CN106380205A - 一种bas基耐高温发射涂层及制备方法 - Google Patents

一种bas基耐高温发射涂层及制备方法 Download PDF

Info

Publication number
CN106380205A
CN106380205A CN201610765012.2A CN201610765012A CN106380205A CN 106380205 A CN106380205 A CN 106380205A CN 201610765012 A CN201610765012 A CN 201610765012A CN 106380205 A CN106380205 A CN 106380205A
Authority
CN
China
Prior art keywords
coating
bas
preparation
high temperature
glass dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610765012.2A
Other languages
English (en)
Other versions
CN106380205B (zh
Inventor
李晓雷
唐惠杰
季惠明
王萌
张弛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610765012.2A priority Critical patent/CN106380205B/zh
Publication of CN106380205A publication Critical patent/CN106380205A/zh
Application granted granted Critical
Publication of CN106380205B publication Critical patent/CN106380205B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及一种BAS基耐高温发射涂层及制备方法;以成本较低的SiO2、Al2O3、BaCO3为原料制备得到的BAS玻璃粉;将制得的BAS玻璃粉、辐射剂以及助烧剂混合均匀制成涂层料浆;将料浆刷涂或喷涂到基体上,通过一定的升温制度在1400‑1600℃下烧结得到表面平整有光泽的涂层。本发明的涂层具有更加优异的耐高温性能,可耐温1500‑1600℃;且还具有可调节性更大的热膨胀系数以及较高的发射率,全法向发射率0.80‑0.91;热膨胀系数2.24×10‑6‑7.41×10‑6/k。

Description

一种BAS基耐高温发射涂层及制备方法
技术领域
本发明属于陶瓷材料及其生产技术领域,涉及一种BaO-Al2O3-SiO2(BAS)基耐高温发射涂层及制备方法。
背景技术
耐高温高发射涂层是一类应用在高温环境下,在红外波段具有较高发射率的功能材料。具有广阔的应用空间:包括航天飞行器表面隔热瓦散热、太空中飞行器的机舱散热、工业窖炉节能温度场优化、制造红外加热装置等。常用的高发射涂层一般由三部分构成:粘结剂、辐射剂和添加剂。
美国NASA(National Aeronautics and Space Administration)等机构对耐高温高发射涂层的研究主要集中于航空航天领域隔热瓦散热方面,最早的是1976年,美国NASA的James C Fletcher等人在US PATENT 4,093,771中描述了在石英纤维刚性隔热瓦表面制备反应固化涂层RCG(Reaction cured glass and glass coatings)的技术,这种反应固化涂层是由四硼化硅,六硼化硅,其他硼硅化物及硼反应合成。其中,涂层粘结剂为高含量硅的硼硅玻璃和氧化硼;高辐射剂为金属间或金属化合物(四硼化硅,六硼化硅,硼硅化物等)。此涂层可耐1482℃的高温并且具有较好的高温稳定性,室温到1260℃范围内的发射率可达0.9左右,其平均热膨胀系数为0.39×10-6/k。2010年David A.Stewart等人在USPATENT 7,767,305,B1中发明了一种高效钽基陶瓷复合结构HETC(High efficiencytantalum-based ceramic composite structures),这种高效钽基涂层是由硼硅玻璃作为粘结剂,TaSi2作为第一辐射剂,MoSi2作为第二辐射剂,SiB6作为助烧剂。经过高温烧结后得到高效钽基复合涂层,并通过调节TaSi2的含量来调控其涂层的热膨胀系数,涂层的热膨胀系数随着TaSi2的含量的增加而增大,测试其涂层的发射率在0.9左右。近年来国内也对耐高温高发射率涂层进行了大量的研究。2007年,王衍飞等人在“气凝胶复合陶瓷纤维刚性隔热瓦的制备与性能研究”中以MoSi2颗粒作为高辐射剂、硅溶胶作为助烧剂、硼硅玻璃(氧化硅粉、硼酸粉烧结而成)作为高辐射剂的粘接剂,制备了与隔热瓦结合良好的耐高温高发射涂层,其涂层可耐1150℃,热膨胀系数可通过调节H3BO3的含量来调节(H3BO3含量增加,热膨胀系数降低)。2013年,在“隔热瓦表面高发射率涂层的制备与性能优化”的文献中,郭金华等人采用POSS溶胶作为助烧剂和硼硅玻璃作为粘结剂,Al2O3、SiC和MoSi2为辐射剂在陶瓷隔热瓦上制备了耐高温高发射涂层,涂层具有优良的耐高温性能,可耐1100℃的耐高温。并且在2.5-25μm波长范围内,450℃下测得涂层的发射率可高达0.95。
以上所述文献中使用的粘结剂大多是硼硅玻璃,但硼硅玻璃有一定的局限性,如:耐高温性有限,热膨胀系数很小(基本在小于1×10-6/k范围),且可调节性较小。若要达到更高的耐温性和热膨胀系数,硼硅玻璃体系涂层较难实现。在现有的玻璃体系中BaO-Al2O3-SiO2(以下均用BAS)系玻璃是其中耐热温度最高的体系之一,耐温可达1500℃以上,且热膨胀系调节性更大。本发明选取新的BaO-Al2O3-SiO2体系作为粘结剂制备耐高温高发射涂层。
该涂层工艺上较为简单,易操作。涂层与基体结合良好,具有优异的耐高温特性,可承受1500℃以上的高温,热膨胀系数调节性更大,并具有较高的红外发射率。
发明内容
本发明的目的在于以BAS玻璃粉作为粘结剂,B2O3、硅溶胶中的一种作为助烧剂,MoSi2或MoSi2和TaSi2、SiC中的一种混合作为辐射剂制备出BAS基耐高温高发射涂层。与文献中涉及到的涂层相比,本发明涉及到的涂层具有更加优异的耐高温性能,可耐1500℃以上的高温,且还具有可调节性更大的热膨胀系数以及较高的发射率。
涂层是通过以下技术方案实现的:(1)以成本较低的SiO2、Al2O3、BaCO3为原料制备得到的BAS玻璃粉;(2)将制得的BAS玻璃粉、辐射剂以及助烧剂混合均匀制成涂层料浆;(3)将料浆刷涂或喷涂到基体上,通过一定的升温制度在1400-1600℃下烧结得到表面平整有光泽的涂层。
本发明的技术方案如下:
一种BAS基耐高温发射涂层,采用BAS玻璃粉为粘结剂,加助烧剂、辐射剂制备耐高温高发射涂层,其中各个组分和质量百分比为:
BAS玻璃粉:20-69%;
助烧剂:1-10%;
辐射剂:30-70%。
所述的助烧剂选择为B2O3、硅溶胶中的一种。
所述的辐射剂选择为MoSi2或MoSi2与TaSi2、SiC中的一种混合作为辐射剂;辐射剂中
MoSi2的质量百分含量为30%-100%。
所述的BAS玻璃粉,其制备的原料选择为Al2O3、SiO2、BaCO3,其中各组分的质量百分比为:
Al2O3∶7-14.5,
SiO2∶67-84,
BaCO3:9-18.5。
所述的BAS玻璃粉制备方法采用熔融法或烧结法:按照各原料的比例称取Al2O3、SiO2、BaCO3,放入球磨罐中,再加入蒸馏水,球磨混合均匀后,经烘干、过筛后,在1400-1600℃下保温1-2h进行熔融或烧结,经过粉碎制得粒度为1-10μm的BAS玻璃粉。
本发明的BaO-Al2O3-SiO2基耐高温高发射涂层的制备方法如下:
(1)涂层料浆的制备:按质量百分比称取BAS玻璃粉、辐射剂和助烧剂放入球磨罐中,加入固体粉料0.43-2.33倍质量份数的蒸馏水,经过球磨混合后得到涂层料浆;
(2)涂层的制备:将涂层料浆通过刷涂或喷涂在基体上制备涂层,待涂层干燥后,在1400-1600℃保温20-60min进行烧结得到耐高温高发射涂层。
对BAS基耐高温高发射涂层进行扫描电子显微镜(SEM)微观结构分析、X射线衍射(XRD)物相组成分析以及热膨胀系数、耐高温性、发射率性能的测试。
本发明涉及一种制备BAS基耐高温高发射涂层方法,通过使用成本较低的原料SiO2、Al2O3和BaCO3制备出BAS玻璃粉;然后按照一定的比例将BAS玻璃粉、辐射剂以及助烧剂制成涂层料浆,将料浆刷涂或喷涂在基体上,经烧结制得表面平整具有光泽的涂层。此方法制得的涂层具有优良的耐高温性能、较高的发射率,其热膨胀系数可在较大范围内调节。基本性能为:耐温1500-1600℃;全法向发射率0.80-0.91;热膨胀系数2.24×10-6-7.41×10-6/k。
附图说明
图1为本发明实例1得到的BAS基耐高温高发射涂层的表面宏观图。
图2为本发明实例1得到的BAS基耐高温高发射涂层的表面扫描图。
图3为本发明实例1得到的BAS基耐高温高发射涂层的断面扫描图。
图4为本发明实例1得到的BAS基耐高温高发射涂层的经过1600℃耐高温测试后的表面扫描图。
图5为本发明实例1得到的BAS基耐高温高发射涂层的经过1600℃耐高温测试后的断面扫描图。
具体实施方式
实施例1:
(1)制备BAS玻璃粉:按Al2O3、SiO2、BaCO3三者的总和为100g计算,分别称取14.5gAl2O3(14.5wt%),18.5g BaCO3(18.5wt%),67gSiO2(67wt%)放入球磨罐中混合均匀;将球磨后的混合料在120℃下烘干,过180目筛,在1400℃下保温2h烧结,冷却后得到BAS玻璃块;经粉碎、球磨制得粒度为1-10μm的BAS玻璃粉,保存待用;
(2)涂层料浆的制备:称取(1)中制得的BAS玻璃粉10g(20wt%)、MoSi2粉35g(70wt%)以及5g硅溶胶(10wt%)放入球磨罐中,加入与固体粉料同等质量份数的蒸馏水,经球磨混合得到涂层料浆;
(3)涂层的制备:将球磨后的涂层料浆通过喷涂在基体上制备涂层,待涂层干燥后进行烧结,烧结制度为:1400℃保温60min。
通过上述工艺得到了一种表面平整具有光泽的涂层见附图1,对制得的涂层进行了微观结构表征,涂层表面和断面的SEM图见附图2、附图3,可见涂层表面平整,呈现出致密结构,厚度大约为300μm,且涂层与基体结合良好;考察了涂层的耐高温性能,将涂层试块置于高温炉中于1500℃灼烧1h,测试后涂层外观无明显变化,无裂纹和脱落现象,对高温测试后的涂层进行SEM表征见附图4、附图5,可见涂层经高温测试后没有出现微观损伤,且涂层和基体结合完好。对制得的涂层进行了热膨胀系数和全法向发射率测试,测得该涂层在室温~1100℃温度区间的平均热膨胀系数为7.41×10-6/k,红外发射率为0.90,结果亦见表1;
实施例2:
(1)制备BAS玻璃粉:按Al2O3、SiO2、BaCO3三者的总和为100g计算,分别称取13gAl2O3(13wt%),16.7g BaCO3(16.7wt%),70.3gSiO2(70.3wt%)放入球磨罐中混合均匀;将球磨后的混合料在120℃下烘干,过180目筛,在1450℃下保温2h烧结,冷却后得到BAS玻璃块;经粉碎、球磨制得粒度为1-10μm的BAS玻璃粉,保存待用;
(2)涂层料浆的制备:称取(1)中制得的BAS玻璃粉22g(44wt%)、MoSi2粉25g(50wt%)以及3g硅溶胶(6wt%)放入球磨罐中,加入固体粉料0.7倍质量份数的蒸馏水,经球磨混合得到涂层料浆;
(3)涂层的制备:将球磨后的涂层料浆通过喷涂在基体上制备涂层,待涂层干燥后进行烧结,烧结制度为:1450℃保温50min。
通过上述工艺得到一种表面平整具有光泽的涂层,对制得的涂层进行了热膨胀系数和全法向发射率测试,结果见表1;考察了涂层的耐高温性能,将涂层试块置于高温炉中于1500℃灼烧1h,测试后涂层外观无明显变化,无裂纹和脱落现象。对高温测试前后的涂层进行了SEM表征,结果亦无明显变化,不再一一列出。
实施例3:
(1)制备BAS玻璃粉:按Al2O3、SiO2、BaCO3三者的总和为100g计算,分别称取11.5gAl2O3(11.5wt%),15gBaCO3(15wt%),73.5gSiO2(73.5wt%)放入球磨罐中混合均匀;将球磨后的混合料在120℃下烘干,过180目筛,在1500℃下保温1.5h烧结,冷却后得到BAS玻璃块;经粉碎、球磨制得粒度为1-10μm的BAS玻璃粉,保存待用;
(2)涂层料浆的制备:称取(1)中制得的BAS玻璃粉34.5g(69wt%)、MoSi2粉4.5g(9wt%)、TaSi2粉10.5g(21wt%)以及0.5g B2O3(1wt%)放入球磨罐中,加入固体粉料1.5倍质量份数的蒸馏水,经球磨混合得到涂层料浆;
(3)涂层的制备:将球磨后的涂层料浆通过喷涂在基体上制备涂层,待涂层干燥后进行烧结,烧结制度为:1500℃保温40min。
通过上述工艺得到一种表面平整光滑的致密涂层,对制得的涂层进行了热膨胀系数和全法向发射率测试,结果见表1;考察了涂层的耐高温性能,将涂层试块置于高温炉中于1550℃灼烧1h,测试后涂层外观无明显变化,无裂纹和脱落现象。
实施例4:
(1)制备BAS玻璃粉:按Al2O3、SiO2、BaCO3三者的总和为100g计算,分别称取10.2gAl2O3(10.2wt%),13.1g BaCO3(13.1wt%),76.7gSiO2(76.7wt%)放入球磨罐中混合均匀;将球磨后的混合料在120℃下烘干,过180目筛,在1550℃下保温1.5h熔烧,冷却后得到BAS玻璃块;经粉碎、球磨制得粒度为1-10μm的BAS玻璃粉,保存待用;
(2)涂层料浆的制备:称取(1)中制得的BAS玻璃粉23g(46wt%)、MoSi2粉12.5g(25wt%)、SiC粉12.5g(25wt%)以及2g B2O3(4wt%)放入球磨罐中,加入与固体粉料同等质量份数的蒸馏水,经球磨混合得到涂层料浆;
(3)涂层的制备:将球磨后的涂层料浆通过刷涂在基体上制备涂层,待涂层干燥后进行烧结,烧结制度为:1550℃保温30min。
通过上述工艺得到一种表面平整光滑的致密涂层,对制得的涂层进行了热膨胀系数和全法向发射率测试,结果见表1;考察了涂层的耐高温性能,将涂层试块置于高温炉中于1600℃灼烧1h,测试后涂层外观无明显变化,无裂纹和脱落现象。
实施例5:
(1)制备BAS玻璃粉:按Al2O3、SiO2、BaCO3者的总和为100g计算,分别称取8.7gAl2O3(8.7wt%),11.3gBaCO3(11.3wt%),80gSiO2(80wt%)放入球磨罐中混合均匀;将球磨后的混合料在120℃下烘干,过180目筛,在1600℃保温1h熔烧,冷却后得到BAS玻璃块;经粉碎、球磨制得粒度为1-10μm的BAS玻璃粉,保存待用;
(2)涂层料浆的制备:称取(1)中制得的BAS玻璃粉34.5g(69wt%)、MoSi2粉15g(30wt%)以及0.5g硅溶胶(1wt%)放入球磨罐中,加入固体粉料2.33倍质量份数的蒸馏水,经球磨混合得到涂层料浆;
(3)涂层的制备:将球磨后的涂层料浆通过刷涂在基体上制备涂层,到涂层干燥后进行烧结,烧结制度为:1600℃保温20min。
通过上述工艺得到一种表面平整具有光泽的致密涂层,对制得的涂层进行了热膨胀系数和全法向发射率测试,结果见表1;考察了涂层的耐高温性能,将涂层试块置于高温炉中于1600℃灼烧1h,测试后涂层外观无明显变化,无裂纹和脱落现象。
实施例6:
(1)制备BAS玻璃粉:按Al2O3、SiO2、BaCO3三者的总和为100g计算,分别称取7gAl2O3(7wt%),9g BaCO3(9wt%),84gSiO2(84wt%)放入球磨罐中混合均匀;将球磨后的混合料在120℃下烘干,过180目筛,在1600℃下保温2h熔烧,冷却后得到BAS玻璃块;经粉碎、球磨制得粒度为1-10μm的BAS玻璃粉,保存待用;
(2)涂层料浆的制备:称取(1)中制得的BAS玻璃粉10g(20wt%)、MoSi2粉20g(40wt%)、SiC粉15g(30wt%)以及5gB2O3(10wt%)放入球磨罐中,加入固体粉料0.43倍质量份数的蒸馏水,经球磨混合得到涂层料浆;
(3)涂层的制备:将球磨后的涂层料浆通过刷涂在基体上制备涂层,待涂层干燥后进行烧结,烧结制度为:1600℃保温30min。
通过上述工艺得到一种表面平整具有光泽的致密涂层,对制得的涂层进行了热膨胀系数和全法向发射率测试,结果见表1;考察了涂层的耐高温性能,将涂层试块置于高温炉中于1600℃灼烧1h,测试后涂层外观无明显变化,无裂纹和脱落现象。
BAS耐高温高发射涂层的部分性能见表1.
依照本专利所述工艺技术,能够采用简单制备方法制得BAS耐高温高发射涂层,所得BAS耐高温高发射涂层具有优异的耐高温性能、较高的发射率;本发明涂层的热膨胀系数可在较大范围内调节,以适应不同基体材料。
表1实例中所制备BAS基耐高温高发射涂层在室温~1100℃的平均热膨胀系数以及涂层的表面全法向发射率值:
热膨胀系数/k 全法向发射率
实施例1 7.41×10-6 0.90
实施例2 5.64×10-6 0.87
实施例3 4.27×10-6 0.80
实施例4 3.75×10-6 0.88
实施例5 4.33×10-6 0.81
实施例6 2.24×10-6 0.91
本发明公开和提出制备BAS基耐高温高发射涂层的制备方法及工艺。本领域技术人员可通过借鉴本文内容,适当改变原料和工艺路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (6)

1.一种BAS基耐高温发射涂层,其特征是采用BAS玻璃粉为粘结剂,加助烧剂、辐射剂制备耐高温高发射涂层,其中各个组分和质量百分比为:
BAS玻璃粉:20-69%;
助烧剂:1-10%;
辐射剂:30-70%。
2.如权利要求1所述的涂层,其特征是所述的助烧剂选择为B2O3、硅溶胶中的一种。
3.如权利要求1所述的涂层,其特征是所述的辐射剂选择为MoSi2或MoSi2与TaSi2、SiC中的一种混合作为辐射剂;辐射剂中MoSi2的质量百分含量为30%-100%。
4.如权利要求1所述的涂层,其特征是所述的BAS玻璃粉,其制备的原料选择为Al2O3、SiO2、BaCO3,其中各组分的质量百分比为:
Al2O3∶7-14.5,
SiO2∶67-84,
BaCO3:9-18.5。
5.如权利要求2所述的涂层,其特征是所述的BAS玻璃粉制备方法采用熔融法或烧结法:按照各原料的比例称取Al2O3、SiO2、BaCO3,放入球磨罐中,再加入蒸馏水,球磨混合均匀后,经烘干、过筛后,在1400-1600℃下保温1-2h进行熔融或烧结,经过粉碎制得粒度为1-10μm的BAS玻璃粉。
6.权利要求1的BAS基耐高温发射涂层的制备方法如下:
(1)涂层料浆的制备:按质量百分比称取BAS玻璃粉、辐射剂和助烧剂放入球磨罐中,加入固体粉料0.43-2.33倍质量份数的蒸馏水,经过球磨混合后得到涂层料浆;
(2)涂层的制备:将涂层料浆通过刷涂或喷涂在基体上制备涂层,待涂层干燥后,在1400-1600℃保温20-60min进行烧结得到耐高温高发射涂层。
CN201610765012.2A 2016-08-29 2016-08-29 一种bas基耐高温发射涂层及制备方法 Expired - Fee Related CN106380205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610765012.2A CN106380205B (zh) 2016-08-29 2016-08-29 一种bas基耐高温发射涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610765012.2A CN106380205B (zh) 2016-08-29 2016-08-29 一种bas基耐高温发射涂层及制备方法

Publications (2)

Publication Number Publication Date
CN106380205A true CN106380205A (zh) 2017-02-08
CN106380205B CN106380205B (zh) 2019-09-27

Family

ID=57938175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610765012.2A Expired - Fee Related CN106380205B (zh) 2016-08-29 2016-08-29 一种bas基耐高温发射涂层及制备方法

Country Status (1)

Country Link
CN (1) CN106380205B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056335A (zh) * 2017-05-11 2017-08-18 天津大学 一种多孔陶瓷表面致密氮化硅涂层及其制备方法
CN109956761A (zh) * 2017-12-22 2019-07-02 天津大学 一种SiOC基耐高温高发射涂层及其制备方法
CN112209743A (zh) * 2019-07-09 2021-01-12 航天特种材料及工艺技术研究所 一种耐高温高发射率涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053342A (ja) * 2000-08-10 2002-02-19 Asahi Glass Co Ltd 電極被覆用低融点ガラス
CN101701112A (zh) * 2009-11-25 2010-05-05 孙学东 加热炉节能环保涂料
CN103467074A (zh) * 2013-08-19 2013-12-25 航天特种材料及工艺技术研究所 一种耐高温涂层及其制备方法
CN104860717A (zh) * 2015-04-15 2015-08-26 哈尔滨工业大学 一种刚性陶瓷隔热瓦表面涂层的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053342A (ja) * 2000-08-10 2002-02-19 Asahi Glass Co Ltd 電極被覆用低融点ガラス
CN101701112A (zh) * 2009-11-25 2010-05-05 孙学东 加热炉节能环保涂料
CN103467074A (zh) * 2013-08-19 2013-12-25 航天特种材料及工艺技术研究所 一种耐高温涂层及其制备方法
CN104860717A (zh) * 2015-04-15 2015-08-26 哈尔滨工业大学 一种刚性陶瓷隔热瓦表面涂层的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056335A (zh) * 2017-05-11 2017-08-18 天津大学 一种多孔陶瓷表面致密氮化硅涂层及其制备方法
CN107056335B (zh) * 2017-05-11 2020-08-18 天津大学 一种多孔陶瓷表面致密氮化硅涂层及其制备方法
CN109956761A (zh) * 2017-12-22 2019-07-02 天津大学 一种SiOC基耐高温高发射涂层及其制备方法
CN112209743A (zh) * 2019-07-09 2021-01-12 航天特种材料及工艺技术研究所 一种耐高温高发射率涂层及其制备方法
CN112209743B (zh) * 2019-07-09 2022-12-20 航天特种材料及工艺技术研究所 一种耐高温高发射率涂层及其制备方法

Also Published As

Publication number Publication date
CN106380205B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
Tao et al. MoSi2-borosilicate glass coating on fibrous ceramics prepared by in-situ reaction method for infrared radiation
CN108467260B (zh) 表面韧化的氧化铝纤维刚性隔热瓦多层复合材料、涂层组合物、制备方法及其应用
CN106380205B (zh) 一种bas基耐高温发射涂层及制备方法
JP6462011B2 (ja) コーティング部材及びコーティング部材の製造方法
Tao et al. Effect of TaSi2 content on the structure and properties of TaSi2-MoSi2-borosilicate glass coating on fibrous insulations for enhanced surficial thermal radiation
CN104591782B (zh) MoSi2-BSG涂覆氧化锆纤维板一体化隔热材料及其制备方法
US20220250995A1 (en) High Emissivity Cerium Oxide Coating
CN108658626B (zh) MoSi2-SiO2-硼硅酸盐耐高温高发射率涂层及其制备方法与应用
CN105502946B (zh) 一种高发射率玻璃釉料以及由该釉料制备高发射率涂层的方法
CN105237044B (zh) 多孔纤维状ZrO2陶瓷隔热材料表面的TaSi2-SiO2-BSG高发射率涂层及制备方法
CN103467074B (zh) 一种耐高温涂层及其制备方法
CN105130500B (zh) 一种刚性隔热瓦涂层成型过程中的变形控制方法
CN110117457A (zh) 一种耐高温防红外辐射衰减节能涂料
CN109956761A (zh) 一种SiOC基耐高温高发射涂层及其制备方法
Wu et al. Preparation and structure control of a scalelike MoSi2-borosilicate glass coating with improved contact damage and thermal shock resistance
CN101648817B (zh) 耐高温低膨胀高辐射(反射)无机防水涂层
CN104862687B (zh) 一种金属防热结构表面涂层的制备方法
CN1318352C (zh) 一种炭材料表面抗氧化梯度涂层的制备方法
CN106083115B (zh) 耐1500℃高温的隔热瓦涂层及其制备方法
Tao et al. Anti-oxidation of emissing agents in TaSi2–MoSi2-borosilicate glass high emissivity coating
JPH07315969A (ja) セラミック基材上に設けた二層高温コーティングおよびその形成方法
CN107244944A (zh) 一种带抗氧化涂层的炭/炭复合材料及其制备方法和应用
CN102746032A (zh) 一种碳纤维增韧碳化硅基复合材料中温1000~1400℃涂层的修补方法
CN112299862B (zh) 一种多孔隔热材料表面的热防护涂层及其制备方法
Xian et al. Gradient MoSi2-borosilicate glass high emissivity coating with enhanced contact and impact damage resistance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190927

Termination date: 20200829