CN106348610B - 一种Co2+:KZnF3微晶玻璃及其制备方法和应用 - Google Patents

一种Co2+:KZnF3微晶玻璃及其制备方法和应用 Download PDF

Info

Publication number
CN106348610B
CN106348610B CN201610764191.8A CN201610764191A CN106348610B CN 106348610 B CN106348610 B CN 106348610B CN 201610764191 A CN201610764191 A CN 201610764191A CN 106348610 B CN106348610 B CN 106348610B
Authority
CN
China
Prior art keywords
kznf
glass
devitrified glass
preparation
devitrified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610764191.8A
Other languages
English (en)
Other versions
CN106348610A (zh
Inventor
周时凤
林丽婷
毛倩楠
于泳泽
陈杰杰
罗浩
邱建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610764191.8A priority Critical patent/CN106348610B/zh
Publication of CN106348610A publication Critical patent/CN106348610A/zh
Application granted granted Critical
Publication of CN106348610B publication Critical patent/CN106348610B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明公开了一种Co2+:KZnF3微晶玻璃,以Co2+掺杂的KZnF3为微晶相;所述Co2+:KZnF3微晶玻璃的组成为KF‑ZnF2‑Al2O3‑SiO2‑CoO,其中,各组分的摩尔百分比分别为20~30%KF,20~30%ZnF2,0~10%Al2O3,0.1~0.3%CoO,余量为SiO2。本发明还公开了上述Co2+:KZnF3微晶玻璃的制备方法和应用。本发明的Co2+:KZnF3微晶玻璃具有近中红外发光性能,其发光范围为1400~2400nm,发光峰位于1800~1850nm处,可作为近中红外激光增益介质。

Description

一种Co2+:KZnF3微晶玻璃及其制备方法和应用
技术领域
本发明涉及微晶玻璃,特别涉及一种Co2+:KZnF3微晶玻璃及其制备方法和应用。
背景技术
研究发现,红外波段激光穿透力强,不易受天气的影响,可广泛应用于激光测距、激光通信、激光雷达等领域,因此研制红外激光器具有重要的实际应用意义。固体激光器是指以金属离子掺杂材料作为激光增益介质的激光器,具有体积小,输出峰值功率高等优点,应用较为广泛,而其核心部分即为激光增益介质。目前,红外波段激光增益介质主要包括稀土离子掺杂增益材料,过渡金属离子掺杂增益材料等。过渡金属离子的3d轨道处于最外层,d-d电子跃迁受配位环境影响大,易形成带状光谱。因此,利用过渡金属离子掺杂材料作为激光增益介质,有利于实现激光可调谐,扩大激光器的应用范围。目前,对于过渡金属离子掺杂增益材料的研究范围比较窄,大部分集中Cr3+,Cr4+,Ni2+等离子。研究发现,Co2+掺杂晶体在红外波段有超宽带的发光,但晶体制备困难,成本高。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的之一在于提供一种 Co2+:KZnF3微晶玻璃,发光范围为1400~2400nm,发光峰位于1800~1850nm处。
本发明的目的之二在于提供上述Co2+:KZnF3微晶玻璃的制备方法,制备较为简单,成本低,可大量生产。
本发明的目的之三在于提供上述Co2+:KZnF3微晶玻璃的应用。
本发明的目的通过以下技术方案实现:
一种Co2+:KZnF3微晶玻璃,以Co2+掺杂的KZnF3为微晶相;所述Co2+:KZnF3微晶玻璃的组成为KF-ZnF2-Al2O3-SiO2-CoO,其中,各组分的摩尔百分比分别为:
所述的Co2+:KZnF3微晶玻璃的制备方法,包括以下步骤:
(1)分别称量原料KF、ZnF2、SiO2、Al2O3和CoO,混合均匀后,将粉末样品于1400~1600℃熔制,得到玻璃熔体;
(2)将玻璃熔体冷却,制成玻璃块;
(3)将玻璃块于500~600℃热处理,随炉冷却至室温,得到透明的 Co2+:KZnF3微晶玻璃。
步骤(1)所述混合均匀,具体为:
置于玛瑙研钵中研磨搅拌至均匀。
步骤(2)所述熔制,具体为:
于1400~1600℃熔制20~30min。
步骤(2)所述将玻璃熔体冷却,制成玻璃块,具体为:
把玻璃熔体倒在光滑铜板上冷却成为玻璃块。
步骤(3)所述热处理,具体为:
于500~600℃热处理10~20小时。
所述Co2+:KZnF3微晶玻璃的应用,作为近中红外激光增益介质。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的Co2+:KZnF3微晶玻璃,发光范围为1400~2400nm,发光峰位于1800~1850nm处,可作为近中红外激光增益介质。
(2)本发明的Co2+:KZnF3微晶玻璃的制备方法,制备较为简单,成本低,可大量生产。
(3)本发明的Co2+:KZnF3微晶玻璃,泵浦激光可采用常见的532nm半导体激光,易于得到,使用方便。
附图说明
图1为实施例1制备的Co2+:KZnF3微晶玻璃的X射线衍射图谱。
图2为实施例1制备的Co2+:KZnF3微晶玻璃的吸收光谱。
图3为实施例1制备的Co2+:KZnF3微晶玻璃的荧光光谱。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例制备的Co2+:KZnF3微晶玻璃,其组成为KF-ZnF2-SiO2-CoO,各原料摩尔百分比分别为:25%KF,25%ZnF2,50%SiO2,0.1%CoO。将各原料分别称量好,置于玛瑙研钵中研磨搅拌使其混合均匀,将粉末样品转移入氧化铝坩埚中。在1450℃的高温箱式电阻炉中熔融20min,然后把玻璃熔体倒在光滑铜板上形成玻璃块。把玻璃块切割成规则的玻璃薄片,在500℃的马弗炉保温20 小时,然后随炉冷却至室温,得到透明的Co2+:KZnF3微晶玻璃。
本实施例制备的Co2+:KZnF3微晶玻璃的X射线衍射图谱如图1所示,由图可知该Co2 +:KZnF3微晶玻璃析出的晶体与KZnF3的标准PDF卡片 PDF#01-078-1962对应良好,证实了本实施例所得晶相为KZnF3。图2为本实施例所得Co2+:KZnF3透明微晶玻璃的吸收光谱,吸收峰分别为512nm,588nm和 646nm,源于四六配位Co2+离子的电子跃迁。图3为本实施例所得材料的荧光光谱,可以看到样品在1400~2400nm具有宽带发光,发光峰位于1800nm处,源于六配位Co2+离子4T24T1a电子跃迁。
实施例2
本实施例制备的Co2+:KZnF3微晶玻璃,其组成为KF-ZnF2-Al2O3-SiO2-CoO,各原料摩尔百分比分别为:22.5%KF,22.5%ZnF2,5%Al2O3,50%SiO2,0.1%CoO。将各原料分别称量好,置于玛瑙研钵中研磨搅拌使其混合均匀,将粉末样品转移入氧化铝坩埚中。在1500℃的高温箱式电阻炉中熔融20min,然后把玻璃熔体倒在光滑铜板上形成玻璃块。把玻璃块切割成规则的玻璃薄片,在520℃的马弗炉保温15小时,然后随炉冷却至室温,得到透明的Co2 +:KZnF3微晶玻璃,在近中红外具有宽带发光,发光峰位于1810nm处。
实施例3
本实施例制备的Co2+:KZnF3微晶玻璃,其组成为KF-ZnF2-Al2O3-SiO2-CoO,各原料摩尔百分比分别为:20%KF,20%ZnF2,5%Al2O3,55%SiO2,0.2%CoO。将各原料分别称量好,置于玛瑙研钵中研磨搅拌使其混合均匀,将粉末样品转移入氧化铝坩埚中。在1550℃的高温箱式电阻炉中熔融20min,然后把玻璃熔体倒在光滑铜板上形成玻璃块。把玻璃块切割成规则的玻璃薄片,在530℃的马弗炉保温10小时,然后随炉冷却至室温,得到透明的Co2+:KZnF3微晶玻璃,在近中红外具有宽带发光,发光峰位于1850nm处。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种Co2+:KZnF3微晶玻璃,其特征在于,以Co2+掺杂的KZnF3为微晶相;所述Co2+:KZnF3微晶玻璃的组成为KF-ZnF2-Al2O3-SiO2-CoO,其中,各组分的摩尔百分比分别为:
2.根据权利要求1所述的Co2+:KZnF3微晶玻璃的制备方法,其特征在于,包括以下步骤:
(1)分别称量原料KF、ZnF2、SiO2、Al2O3和CoO,混合均匀后,将粉末样品于1400~1600℃熔制,得到玻璃熔体;
(2)将玻璃熔体冷却,制成玻璃块;
(3)将玻璃块于500~600℃热处理,随炉冷却至室温,得到透明的Co2+:KZnF3微晶玻璃。
3.根据权利要求2所述的Co2+:KZnF3微晶玻璃的制备方法,其特征在于,步骤(1)所述混合均匀,具体为:
置于玛瑙研钵中研磨搅拌至均匀。
4.根据权利要求2所述的Co2+:KZnF3微晶玻璃的制备方法,其特征在于,步骤(1)所述熔制,具体为:
于1400~1600℃熔制20~30min。
5.根据权利要求2所述的Co2+:KZnF3微晶玻璃的制备方法,其特征在于,步骤(2)所述将玻璃熔体冷却,制成玻璃块,具体为:
把玻璃熔体倒在光滑铜板上冷却成为玻璃块。
6.根据权利要求2所述的Co2+:KZnF3微晶玻璃的制备方法,其特征在于,步骤(3)所述热处理,具体为:
于500~600℃热处理10~20小时。
7.权利要求1所述Co2+:KZnF3微晶玻璃的应用,其特征在于,作为近中红外激光增益介质。
CN201610764191.8A 2016-08-30 2016-08-30 一种Co2+:KZnF3微晶玻璃及其制备方法和应用 Expired - Fee Related CN106348610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610764191.8A CN106348610B (zh) 2016-08-30 2016-08-30 一种Co2+:KZnF3微晶玻璃及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610764191.8A CN106348610B (zh) 2016-08-30 2016-08-30 一种Co2+:KZnF3微晶玻璃及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106348610A CN106348610A (zh) 2017-01-25
CN106348610B true CN106348610B (zh) 2019-01-18

Family

ID=57856086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610764191.8A Expired - Fee Related CN106348610B (zh) 2016-08-30 2016-08-30 一种Co2+:KZnF3微晶玻璃及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106348610B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109250918A (zh) * 2018-09-01 2019-01-22 哈尔滨工程大学 一种在室温环境下具有宽带上转换发光特性的透明微晶玻璃的制备方法
CN109336400A (zh) * 2018-12-10 2019-02-15 哈尔滨工程大学 一种在温室中使太阳光泵浦近红外发射的透明微晶玻璃的制作方法
CN109867444A (zh) * 2019-04-22 2019-06-11 哈尔滨工程大学 一种高透明的Yb3+单掺杂氟硅酸盐微晶玻璃的制备方法
CN115010371B (zh) * 2022-06-07 2023-07-14 宁波大学 一种高结晶度中红外发光纳米玻璃陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858891A (en) * 1993-12-16 1999-01-12 France Telecom Glass-ceramic materials especially for lasers and optical amplifiers, doped with rare earths
CN103951217A (zh) * 2014-05-08 2014-07-30 宁波大学 稀土离子掺杂的K2LaCl5微晶玻璃及其制备方法
CN104310786A (zh) * 2014-10-09 2015-01-28 华南理工大学 一种具有超宽带近红外发光的微晶玻璃材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858891A (en) * 1993-12-16 1999-01-12 France Telecom Glass-ceramic materials especially for lasers and optical amplifiers, doped with rare earths
CN103951217A (zh) * 2014-05-08 2014-07-30 宁波大学 稀土离子掺杂的K2LaCl5微晶玻璃及其制备方法
CN104310786A (zh) * 2014-10-09 2015-01-28 华南理工大学 一种具有超宽带近红外发光的微晶玻璃材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《Metathesis synthesis and characterization of complex metal fluoride,KMF3 (M = Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation》;V MANIVANNAN等;《Bull. Mater. Sci》;20081230;第31卷(第7期);全文
《Novel microwave assisted solid state metathesis synthesis of KMF3》;Purnendu Parhi, V. Manivannan;《Materials Letters》;20080306;第62卷;全文
《Theoretical studies of local structure and high-pressure shifts of the spin–orbit levels of Co2+ in KZnF3》;Yu Lei;《Solid State Communications》;20031230;第127卷;全文
Purnendu Parhi Æ Jon Kramer Æ V. Manivannan.《Microwave initiated hydrothermal synthesis of nano-sized complex fluorides, KMF3 (K = Zn, Mn, Co, and Fe) 》.《J Mater Sci》.2008,第43卷(第43期),第5540–5545页.

Also Published As

Publication number Publication date
CN106348610A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106348610B (zh) 一种Co2+:KZnF3微晶玻璃及其制备方法和应用
Wang et al. Preparation of Ce: YAG glass‐ceramics with low SiO2
Liu et al. Elaboration, Structure, and Luminescence of Eu 3+‐Doped BaLuF 5‐Based Transparent Glass‐Ceramics
CN108285272A (zh) 一种CsPb2Br5量子点微晶玻璃材料及其制备方法
Goel et al. Structure, Sintering, and Crystallization Kinetics of Alkaline‐Earth Aluminosilicate Glass–Ceramic Sealants for Solid Oxide Fuel Cells
CN104310786B (zh) 一种具有超宽带近红外发光的微晶玻璃材料及其制备方法
CN113087397B (zh) 具有超宽带荧光发射特性的双相透明微晶玻璃及制备方法
CN106946462A (zh) 一种透明的稀土离子掺杂六方氟化钇钠氟氧微晶玻璃及其制备方法
Biswas et al. Synthesis and structural probing of Eu3+ doped BaYF5 nano‐crystals in transparent oxyfluoride glass‐ceramics
Xia et al. Effect of Al2O3 on the formation of color centers and CdSe/Cd1− xZ nxSe quantum dots in SiO2–Na2O–ZnO glasses
Zhou et al. Fabrication and optical thermometry of transparent glass‐ceramics containing Ag@ NaGdF4: Er3+ core‐shell nanocrystals
Pawlik et al. Structural and luminescence properties of silica powders and transparent glass‐ceramics containing LaF3: Eu3+ nanocrystals
CN103693854B (zh) 一种无铅低熔点微晶玻璃粉及其制备方法
Yang et al. Molten salt synthesis and luminescence of Dy3+‐doped Y3Al5O12 phosphors
Mao et al. Crystallization control in Ni2+‐doped glass‐ceramics for broadband near‐infrared luminesce
Wang et al. Ion substitution strategy toward spectral tunability of environmentally friendly rare earth sulfide lattices for radiative cooling
Zhao et al. Optical performances of mono‐dispersed spherical YAG: Ce3+ nano‐phosphor achieved by one‐pot synthesis
CN103319092A (zh) 一种贵金属增强的Ce-YAG微晶玻璃及其制备方法
WO2018163759A1 (ja) ガラス材及びその製造方法
CN103159404A (zh) 2μm输出无硼无碱硅酸盐激光玻璃及其制备方法
CN108314325B (zh) 具有超宽带近红外发光的自析晶微晶玻璃及其制备方法和应用
CN110407472B (zh) 一种镍掺杂超宽带发光微晶玻璃及其制备方法和应用
Li et al. Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors
CN106587635B (zh) 一种Ni2+:Cs2SiF6微晶玻璃及其制备方法和应用
CN103288350B (zh) P2O5—BaO—K2O—NaF—Eu3+:GGG系玻璃陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190118