M2的漏极分别与第二电流镜9和开关级电路4连接,其源极经电感L2接地;所述电容C2的一端与晶体管M2的栅极连接,另一端与第二辅跨导放大管7连接;
第一主跨导放大电路1和第二主跨导放大电路2分别接入射频差分电压信号RF+和射频差分电压信号RF-,进行跨导放大,增加了第一主跨导放大电路1和第二主跨导放大电路2的跨导。
上述实施例中,所述第一电流镜8包括晶体管M7和晶体管M8,所述第二电流镜9包括晶晶体管M9和晶体管M10,所述晶体管M7和晶体管M8的栅极相连,所述晶体管M7和晶体管M8的源极均接入电源电压VDD;所述晶体管M8的漏极与所述晶体管M1的漏极连接;所述晶体管M9和晶体管M10的栅极相连,所述晶体管M9和晶体管M10的源极均接入电源电压VDD,所述晶体管M9的漏极与所述晶体管M2的漏极连接;所述晶体管M7与所述晶体管M10的宽长比均为a1,所述晶体管M8与所述晶体管M9的宽长比均为a2,其中a2/a1=m,m为任意大于1的实数;第一电流镜8和第二电流镜9对第三射频电流信号和第四射频电流信号分别进行放大,转换成第五射频电流信号和第六射频电流信号,提高了增益。
上述实施例中,所述第一辅跨导放大管6包括晶体管M1a,第二辅跨导放大管7包括晶体管M2a,所述晶体管M1a的漏极与所述晶体管M7的漏极连接,所述所述晶体管M1a的栅极与所述电容C1连接,其源极经电感L1接地;所述晶体管M2a的漏极与所述晶体管M10的漏极连接,所述晶体管M2a的栅极与所述电容C2连接,其源极经电感L2接地;所述晶体管M1a和所述晶体管M2a的宽长比相等,所述电感L1和电感L2大小相等;第一辅跨导放大管6和第二辅跨导放大管7分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,进行跨导放大转换成第三射频电流信号和第四射频电流信号,进行辅助跨导放大,增加了跨导;晶体管M1a和晶体管M2a使栅极的偏置电压相同,都工作在亚阈值区。
上述实施例中,所述负载级电路5包括电容C3、电容C4、电阻R1和电阻R2,所述电阻R1的一端接入电源电压VDD,另一端与开关级电路4连接;所述电容C3与所述电阻R1并联;所述电阻R2的一端接入电源电压VDD,另一端与开关级电路4连接;所述电容C4与所述电阻R2并联;使混频后的中频电流信号转换成中频电压信号,负载级还采用低通滤波器过滤掉高频的电压信号,提高隔离度。
上述实施例中,所述开关级电路4包括晶体管M3、晶体管M4、晶体管M5和晶体管M6,所述晶体管M3和晶体管M6的栅极均接入本振信号LO+,所述晶体管M4和晶体管M5的栅极相连接入本振信号LO-,所述晶体管M3的源极与所述晶体管M4的源极相连,并与所述晶体管M1的漏极连接;所述晶体管M5的源极与所述晶体管M6的源极相连,并与所述晶体管M2的漏极连接;所述晶体管M3的漏极和晶体管M5的漏极相连,并与电阻R1连接;同时混频后的中频信号IF+经所述晶体管M3的漏极和晶体管M5的漏极输出;所述晶体管M4的漏极和晶体管M6的漏极相连,并与电阻R2连接;同时混频后的中频信号IF-经所述晶体管M4的漏极和晶体管M6的漏极输出;开关级电路对信号进行混频,实现射频信号向中频信号的转变。
混频器的第一主跨导放大电路1和第二主跨导放大电路2的MOS管的小信号电流按泰勒级数(忽略高阶项)展开得:
i r f = f ( v r f ) = g m 1 v r f + g m 2 v r f 2 + g m 3 v r f 3
其中:gmn为第n阶跨导系数
如图2所示,低中频混频器中三阶交调分量的频率与基波频率接近,严重影响线性度,故采用三阶交调点作为线性度的衡量标准。输入三阶交调截点IIP3为:
A I I P 3 = 4 3 | g m 1 g m 3 |
由上式可知,可以通过增大gm1或减小gm3来改善混频器的线性度。
MOS管工作在强反型区时,电压与电流的关系:
I = K V o d 2 1 + θV o d
其中:
Vod=VGS-VTH
K = 1 2 μ 0 C o x W L
Vod为mos管的过驱动电压,VGS为栅源电压,VTH为阈值电压,K是管子参数,μ0是沟道电子迁移率,Cox为单位面积栅氧化层电容,W/L为晶体管的宽长比;
电流展开成泰勒级数时,跨导与第三阶跨导系数为:
g m 1 = ∂ I ∂ V G S = K 2 V o d + θV o d 2 ( 1 + θV o d ) 2
g m 3 = ∂ 3 I ∂ V G S 3 = K - θ ( 1 + θV o d ) 4
MOS管工作在弱反型区时,电压与电流的关系:
I D = I 0 exp V G S ζV T
其中,I0是MOS管特征电流,ζ是亚阈值斜率因子,VT为热电压;
MOS管的跨导以及跨导的二次导数的表达式如下:
g m 1 D = I 0 1 ζV T exp V G S ζV T
g m 3 D = I 0 1 6 ( ζV T ) 3 exp V G S ζV T
第三阶跨导系数修正电流镜对3中,包括辅差分跨导放大对晶体管M1a、M2a和电流镜对晶体管M7、晶体管M8、晶体管M9、晶体管M10;晶体管M1a、M2a的宽长比相等,使栅极的偏置电压相同,都工作在亚阈值区;晶体管M7、晶体管M10的宽长比相等,晶体管M18、晶体管M9宽长比相等;晶体管M7、晶体管M8和晶体管M9、晶体管M10分别组成电流镜,宽长比为m;辅差分跨导放大对晶体管M1a、晶体管M2a的电流分别流入第一电流镜8中晶体管M7的漏级与第二电流镜9中晶体管M10的漏级;晶体管M8或晶体管M9输出的电流为:
I8,9=mI7,10=mI1a,2a
第三阶跨导系数修正电流镜对3与主跨导放大电路并联,晶体管M1的漏级与晶体管M8的漏极连接,形成第一叠加射频电流I1总传送到开关级电路,主差分跨导放大对中晶体管M2的漏级与第二电流镜(9)晶体管M9的漏极连接,形成第二叠加射频电流I2总电流传送到开关级电路,其中第一叠加射频电流I1总,第一叠加射频电流I2总中所包含的跨导和第三阶跨导系数为:
由上式可知,可以通过合理调节m的值使第三阶跨导系数gm3总为零,使线性度达到最大,即输入开关级电路4的第一叠加射频电流I1总,第一叠加射频电流I2总中三阶交调电流抵消掉,同时第一叠加射频电流I1总,第一叠加射频电流I2总中的总跨导gm1总增加,使本发明的混频器线性度增加,增益变大;
基于传统的Gilbert混频器与本发明所提供的高线性度、高增益有源混频器进行了对比试验,图2与图3给出了仿真结果,其中对比了传统的Gilbert混频器与本发明混频器的不同频点处的输入三阶交调点与电压转换增益。实验结果表明了,本发明混频器电路的输入三阶交调点在0.9-3.1GHz频带内比传统的Gilbert混频器高出6dB-8dB,同时,本发明混频器电路的电压转换增益CG在0.9-3.1GHz频带内比传统的Gilbert混频器高出2dB-3dB。
实施例2:
如图4所示,一种高线性度高增益的有源混频器的运作方法,包括以下步骤:
步骤S1.第一主跨导放大电路1和第二主跨导放大电路2分别接入射频差分电压信号RF+和射频差分电压信号RF-,分别对射频差分电压信号RF+和射频差分电压信号RF-进行跨导放大转换成第一射频电流信号和第二射频电流信号;
步骤S2.第三阶跨导系数修正电流镜对3接入射频差分电压信号RF+和射频差分电压信号RF-,进行辅助跨导放大转换成第三射频电流信号和第四射频电流信号,并将第三射频电流信号和第四射频电流信号分别进行电流放大转换成第五射频电流信号和第六射频电流信号,将第五射频电流信号与第一射频电流信号叠加形成第一叠加射频电流信号;同时将第六射频电流信号与第二射频电流信号叠加形成第二叠加射频电流信号;
步骤S3.负载级电路5接入电源电压VDD,向开关级电路4输出直流电流,开关级电路4接入本振信号LO-和本振信号LO+控制其导通和中断,对第一叠加射频电流信号和第二叠加射频电流信号进行周期性换向,实现混频;
MOS管工作在不同工作区时,I-V特性中的三阶交调电流相位相反,通过第三阶跨导系数修正电流镜对,使得第一主跨导放大电路和第二主跨导放大电路中输出电流给开关级电路中的三阶交调电流分量减小,基波电流分量增加,从而提高线性度,同时又增加了第一主跨导放大电路1和第二主跨导放大电路2的跨导,进而提高了混频器的增益。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高线性度高增益的有源混频器,其特征在于:包括第一主跨导放大电路(1)、第二主跨导放大电路(2)、第三阶跨导系数修正电流镜对(3)、开关级电路(4)和负载级电路(5),所述第一主跨导放大电路(1)和第二主跨导放大电路(2)均与所述第三阶跨导系数修正电流镜对(3)连接,所述开关级电路(4)分别与所述第三阶跨导系数修正电流镜对(3)和所述负载级电路(5)连接;所述第三阶跨导系数修正电流镜对(3)包括第一辅跨导放大管(6)、第二辅跨导放大管(7)、第一电流镜(8)和第二电流镜(9),第一主跨导放大电路(1)和第二主跨导放大电路(2)分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,分别对正端RF+的射频差分电压信号和负端RF-的射频差分电压信号进行跨导放大转换成第一射频电流信号和第二射频电流信号,所述第一辅跨导放大管(6)和第二辅跨导放大管(7)分别接入正端RF+的射频差分电压信号和负端RF-的射频差分电压信号,进行跨导放大转换成第三射频电流信号和第四射频电流信号,第三射频电流信号和第四射频电流信号分别通过所述第一电流镜(8)和第二电流镜(9)进行电流放大转换成第五射频电流信号和第六射频电流信号,所述第五射频电流信号与第一射频电流信号叠加形成第一叠加射频电流信号;所述第六射频电流信号与第二射频电流信号叠加形成第二叠加射频电流信号,第一叠加射频电流信号和第二叠加射频电流信号输入到开关级电路(5),所述负载级电路(5)接入电源电压VDD,向所述开关级电路(4)输出直流电流,所述开关级电路(4)接入本振信号LO-和本振信号LO+控制其导通和中断,对第一叠加射频电流信号和第二叠加射频电流信号进行周期性换向,实现混频。
2.根据权利要求1所述一种高线性度高增益的有源混频器,其特征在于:所述第一主跨导放大电路(1)包括晶体管M1和电容C1,所述晶体管M1的栅极接入射频电压信号正端RF+,所述晶体管M1的漏极分别与第一电流镜(8)和开关级电路(4)连接,其源极经电感L1接地;所述电容C1的一端与晶体管M1的栅极连接,另一端与第一辅跨导放大管(6)连接。
3.根据权利要求2所述一种高线性度高增益的有源混频器,其特征在于:所述第二主跨导放大电路(2)包括晶体管M2和电容C2,所述晶体管M2的栅极接入负端RF-的射频差分电压信号,所述晶体管M2的漏极分别与第二电流镜(9)和开关级电路(4)连接,其源极经电感L2接地;所述电容C2的一端与晶体管M2的栅极连接,另一端与第二辅跨导放大管(7)连接。
4.根据权利要求3所述一种高线性度高增益的有源混频器,其特征在于:所述第一电流镜(8)包括晶体管M7和晶体管M8,所述第二电流镜(9)包括晶晶体管M9和晶体管M10,所述晶体管M7和晶体管M8的栅极相连,所述晶体管M7和晶体管M8的源极均接入电源电压VDD;所述晶体管M8的漏极与所述晶体管M1的漏极连接;所述晶体管M9和晶体管M10的栅极相连,所述晶体管M9和晶体管M10的源极均接入电源电压VDD,所述晶体管M9的漏极与所述晶体管M2的漏极连接。
5.根据权利要求4所述一种高线性度高增益的有源混频器,其特征在于:所述晶体管M7与所述晶体管M10的宽长比均为a1,所述晶体管M8与所述晶体管M9的宽长比均为a2,其中a2/a1=m,m为任意大于1的实数。
6.根据权利要求4所述一种高线性度高增益的有源混频器,其特征在于:所述第一辅跨导放大管(6)包括晶体管M1a,第二辅跨导放大管(7)包括晶体管M2a,所述晶体管M1a的漏极与所述晶体管M7的漏极连接,所述所述晶体管M1a的栅极与所述电容C1连接,其源极经电感L1接地;所述晶体管M2a的漏极与所述晶体管M10的漏极连接,所述晶体管M2a的栅极与所述电容C2连接,其源极经电感L2接地。
7.根据权利要求6所述一种高线性度高增益的有源混频器,其特征在于:所述晶体管M1a和所述晶体管M2a的宽长比相等,所述电感L1和电感L2大小相等。
8.根据权利要求1至7任一项所述一种高线性度高增益的有源混频器,其特征在于:所述负载级电路(5)包括电容C3、电容C4、电阻R1和电阻R2,所述电阻R1的一端接入电源电压VDD,另一端与开关级电路(4)连接;所述电容C3与所述电阻R1并联;所述电阻R2的一端接入电源电压VDD,另一端与开关级电路(4)连接;所述电容C4与所述电阻R2并联。
9.根据权利要求8所述一种高线性度高增益的有源混频器,其特征在于:所述开关级电路(4)包括晶体管M3、晶体管M4、晶体管M5和晶体管M6,所述晶体管M3和晶体管M6的栅极均接入本振信号LO+,所述晶体管M4和晶体管M5的栅极相连接入本振信号LO-,所述晶体管M3的源极与所述晶体管M4的源极相连,并与所述晶体管M1的漏极连接;所述晶体管M5的源极与所述晶体管M6的源极相连,并与所述晶体管M2的漏极连接;所述晶体管M3的漏极和晶体管M5的漏极相连,并与电阻R1连接;同时混频后的中频信号IF+经所述晶体管M3的漏极和晶体管M5的漏极输出;所述晶体管M4的漏极和晶体管M6的漏极相连,并与电阻R2连接;同时混频后的中频信号IF-经所述晶体管M4的漏极和晶体管M6的漏极输出。
10.一种高线性度高增益的有源混频器的运作方法,其特征在于,包括以下步骤:
步骤S1.第一主跨导放大电路(1)和第二主跨导放大电路(2)分别接入射频差分电压信号RF+和射频差分电压信号RF-,分别对射频差分电压信号RF+和射频差分电压信号RF-进行跨导放大转换成第一射频电流信号和第二射频电流信号;
步骤S2.第三阶跨导系数修正电流镜对(3)接入射频差分电压信号RF+和射频差分电压信号RF-,进行辅助跨导放大转换成第三射频电流信号和第四射频电流信号,并将第三射频电流信号和第四射频电流信号分别进行电流放大转换成第五射频电流信号和第六射频电流信号,将第五射频电流信号与第一射频电流信号叠加形成第一叠加射频电流信号;同时将第六射频电流信号与第二射频电流信号叠加形成第二叠加射频电流信号;
步骤S3.负载级电路(5)接入电源电压VDD,向开关级电路(4)输出直流电流,开关级电路(4)接入本振信号LO-和本振信号LO+控制其导通和中断,对第一叠加射频电流信号和第二叠加射频电流信号进行周期性换向,实现混频。
CN201610906433.2A 2016-10-17 2016-10-17 一种高线性度高增益的有源混频器及方法 Active CN106385236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610906433.2A CN106385236B (zh) 2016-10-17 2016-10-17 一种高线性度高增益的有源混频器及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610906433.2A CN106385236B (zh) 2016-10-17 2016-10-17 一种高线性度高增益的有源混频器及方法

Publications (2)

Publication Number Publication Date
CN106385236A true CN106385236A (zh) 2017-02-08
CN106385236B CN106385236B (zh) 2023-07-28

Family

ID=57958823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610906433.2A Active CN106385236B (zh) 2016-10-17 2016-10-17 一种高线性度高增益的有源混频器及方法

Country Status (1)

Country Link
CN (1) CN106385236B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877821A (zh) * 2017-02-21 2017-06-20 湖南师范大学 一种基于电流模有源器件的宽带射频混频器
CN107040217A (zh) * 2017-04-13 2017-08-11 武汉大学 一种k波段的折叠式双平衡有源混频器
CN107134980A (zh) * 2017-06-14 2017-09-05 苏州大学 射频单端转差分跨导互补型高性能下混频器
CN108039869A (zh) * 2017-12-14 2018-05-15 广西师范大学 一种基于跨导系数修正结构的混频器
CN108964613A (zh) * 2018-06-29 2018-12-07 南通朝旭环保科技有限公司 一种有源混频器
CN108964614A (zh) * 2018-06-29 2018-12-07 南通朝旭环保科技有限公司 混频器电路
CN109687825A (zh) * 2018-12-20 2019-04-26 佛山臻智微芯科技有限公司 一种高线性度微波混频器
CN114268329A (zh) * 2021-12-14 2022-04-01 天津大学 一种双频高线性度解调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176399A1 (en) * 2004-02-11 2005-08-11 Vladimir Aparin Field effect transistor amplifier with linearization
US20060234666A1 (en) * 2005-04-14 2006-10-19 Wilinx, Inc. Mixer circuits and methods with matched bias currents
US20090174460A1 (en) * 2008-01-03 2009-07-09 National Central University Method of third-order transconductance cancellation and linear mixer thereof
US20110142093A1 (en) * 2009-12-16 2011-06-16 The Swatch Group Research And Development Ltd Low voltage mixer circuit for a uwb signal transmission device
CN102522955A (zh) * 2011-12-31 2012-06-27 东南大学 一种混频器
CN203632619U (zh) * 2013-10-28 2014-06-04 江苏博纳雨田通信电子有限公司 一种可切换增益的高线性度混频器
CN104734641A (zh) * 2015-03-23 2015-06-24 中国科学院微电子研究所 混频器
US20160197583A1 (en) * 2015-01-07 2016-07-07 National Chi Nan University Balanced up-conversion mixer
CN206099903U (zh) * 2016-10-17 2017-04-12 广西师范大学 一种高线性度高增益的有源混频器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176399A1 (en) * 2004-02-11 2005-08-11 Vladimir Aparin Field effect transistor amplifier with linearization
US20060234666A1 (en) * 2005-04-14 2006-10-19 Wilinx, Inc. Mixer circuits and methods with matched bias currents
US20090174460A1 (en) * 2008-01-03 2009-07-09 National Central University Method of third-order transconductance cancellation and linear mixer thereof
US20110142093A1 (en) * 2009-12-16 2011-06-16 The Swatch Group Research And Development Ltd Low voltage mixer circuit for a uwb signal transmission device
CN102522955A (zh) * 2011-12-31 2012-06-27 东南大学 一种混频器
CN203632619U (zh) * 2013-10-28 2014-06-04 江苏博纳雨田通信电子有限公司 一种可切换增益的高线性度混频器
US20160197583A1 (en) * 2015-01-07 2016-07-07 National Chi Nan University Balanced up-conversion mixer
CN104734641A (zh) * 2015-03-23 2015-06-24 中国科学院微电子研究所 混频器
CN206099903U (zh) * 2016-10-17 2017-04-12 广西师范大学 一种高线性度高增益的有源混频器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
段吉海等: "一种高增益低噪声5.25GHz Gilbert混频器的设计", 《微电子学与计算机》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877821A (zh) * 2017-02-21 2017-06-20 湖南师范大学 一种基于电流模有源器件的宽带射频混频器
CN106877821B (zh) * 2017-02-21 2019-11-22 湖南师范大学 一种基于电流模有源器件的宽带射频混频器
CN107040217A (zh) * 2017-04-13 2017-08-11 武汉大学 一种k波段的折叠式双平衡有源混频器
CN107134980B (zh) * 2017-06-14 2023-07-25 苏州大学 射频单端转差分跨导互补型高性能下混频器
CN107134980A (zh) * 2017-06-14 2017-09-05 苏州大学 射频单端转差分跨导互补型高性能下混频器
CN108039869A (zh) * 2017-12-14 2018-05-15 广西师范大学 一种基于跨导系数修正结构的混频器
CN108039869B (zh) * 2017-12-14 2023-11-14 广西师范大学 一种基于跨导系数修正结构的混频器
CN108964613A (zh) * 2018-06-29 2018-12-07 南通朝旭环保科技有限公司 一种有源混频器
CN108964614A (zh) * 2018-06-29 2018-12-07 南通朝旭环保科技有限公司 混频器电路
WO2020000616A1 (zh) * 2018-06-29 2020-01-02 樊璠 一种有源混频器
CN109687825A (zh) * 2018-12-20 2019-04-26 佛山臻智微芯科技有限公司 一种高线性度微波混频器
CN114268329B (zh) * 2021-12-14 2023-09-19 天津大学 一种双频高线性度解调器
CN114268329A (zh) * 2021-12-14 2022-04-01 天津大学 一种双频高线性度解调器

Also Published As

Publication number Publication date
CN106385236B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN106385236A (zh) 一种高线性度高增益的有源混频器及方法
CN206099903U (zh) 一种高线性度高增益的有源混频器
CN103532493B (zh) 一种低功耗高增益宽带混频器
Prabowo et al. 13.3 A 6-to-8GHz 0.17 mW/qubit cryo-CMOS receiver for multiple spin qubit readout in 40nm CMOS technology
Perumana et al. A fully monolithic 260-μW, 1-GHz subthreshold low noise amplifier
CN102075145B (zh) 一种高线性度折叠镜像混频器
CN107786168A (zh) 一种高增益高隔离毫米波双平衡无源亚谐波混频器
CN104883135B (zh) 一种电阻反馈式噪声消除宽带低噪声跨导放大器
CN104124923B (zh) 一种低噪声混频器电路
CN107196607A (zh) 一种下变频混频器
CN111969956A (zh) 一种Ka波段宽带上变频器
Wu et al. High linearity 23–33 GHz SOI CMOS downconversion double balanced mixer
CN105245189A (zh) 一种低功耗半有源半无源宽带下混频器
Chen A low-voltage high-linearity ultra-wideband down-conversion mixer in 0.18-μm CMOS technology
US8558605B1 (en) Frequency mixer topology providing high linearity, low noise and high gain
CN101908879A (zh) 缓冲电路
CN102611392A (zh) 一种基于衬底偏置的超低耗电流复用混频器
Rashtian et al. On the use of body biasing to improve linearity in low LO-power CMOS active mixers
CN101610067A (zh) 混频器
CN101662261B (zh) 一种高线性度折叠混频器
CN108039869B (zh) 一种基于跨导系数修正结构的混频器
CN207460102U (zh) 一种基于跨导系数修正结构的混频器
CN106603013B (zh) 一种cmos互补结构的混频器电路
CN109004905A (zh) 一种带有巴伦的上变频混频器
Zhang et al. Fully differential CMOS LNA and down-conversion mixer for 3-5 GHz MB-OFDM UWB receivers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant