CN108964614A - 混频器电路 - Google Patents

混频器电路 Download PDF

Info

Publication number
CN108964614A
CN108964614A CN201810715381.XA CN201810715381A CN108964614A CN 108964614 A CN108964614 A CN 108964614A CN 201810715381 A CN201810715381 A CN 201810715381A CN 108964614 A CN108964614 A CN 108964614A
Authority
CN
China
Prior art keywords
transistor
drain electrode
connect
grid
stage circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810715381.XA
Other languages
English (en)
Inventor
樊璠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Chao Xu Environmental Protection Technology Co Ltd
Original Assignee
Nantong Chao Xu Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Chao Xu Environmental Protection Technology Co Ltd filed Critical Nantong Chao Xu Environmental Protection Technology Co Ltd
Priority to CN201810715381.XA priority Critical patent/CN108964614A/zh
Priority to US16/770,635 priority patent/US10903807B2/en
Priority to PCT/CN2018/101925 priority patent/WO2020000614A1/zh
Priority to DE212018000140.5U priority patent/DE212018000140U1/de
Publication of CN108964614A publication Critical patent/CN108964614A/zh
Priority to ZA2020/03760A priority patent/ZA202003760B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • H03D7/125Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes with field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1491Arrangements to linearise a transconductance stage of a mixer arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0019Gilbert multipliers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0033Current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45246Indexing scheme relating to differential amplifiers the dif amp being biased in the subthreshold region
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45362Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their gates and drains only, e.g. in a cascode dif amp, only those forming the composite common source transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45386Indexing scheme relating to differential amplifiers the AAC comprising one or more coils in the source circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45714Indexing scheme relating to differential amplifiers the LC comprising a coil as shunt

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

本发明涉及一种混频器电路,包括依次电连接的跨导级电路、开关级电路和负载级电路,跨导级电路用于接入射频电压信号,并将射频电压信号转化为射频电流信号;开关级电路用于接入本振信号和射频电流信号,利用本振信号控制开关级晶体管轮流导通;负载级电路用于将中频电流信号转换成电压信号进行输出。在本发明中跨导级电路采用晶体管叠加技术结构,提高了混频器的转换增益;同时采用源简并电感结构,进一步提高了电路的转换增益和线性度。

Description

混频器电路
技术领域
本发明涉及射频前端集成电路,尤其涉及一种射频前端接收机中的混频器电路。
背景技术
21世纪以来,无线通信技术高速发展,人们对通信设备的需求也越来越高。射频接收机是无线通信的重要模块,它的性能指标影响着整个无线通信系统。其中混频器的设计在射频收发系统中扮演着重要的角色,混频器的性能指标影响着整个射频前端的性能指标,因此提高混频器的性能具有重要的意义。射频接收器上存在的微弱信号首先由低噪声放大器放大,然后传送到混频器。所以在混频器的设计中,需要对转换增益、噪声、线性度、隔离度等性能指标进行综合考虑,对混频器的性能参数进行折中。传统的吉尔伯特混频器电路只能提供一定的转换增益、噪声和线性度,因此,高性能的混频器电路成为当前的研究热点。
发明内容
为了解决上述技术问题,本发明的目的是为了提供一种高增益的混频器电路。
本发明采用的技术方案如下:一种混频器,包括依次电连接的跨导级电路、开关级电路和负载级电路。跨导级电路,其用于接入射频电压信号,将射频电压信号转化为射频电流信号;开关级电路,其用于接入本振信号和射频电流信号,利用本振信号控制开关级晶体管轮流导通,输出中频电流信号;负载级电路,其用于将中频电流信号转换成电压信号进行输出。
跨导级电路包括晶体管M1、晶体管M2、晶体管M3、晶体管M4、电感L1、电感L2、电感L3;晶体管M1的栅极与射频电压信号的正极端RF+连接,晶体管M1的漏极与晶体管M2的漏极连接,晶体管M1的源级与电感L2的一端连接,电感L2的另一端接地;晶体管M2的栅极与晶体管M1的栅极连接,晶体管M2的源级接地。
晶体管M4的栅极与射频电压信号的负极端RF-连接,晶体管M4的漏极与晶体管M3的漏极连接,晶体管M4的源级与电感L3的一端连接,电感L3的另一端接地;晶体管M3的栅极与晶体管M4的栅极连接,晶体管M3的源级接地;电感L1的一端与晶体管M1的漏极连接,另一端与晶体管M4的漏极连接。
开关级电路包括晶体管M5、晶体管M6、晶体管M7、晶体管M8,晶体管M5的栅极与本振信号的正极端LO+连接,晶体管M5的源级与所述晶体管M1的漏极连接,晶体管M5的漏极与所述负载级电路连接;晶体管M6的栅极与本振信号的负极端LO-连接,晶体管M6的源级与晶体管M5的源极连接,晶体管M6的漏极与晶体管M8的漏极连接;晶体管M7的栅极与本振信号的负极端LO-连接,晶体管M7的源级与所述晶体管M4的漏极连接,晶体管M7的漏极与所述晶体管M5的漏极连接;晶体管M8的栅极与本振信号的负极端LO+连接,晶体管M8的源级与所述晶体管M4的漏极连接,晶体管M8的漏极与所述负载级电路连接。
负载级电路包括电阻R1、电阻R2、晶体管M9和晶体管M10;晶体管M9的栅极与晶体管M10的栅极连接,电阻R1的一端与晶体管M9的栅极连接,另一端与晶体管M9的源级连接,晶体管M9的源级与晶体管M5的漏极连接,晶体管M9的漏极接电源电压;电阻R2的一端与晶体管M10的栅极连接,另一端与晶体管M10的源级连接,晶体管M10的源级与晶体管M8的漏极连接,晶体管M10的漏极接电源电压。晶体管M1、M2、M3、M4、M5、M6、M7、M8、M9、M10均为NMOS晶体管。
本发明的有益效果是:在本发明的混频器电路中,跨导级电路采用了晶体管叠加结构,使得跨导级晶体管一个工作在饱和区,另一个工作在亚阈值区,此时两个晶体管的第三阶跨导系数可以相互消除,从而改善了电路的转换增益和线性度;跨导级还采用了源简并电感结构,进一步提高了电路的转换增益和线性度。开关级电路接入了本振信号,采用晶体管在本振大信号的控制下轮流导通,对电流进行切换调制,来实现频率的转换。负载级电路采用有源负载,可以使得混频器电路的转换增益和线性度得到改善,而且还能避免转换增益在高本振功率下降低。本发明的混频器电路中,转换增益较高。
附图说明
图1为本发明混频器的电路原理图;
图2为本发明混频器的转换增益随本振功率变化的仿真图;
图3为本发明混频器的转换增益随输出频率变化的仿真图;
图4为本发明混频器的噪声系数仿真结果图;
图5为本发明混频器的线性度仿真结果图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示,混频器电路包括依次电连接的跨导级电路、开关级电路和负载级电路,跨导级电路采用晶体管叠加结构和源简并电感结构,用于接入射频电压信号,并将射频电压信号转化为射频电流信号,且对射频电流信号进行反复使用;开关级电路用于接入本振信号和射频电流信号,利用本振信号控制开关级晶体管轮流导通;负载级电路用于将中频电流信号转换成电压信号进行输出。
具体的:跨导级电路包括晶体管M1、晶体管M2、晶体管M3、晶体管M4、电感L1、电感L2、电感L3;晶体管M1的栅极与射频电压信号的正极端RF+连接,晶体管M1的漏极与晶体管M2的漏极连接,晶体管M1的源级与电感L2的一端连接,电感L2的另一端接地;晶体管M2的栅极与晶体管M1的栅极连接,晶体管M2的源级接地。
晶体管M4的栅极与射频电压信号的负极端RF-连接,晶体管M4的漏极与晶体管M3的漏极连接,晶体管M4的源级与电感L3的一端连接,电感L3的另一端接地;晶体管M3的栅极与晶体管M4的栅极连接,晶体管M3的源级接地;电感L1的一端与晶体管M1的漏极连接,另一端与晶体管M4的漏极连接。
如图1所示,跨导级使用派生叠加技术结构,通过设置不同的偏置电压将晶体管M1、M4工作在饱和区,M2、M3工作在亚阈值区,可以使得第三阶跨导系数相互消除,提高电路的转换增益和线性度。MOS管M1的电流为:
MOS管M2的电流可以表示为:
上式中,I0表示特征电流。混频器跨导级的总电流为:
从上式可以发现,通过设置不同的直流偏置电压使得跨导级晶体管在不同的区域工作,可以使两个晶体管的第三阶跨导系数互为相反数,此时两个MOS管的第三阶跨导系数相互抵消,电路的转换增益和线性度得到改善。跨导级采用了电感L2、L3用于输入阻抗匹配,还使得电路的线性度得到改善。
具体的:开关级电路包括晶体管M5、晶体管M6、晶体管M7、晶体管M8,晶体管M5的栅极与本振信号的正极端LO+连接,晶体管M5的源级与所述晶体管M1的漏极连接,晶体管M5的漏极与负载级电路连接;晶体管M6的栅极与本振信号的负极端LO-连接,晶体管M6的源级与晶体管M5的源极连接,晶体管M6的漏极与晶体管M8的漏极连接;晶体管M7的栅极与本振信号的负极端LO-连接,晶体管M7的源级与所述晶体管M4的漏极连接,晶体管M7的漏极与晶体管M5的漏极连接;晶体管M8的栅极与本振信号的负极端LO+连接,晶体管M8的源级与晶体管M4的漏极连接,晶体管M8的漏极与所述负载级电路连接。
开关级接入本振信号,采用晶体管在本振大信号的控制下轮流导通,当LO+导通时,晶体管M5和晶体管M8导通,晶体管M6和晶体管M7截止;当LO-导通时,晶体管M6和晶体管M7导通,晶体管M5和晶体管M8截止,以此来对电流进行切换调制,实现频率的转换。
具体的:负载级电路包括电阻R1、电阻R2、晶体管M9和晶体管M10;晶体管M9的栅极与晶体管M10的栅极连接,电阻R1的一端与晶体管M9的栅极连接,另一端与晶体管M9的源级连接,晶体管M9的源级与晶体管M5的漏极连接,晶体管M9的漏极接电源电压;电阻R2的一端与晶体管M10的栅极连接,另一端与晶体管M10的源级连接,晶体管M10的源级与晶体管M8的漏极连接,晶体管M10的漏极接电源电压。晶体管M1、M2、M3、M4、M5、M6、M7、M8、M9、M10均为NMOS晶体管。
本电路的负载级采用有源负载,由于电路存在寄生电容,所以晶体管的尺寸不能太大,否则电路的功耗也会增大。因此,需要适当选择晶体管的尺寸,综合考虑电路的性能参数。有源负载可以提高混频器电路的转换增益和线性度,而且在高本振功率时,还能避免转换增益降低。
如图2所示为本发明的混频器电路的转换增益随本振功率变化的仿真图,从图中可以看出,该混频器的转换增益可以达到23.75dB。
如图3所示为本发明的混频器电路的转换增益随输出频率变化的仿真图,从图中可以看出,该混频器的转换增益为23.9dB。
如图4所示为本发明的混频器电路的噪声系数的仿真图,从图中可以看出,该混频器的噪声系数为11.92dB。
如图5所示为本发明的混频器电路的线性度的仿真图,从图中可以看出,该混频器的线性度为7.2dBm。
综上所述,本发明混频器电路的跨导级采用了晶体管叠加结构,使得跨导级晶体管一个工作在饱和区,另一个工作在亚阈值区,此时两个晶体管的第三阶跨导系数可以相互消除,从而改善了电路的转换增益和线性度;跨导级还采用了源简并电感结构,进一步提高了电路的转换增益和线性度。
本发明采用TSMC 0.18um CMOS工艺参数,在Cadence Spectre中对电路就行仿真,电路的尺寸参数如表1所示。
表1电路的尺寸参数
器件 参数 器件 参数 器件 参数
M1、M4 225u/0.18u M7、M8 40u/0.18u L2、L3 1.5n
M2、M3 225u/0.18u M9、M10 80u/0.18u R1、R2 1K
M5、M6 40u/0.4u L1 1n
本发明的混频器与其他发表的混频器性能进行比较,如表2所示。
表2本发明的混频器与其他电路的性能对比
[1]MIYAMOTO R,GALAL AI A,KANAYA H.Development of UHF to 2.4GHz and5.2GHz dual band up-conversion CMOS mixer[C]//Electronics PackagingTechnology Conference.IEEE,2017:199-202.
[2]Chiou H K,Lin K C,Chen W H,et al.A1-V 5-GHz Self-Bias Folded-Switch Mixer in 90-nm CMOS for WLAN Receiver[J].IEEE Transactions onCircuits&Systems I Regular Papers,2012,59(6):1215-1227.
[3]Jalili H,Fotowat-Ahmady A,Jenabi M.A1-mW current reuse quadratureRF front-end for GPS L1band in 0.18μm CMOS[C]//IEEE International Conferenceon Electronics,Circuits and Systems.IEEE,2012:157-160.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种混频器电路,其特征在于,包括依次电连接的跨导级电路、开关级电路和负载级电路;
所述跨导级电路,采用晶体管叠加技术结构和源简并电感结构,其用于接入射频电压信号,将射频电压信号转化为射频电流信号;
所述开关级电路,其用于接入本振信号和射频电流信号,利用本振信号控制开关级晶体管轮流导通,输出中频电流信号;
所述负载级电路,其用于将中频电流信号转换成电压信号输出;
所述跨导级电路包括晶体管M1、晶体管M2、晶体管M3、晶体管M4、电感L1、电感L2、电感L3;所述晶体管M1的栅极与射频电压信号的正极端RF+连接,所述晶体管M1的漏极与晶体管M2的漏极连接,所述晶体管M1的源级与电感L2的一端连接,电感L2的另一端接地;晶体管M2的栅极与晶体管M1的栅极连接,晶体管M2的源级接地;
所述晶体管M4的栅极与射频电压信号的负极端RF-连接,所述晶体管M4的漏极与晶体管M3的漏极连接,所述晶体管M4的源级与电感L3的一端连接,电感L3的另一端接地;晶体管M3的栅极与晶体管M4的栅极连接,晶体管M3的源级接地;所述电感L1的一端与晶体管M1的漏极连接,另一端与晶体管M4的漏极连接。
2.根据权利要求1所述的混频器电路,其特征在于:所述开关级电路包括晶体管M5、晶体管M6、晶体管M7、晶体管M8,所述晶体管M5的栅极与本振信号的正极端LO+连接,所述晶体管M5的源级与所述晶体管M1的漏极连接,所述晶体管M5的漏极与所述负载级电路连接;所述晶体管M6的栅极与本振信号的负极端LO-连接,所述晶体管M6的源级与所述晶体管M5的源极连接,所述晶体管M6的漏极与所述晶体管M8的漏极连接;所述晶体管M7 的栅极与本振信号的负极端LO-连接,所述晶体管M7的源级与所述晶体管M4的漏极连接,所述晶体管M7的漏极与所述晶体管M5的漏极连接;所述晶体管M8的栅极与本振信号的负极端LO+连接,所述晶体管M8的源级与所述晶体管M4的漏极连接,所述晶体管M8的漏极与所述负载级电路连接。
3.根据权利要求2所述的混频器电路,其特征在于,所述负载级电路包括电阻R1、电阻R2、晶体管M9和晶体管M10;所述晶体管M9的栅极与晶体管M10的栅极连接,所述电阻R1的一端与晶体管M9的栅极连接,另一端与晶体管M9的源级连接,晶体管M9的源级与晶体管M5的漏极连接,晶体管M9的漏极接电源电压;所述电阻R2的一端与晶体管M10的栅极连接,另一端与晶体管M10的源级连接,晶体管M10的源级与晶体管M8的漏极连接,晶体管M10的漏极接电源电压。
4.根据权利要求3所述的混频器电路,其特征在于,所述晶体管M1、M2、M3、M4、M5、M6、M7、M8、M9、M10均为NMOS晶体管。
CN201810715381.XA 2018-06-29 2018-06-29 混频器电路 Pending CN108964614A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810715381.XA CN108964614A (zh) 2018-06-29 2018-06-29 混频器电路
US16/770,635 US10903807B2 (en) 2018-06-29 2018-08-23 Mixer circuit
PCT/CN2018/101925 WO2020000614A1 (zh) 2018-06-29 2018-08-23 混频器电路
DE212018000140.5U DE212018000140U1 (de) 2018-06-29 2018-08-23 Mischerschaltung
ZA2020/03760A ZA202003760B (en) 2018-06-29 2020-06-15 Frequency mixer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810715381.XA CN108964614A (zh) 2018-06-29 2018-06-29 混频器电路

Publications (1)

Publication Number Publication Date
CN108964614A true CN108964614A (zh) 2018-12-07

Family

ID=64485285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810715381.XA Pending CN108964614A (zh) 2018-06-29 2018-06-29 混频器电路

Country Status (4)

Country Link
US (1) US10903807B2 (zh)
CN (1) CN108964614A (zh)
WO (1) WO2020000614A1 (zh)
ZA (1) ZA202003760B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677167A (zh) * 2019-09-30 2020-01-10 上海华虹宏力半导体制造有限公司 低电压射频前端结构
CN111865222A (zh) * 2020-07-15 2020-10-30 武汉博畅通信设备有限责任公司 一种宽带变频系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101280A1 (en) * 2002-01-07 2005-05-12 Behzad Arya R. Low noise and low voltage mixer and intermediate frequency module application thereof
US20110148478A1 (en) * 2009-12-18 2011-06-23 Electronics And Telecommunications Research Institute Frequency conversion mixer
CN105577122A (zh) * 2015-12-17 2016-05-11 上海集成电路研发中心有限公司 一种高线性度有源双平衡混频器
CN106385236A (zh) * 2016-10-17 2017-02-08 广西师范大学 一种高线性度高增益的有源混频器及方法
CN206099903U (zh) * 2016-10-17 2017-04-12 广西师范大学 一种高线性度高增益的有源混频器
CN108039869A (zh) * 2017-12-14 2018-05-15 广西师范大学 一种基于跨导系数修正结构的混频器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450480A1 (en) * 2003-02-18 2004-08-25 STMicroelectronics S.r.l. Low-noise, high-linearity analog multiplier
US20100164595A1 (en) * 2008-12-29 2010-07-01 Stmicroelectronics S.R.I. Down-converter mixer
US8588726B2 (en) * 2011-02-03 2013-11-19 Futurewei Technologies, Inc. Low noise mixer
CN103684268B (zh) * 2012-09-18 2017-07-11 北京中电华大电子设计有限责任公司 一种低功耗高线性度的增益可控有源正交混频器
CN107834980B (zh) * 2017-11-30 2024-02-13 广西师范大学 基于电流复用技术的混频器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101280A1 (en) * 2002-01-07 2005-05-12 Behzad Arya R. Low noise and low voltage mixer and intermediate frequency module application thereof
US20110148478A1 (en) * 2009-12-18 2011-06-23 Electronics And Telecommunications Research Institute Frequency conversion mixer
CN105577122A (zh) * 2015-12-17 2016-05-11 上海集成电路研发中心有限公司 一种高线性度有源双平衡混频器
CN106385236A (zh) * 2016-10-17 2017-02-08 广西师范大学 一种高线性度高增益的有源混频器及方法
CN206099903U (zh) * 2016-10-17 2017-04-12 广西师范大学 一种高线性度高增益的有源混频器
CN108039869A (zh) * 2017-12-14 2018-05-15 广西师范大学 一种基于跨导系数修正结构的混频器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ICKJIN KWON: "An integrated low power highly linear 2.4-GHz CMOS receiver front-end based on current amplification and mixing", 《IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS》 *
S. A. Z MURAD: "High linearity 5.2 GHz CMOS up-conversion mixer using derivative superposition method", 《TENCON 2010 - 2010 IEEE REGION 10 CONFERENCE》 *
兰萍: "一种高线性度共栅CMOS混频器的分析与设计", 《西藏科技》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677167A (zh) * 2019-09-30 2020-01-10 上海华虹宏力半导体制造有限公司 低电压射频前端结构
CN110677167B (zh) * 2019-09-30 2021-08-24 上海华虹宏力半导体制造有限公司 低电压射频前端结构
CN111865222A (zh) * 2020-07-15 2020-10-30 武汉博畅通信设备有限责任公司 一种宽带变频系统

Also Published As

Publication number Publication date
WO2020000614A1 (zh) 2020-01-02
US20200373894A1 (en) 2020-11-26
US10903807B2 (en) 2021-01-26
ZA202003760B (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP4559498B2 (ja) アクティブミキサ回路並びにそれを用いた受信回路及びミリ波通信端末
CN104779917B (zh) 一种基于集成电感噪声相消技术的接收机前端电路
US20100240336A1 (en) Front end and high frequency receiver having quadrature low noise amplifier
KR20070114229A (ko) 저잡음 증폭기 기반의 차동 인덕터
CN206099903U (zh) 一种高线性度高增益的有源混频器
CN112491364B (zh) 一种毫米波cmos正交混频器电路
CN107196607A (zh) 一种下变频混频器
CN101964631B (zh) 一种改进型双吉尔伯特结构射频正交上混频器
CN105577122B (zh) 一种高线性度有源双平衡混频器
CN108964614A (zh) 混频器电路
Sullivan et al. Doubly balanced dual-gate CMOS mixer
CN104104336A (zh) 一种具有噪声抵消的低功耗宽带射频前端电路
Huang et al. An ultra-low-power 2.4 GHz RF receiver in CMOS 55 nm process
CN109004905B (zh) 一种带有巴伦的上变频混频器
Tang et al. A low-noise amplifier using subthreshold operation for GPS-L1 RF receiver
Kodkani et al. A 24-GHz CMOS direct-conversion sub-harmonic downconverter
Li et al. A 0.13 μm CMOS UWB receiver front-end using passive mixer
Peng et al. A 2.4 GHz front-end with on-chip balun in a 0.13 um CMOS technology
Ji et al. A low power single ended input differential output low noise amplifier for L1/L2 band
Bao-lin et al. A 2.4-GHz low-IF front-end receiver in 0.18-µm CMOS for IEEE 802.15. 4 WPAN applications
Wan et al. A 0.18-μm CMOS High-Performance Up-Conversion Mixer for 2.4-GHz Transmitter Application
Zhao et al. A 0.7–6 GHz low-voltage broadband folded mixer in 0.13-um CMOS
Yu et al. A BW-Extended Blocker-Tolerant Receiver with RF Passive-Gain and High-Order BB Impedance Achieving 30dBm OOB-IIP3 and 110MHz RF-BW
Chen et al. A 2-GHz Low-Power Down-Conversion Mixer in 0.18-µm CMOS Technology
Fan et al. A High Linearity 0.7-2.6 GHz Up-conversion Mixer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207

RJ01 Rejection of invention patent application after publication