CN106345504A - 微波强化活性炭负载TiO2光催化剂制备及降解方法 - Google Patents

微波强化活性炭负载TiO2光催化剂制备及降解方法 Download PDF

Info

Publication number
CN106345504A
CN106345504A CN201610609789.XA CN201610609789A CN106345504A CN 106345504 A CN106345504 A CN 106345504A CN 201610609789 A CN201610609789 A CN 201610609789A CN 106345504 A CN106345504 A CN 106345504A
Authority
CN
China
Prior art keywords
activated carbon
naphthalene
microwave
photocatalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610609789.XA
Other languages
English (en)
Inventor
武占省
刘丹丹
陈晓青
高真真
鲁建江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shihezi University
Original Assignee
Shihezi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shihezi University filed Critical Shihezi University
Priority to CN201610609789.XA priority Critical patent/CN106345504A/zh
Publication of CN106345504A publication Critical patent/CN106345504A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新材料技术领域,涉及一种催化剂,特别是一种用于去除萘的微波强化活性炭负载TiO2光催化剂制备及降解方法。该方法以钛酸丁酯为钛源,硝酸铈或硝酸镧、尿素、磷酸为掺杂剂,煤基活性炭为载体,通过微波辐射,制备微波强化活性炭负载TiO2光催化剂。该方法采用微波法制备,工艺简单,原料廉价。即缩短了制备时间,又节省了能源,从而降低制备光催化剂的成本,光催化剂为纳米颗粒状,易于回收及分离,在可见光下对萘的催化降解有显著的效果,降解率可达99.28%,并且不产生二次污染,具有良好的经济效益和环境效益。

Description

微波强化活性炭负载TiO2光催化剂制备及降解方法
技术领域
本发明属于新材料技术领域,涉及一种催化剂,特别是一种用于去除萘的微波强化活性炭负载TiO2光催化剂制备及降解方法。
背景技术
萘是由两个苯环直接相连组成的一种有机化合物,分子式C10H8,白色,易挥发并有特殊气味的晶体。是一类很强致癌性、在环境中具有持久性、具有生物富集性、难降解性、结构稳定性,能够随着大气和水等环境介质进行长距离迁移的化合物质,对人体健康和生态环境存在很大的危害,因此,开发高效的方法以去除环境中的萘具有重要的现实意义。
目前,生物处理、反渗透、萃取以及吸附法被广泛用于去除萘,然而这些方法所需时间长,处理工艺复杂,并产生二次污染。光催化降解技术由于其便宜,易操作的特点,成为去除萘的可选技术,其中TiO2光催化剂以其无毒无害、化学稳定性、高活性等特性被广泛应用。Dariani等[Photocatalytic reaction and degradation of methylene blue onTiO2nano-sized particles,2016]用TiO2纳米颗粒降解亚甲基蓝,结果表明在紫外灯下1h,10nm的TiO2对亚甲基蓝的降解率达到90%以上,2h可以降解完全。Juang等[Comparativestudy on photocatalytic degradation of methomyl and parathion over UV-irradiated TiO2particles in aqueous solutions]报道了在紫外灯下TiO2对灭多威和对硫磷的降解,结果表明灭多威的降解速率高于对硫磷,这是因为对硫磷的分子结构更复杂。然而,TiO2光催化剂存在禁带宽度大、可见光利用率低、回收困难等缺点,大大限制了其在实际中的应用。近年来有研究者,提出针对TiO2光催化材料的改性以改善对可见光的吸收,提高光量子产率及光催化性能。此外,孔材料负载TiO2能提高光催化剂的吸附能力并有利于回收利用。其中,活性炭因其较大的比表面积和孔体积成为有效的TiO2载体。Liu等[Controlled synthesis of ordered mesoporous TiO2-supported on activatedcarbon and pore-pore synergistic photocatalytic performance,2015]制备了介孔活性炭负载TiO2,结果表明,与单独的TiO2相比活性炭负载TiO2呈现更高的光催化活性。Ragupathy等[Synthesis and characterization of TiO2loaded cashew nut shellactivated carbon and photocatalytic activity on BG and MB dyes under sunlightradiation,2015]报道了腰果壳负载TiO2的合成和特征,结果表明,在太阳光下光催化剂对亮绿和亚甲基蓝的降解率分别可达到99.75%和96.35%。
近些年来,微波技术成为制备光催化剂一种有效的加热技术,中国专利[申请号:201410264807]利用微波加热合成了活性炭。肖等[申请号:201410142529]研究表明微波辅助加热能够缩短加热的时间,显著提高光催化剂的光催化活性。与传统加热方式比较,微波技术能够极大地提高一些化学反应速率、减少反应时间、简化后处理程序。
发明内容
为了解决上述问题,本发明的目的在于提供一种在可见光下对萘表现出降解效率高,速率快,所需时间短等优点,具有良好的经济和环境效益的微波强化活性炭负载TiO2光催化剂制备及降解方法。
本发明的技术方案是:微波强化活性炭负载TiO2光催化剂的制备方法,该方法包括如下步骤:
步骤1:钛溶胶制备:
1.1)量取一定量的无水乙醇于锥形瓶中,加入钛酸丁酯,持续搅拌35-45min,得溶液A,备用,其中,所述无水乙醇与太酸钛酸丁酯的体积比为1.1-1.2:1;
1.2)量取一定量的无水乙醇于锥形瓶中,加入蒸馏水、冰乙酸、尿素、硝酸铈和磷酸,得溶液B;
1.3)在不断搅拌下将溶液B缓慢滴入溶液A中,室温条件下,继续搅拌35-45min得到浅黄色均匀透明的钛溶胶,其中,溶液B与溶液A质量比为1:1;
步骤2:微波强化制备复合光催化剂:
将预处理后的煤基活性炭浸于步骤1.3制备得到的钛溶胶中密封静置22-26h成半固化状态后,放入烘箱内设置温度100-110℃,烘干12-18小时,将烘干的复合光催化剂置于微波功率650-700W、辐射12-15min,即得到微波强化活性炭负载共掺杂TiO2光催化剂。
进一步,所述步骤1.2中,所述硝酸铈还可以为硝酸镧。
进一步,所述步骤1.2中的无水乙醇、蒸馏水、冰乙酸、尿素、磷酸和硝酸铈或硝酸镧之间的质量比23.7-27.65:6.5-7.0:10.0-14.0:1.0-2.0:0.22-0.72:0.3-1.5。
进一步,所述步骤2中,所述煤基活性炭与钛溶胶的固液比为0.8-0.1:8-10。
进一步,所述波强化活性炭负载共掺杂TiO2光催化剂的平均粒径为9.1-13.5nm,比表面积为500.04-800.49m2/g,总孔容为0.25-0.71cm3/g。
本发明的另一目的提供一种上述方法制备得到的微波强化活性炭负载共掺杂TiO2光催化剂用于降解萘的方法,具体包括以下步骤:
步骤1:先将光催化降解反应在光反应器中进行,为排除外界光源干扰,反应在暗箱中进行,反应器中心置以450-500W氙灯;
步骤2:将50mL浓度为30mg/L的萘溶液加入石英反应器中,并加入0.02g催化剂样品,避光磁力搅拌60min,充分混合使催化剂达到吸附-脱附平衡。打开光源,光稳定5-10min,开始计光照反应时间,光照30-180min取样,样品在4000-5000r/min下离心15-20min,取上清液测定样品在波长为218nm处的吸光度值,通过下式即可计算出萘的降解率:
η = c 0 - c t c 0 × 100 % - - - ( 1 )
其中:Co为初始浓度,Ct为一定光照时间后萘的浓度。
在可见光下对萘降解率达到90.06%-99.28%,重复使用8-10次,对萘的降解率依然达到90%以上。
本发明的优点为:
1.本发明光催化剂采用微波法制备,工艺简单,原料廉价。即缩短了制备时间,又节省了能源,从而降低制备光催化剂的成本,是一种经济高效的制备方法。
2.本发明所得到的光催化剂为纳米颗粒状,易于回收及分离,在可见光下对萘的催化降解有很好的效果。
本发明方法制备的Ce-N-P-TiO2/AC光催化剂具有适合催化降解萘分子表面结构、粒径及比表面积,对于在可见光下去除萘具有显著的效果,并且不产生二次污染,具有良好的经济效益和环境效益。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步说明。
实施例1:
1.溶胶制备
(1)量取30mL无水乙醇于锥形瓶中,加入25mL钛酸丁酯,得溶液A。不断搅拌40min;
(2)不断搅拌下,向30mL无水乙醇中加入6.5mL蒸馏水,11.0mL的冰乙酸,1.71g的尿素,0.94g的硝酸铈,0.9mL浓度为7.35mol/L的磷酸,得溶液B;
(3)在不断搅拌下将溶液B缓慢的滴入溶液A中,继续搅拌40min得到浅黄色均匀透明的溶胶,即得Ce、N、P共掺杂TiO2溶胶。
注:在溶胶制备过程中,除加药品外,过程均密封。
2.微波辅助制备复合光催化剂
将预处理后的煤基活性炭10g浸于钛溶胶中100g密封静置24h成半固化状态后烘干(放入烘箱设置温度100℃,15小时)。将烘干的复合光催化剂置于微波功率650W辐射13min。
3.复合光催化剂对萘降解的具体步骤:
光催化降解反应在光反应器中进行,为排除外界光源干扰,反应在暗箱中进行。反应器中心置以500W氙灯,将50mL浓度为30mg/L的萘溶液加入石英反应器中,并加入0.02g催化剂样品,避光磁力搅拌60min,充分混合使催化剂达到吸附-脱附平衡。打开光源,光稳定5min,开始计光照反应时间,光照一定时间取样,样品在5000r/min下离心15min,取上清液测定样品在波长为218nm处的吸光度值。
所得的Ce-N-P-TiO2/AC光催化剂平均粒径为10.8nm,比表面积为690.69m2/g,总孔容为0.64cm3/g,在可见光下对萘降解率可达98.5%,重复使用8次,对萘的降解率依然达到95.6%。
实施例2:
1.Ce、N、P共掺杂TiO2溶胶制备
(1)量取35mL无水乙醇于锥形瓶中,加入30mL钛酸丁酯,得溶液A。不断搅拌40min;
(2)不断搅拌下,向35mL无水乙醇中加入7.0mL蒸馏水,14.0mL的冰乙酸,1.0g的尿素,0.3g的硝酸铈,0.32mL浓度为7.35mol/L的磷酸,得溶液B;
(3)在不断搅拌下将溶液B缓慢的滴入溶液A中,继续搅拌40min得到浅黄色均匀透明的溶胶,即得Ce、N、P共掺杂TiO2溶胶。
注:在溶胶制备过程中,除加药品外,过程均密封。
2.微波辅助制备复合光催化剂
将预处理后的煤基活性炭10g浸于钛溶胶100g中密封静置22h成半固化状态后烘干(放入烘箱设置温度105℃,12小时)。将烘干的复合光催化剂置于微波功率680W辐射15min。
3.复合光催化剂对萘降解的具体步骤:
光催化降解反应在光反应器中进行,为排除外界光源干扰,反应在暗箱中进行。反应器中心置以500W氙灯,将50mL浓度为30mg/L的萘溶液加入石英反应器中,并加入0.02g催化剂样品,避光磁力搅拌60min,充分混合使催化剂达到吸附-脱附平衡。打开光源,光稳定5min,开始计光照反应时间,光照一定时间取样,样品在5000r/min下离心15min,取上清液测定样品在波长为218nm处的吸光度值。
所得的Ce-N-P-TiO2/AC光催化剂平均粒径为11.3nm,比表面积为584.69m2/g,总孔容为0.42cm3/g,在可见光下对萘降解率可达95.5%,重复使用8次,对萘的降解率依然达到93.0%。
实施例3:
1.Ce、N、P共掺杂TiO2溶胶制备
(1)量取33mL无水乙醇于锥形瓶中,加入28mL钛酸丁酯,得溶液A。不断搅拌40min;
(2)不断搅拌下,向33mL无水乙醇中加入6.8mL蒸馏水,12.5mL的冰乙酸,2.0g的尿素,1.5g的硝酸铈,0.6mL浓度为7.35mol/L的磷酸,得溶液B;
(3)在不断搅拌下将溶液B缓慢的滴入溶液A中,继续搅拌40min得到浅黄色均匀透明的溶胶,即得Ce、N、P共掺杂TiO2溶胶。
注:在溶胶制备过程中,除加药品外,过程均密封。
2.微波辅助制备复合光催化剂
将预处理后的煤基活性炭10g浸于钛溶胶80g中密封静置24h成半固化状态后烘干(放入烘箱设置温度110℃左右,18小时)。将烘干的复合光催化剂置于微波功率700W辐射12min。
3.复合光催化剂对萘降解的具体步骤:
光催化降解反应在光反应器中进行,为排除外界光源干扰,反应在暗箱中进行。反应器中心置以500W氙灯,将50mL浓度为30mg/L的萘溶液加入石英反应器中,并加入0.02g催化剂样品,避光磁力搅拌60min,充分混合使催化剂达到吸附-脱附平衡。打开光源,光稳定5min,开始计光照反应时间,光照一定时间取样,样品在5000r/min下离心15min,取上清液测定样品在波长为218nm处的吸光度值。
所得的Ce-N-P-TiO2/AC光催化剂平均粒径为12.9nm,比表面积为525.69m2/g,总孔容为0.28cm3/g,在可见光下对萘降解率可达94.5%,重复使用8次,对萘的降解率依然达到91.5%。
实施例4:
(1)量取33mL无水乙醇于锥形瓶中,加入28mL钛酸丁酯,得溶液A。不断搅拌40min;
(2)不断搅拌下,向33mL无水乙醇中加入6.6mL蒸馏水,13.0mL的冰乙酸,1.5g的尿素,0.5g的硝酸镧,0.45mL浓度为7.35mol/L的磷酸,得溶液B;
(3)在不断搅拌下将溶液B缓慢的滴入溶液A中,继续搅拌40min得到浅黄色均匀透明的溶胶,即得La、N、P共掺杂TiO2溶胶。
注:在溶胶制备过程中,除加药品外,过程均密封。
2.微波辅助制备复合光催化剂
将预处理后的煤基活性炭8g浸于钛溶胶80g中密封静置24h成半固化状态后烘干(放入烘箱设置温度110℃,18小时)。将烘干的复合光催化剂置于微波功率670W辐射15min。
3.复合光催化剂对萘降解的具体步骤:
光催化降解反应在光反应器中进行,为排除外界光源干扰,反应在暗箱中进行。反应器中心置以500W氙灯,将50mL浓度为30mg/L的萘溶液加入石英反应器中,并加入0.02g催化剂样品,避光磁力搅拌60min,充分混合使催化剂达到吸附-脱附平衡。打开光源,光稳定5min,开始计光照反应时间,光照一定时间取样,样品在5000r/min下离心15min,取上清液测定样品在波长为218nm处的吸光度值。
所得的La-N-P-TiO2/AC光催化剂平均粒径为9.1nm,比表面积为800.49m2/g,总孔容为0.71cm3/g,在可见光下对萘降解率可达99.28%,重复使用8次,对萘的降解率依然达到96.1%。

Claims (6)

1.微波强化活性炭负载TiO2光催化剂制备方法,其特征在于,该方法包括如下步骤:
步骤1:钛溶胶制备:
1.1)量取一定量的无水乙醇于锥形瓶中,加入钛酸丁酯,持续搅拌35-45min,得溶液A,备用,其中,所述无水乙醇与太酸钛酸丁酯的体积比为1.1-1.2:1;
1.2)量取一定量的无水乙醇于锥形瓶中,加入蒸馏水、冰乙酸、尿素、硝酸铈和磷酸,得溶液B;
1.3)在不断搅拌下将溶液B缓慢滴入溶液A中,室温条件下,继续搅拌35-45min得到浅黄色均匀透明的钛溶胶,其中,溶液B的溶液A质量比为1:1;
步骤2:微波强化制备复合光催化剂:
将预处理后的煤基活性炭浸于步骤1.3制备得到的钛溶胶中密封静置22-26h成半固化状态后,放入烘箱内设置温度100-110℃,烘干12-18小时,将烘干的复合光催化剂置于微波功率650-700W、辐射12-15min,即得到微波强化活性炭负载共掺杂TiO2光催化剂。
2.根据权利要求1所述的方法,其特征在于,所述步骤1.2中,所述硝酸铈还可以为硝酸镧。
3.根据权利要求1或2所述的方法,其特征在于,所述步骤1.2中的无水乙醇、蒸馏水、冰乙酸、尿素、磷酸和硝酸铈或硝酸镧之间的质量比23.7-27.65:6.5-7.0:10.0-14.0:1.0-2.0:0.22-0.72:1.0-2.0:0.22-0.72:0.3-1.5。
4.根据权利要求1或2所述的方法,其特征在于,所述步骤2中,所述煤基活性炭与钛溶胶的固液比为0.8-0.1:8-10。
5.根据权利要求1或2所述的方法,其特征在于,所述波强化活性炭负载共掺杂TiO2光催化剂的平均粒径为9.1-13.5nm,比表面积为500.04-800.49m2/g,总孔容为0.25-0.71cm3/g。
6.一种使用如权利要求1或2任意一项制备得到的微波强化活性炭负载共掺杂TiO2光催化剂降解萘的方法,其特征在于,具体包括以下步骤:
步骤1:先将光催化降解反应在光反应器中进行,为排除外界光源干扰,反应在暗箱中进行,反应器中心置以450-500W氙灯;
步骤2:将50mL浓度为30mg/L的萘溶液加入石英反应器中,并加入0.02g催化剂样品,避光磁力搅拌60min,充分混合使催化剂达到吸附-脱附平衡。打开光源,光稳定5-10min,开始计光照反应时间,光照30-180min取样,样品在4000-5000r/min下离心15-20min,取上清液测定样品在波长为218nm处的吸光度值,通过下式即可计算出萘的降解率:
η = C o - C t C o × 100 % - - - ( 1 )
其中:Co为初始浓度,Ct为一定光照时间后萘的浓度。
在可见光下对萘降解率达到90.06%-99.28%,重复使用8-10次,对萘的降解率依然达到90%以上。
CN201610609789.XA 2016-07-28 2016-07-28 微波强化活性炭负载TiO2光催化剂制备及降解方法 Pending CN106345504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610609789.XA CN106345504A (zh) 2016-07-28 2016-07-28 微波强化活性炭负载TiO2光催化剂制备及降解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610609789.XA CN106345504A (zh) 2016-07-28 2016-07-28 微波强化活性炭负载TiO2光催化剂制备及降解方法

Publications (1)

Publication Number Publication Date
CN106345504A true CN106345504A (zh) 2017-01-25

Family

ID=57843460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610609789.XA Pending CN106345504A (zh) 2016-07-28 2016-07-28 微波强化活性炭负载TiO2光催化剂制备及降解方法

Country Status (1)

Country Link
CN (1) CN106345504A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570141A (zh) * 2017-10-16 2018-01-12 河海大学 一种活性炭负载钨酸铋光催化剂及其制备方法与应用
CN110157267A (zh) * 2019-05-30 2019-08-23 廊坊师范学院 节能减排功能涂料的制备方法及对带孔芯板的处理方法
CN111921494A (zh) * 2020-06-30 2020-11-13 长江大学 一种文冠果活性炭吸附剂及其制备方法和应用
CN112691643A (zh) * 2020-12-23 2021-04-23 中北大学 一种微米球形活性炭的制备方法
CN113304742A (zh) * 2021-04-30 2021-08-27 昆明理工大学 一种Ti3+自掺杂TiO2载活性炭的光催化材料的制备方法
CN114377705A (zh) * 2022-03-09 2022-04-22 成都工业学院 一种基于粉煤灰的磷掺杂碳点光催化材料及其制备方法和应用
CN115212843A (zh) * 2022-07-19 2022-10-21 安徽省农业科学院植物保护与农产品质量安全研究所 一种负载金属氧化物的掺杂改性活性炭制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594101A (zh) * 2004-07-05 2005-03-16 华东理工大学 一种制备二氧化钛介孔材料的方法
CN1712129A (zh) * 2005-06-10 2005-12-28 北京科技大学 一种溶胶-凝胶低温燃烧合成掺杂二氧化钛光催化剂的方法
CN101485978A (zh) * 2008-12-25 2009-07-22 西华大学 微波制备负载型纳米TiO2复合光催化材料的方法
CN102974321A (zh) * 2012-12-31 2013-03-20 青岛信锐德科技有限公司 一种以木质素为载体的掺杂ZnO的TiO2空气净化剂材料、制备方法及其用途
CN105251541A (zh) * 2015-11-27 2016-01-20 孙铭岐 一种掺杂氧化硅的空气净化材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594101A (zh) * 2004-07-05 2005-03-16 华东理工大学 一种制备二氧化钛介孔材料的方法
CN1712129A (zh) * 2005-06-10 2005-12-28 北京科技大学 一种溶胶-凝胶低温燃烧合成掺杂二氧化钛光催化剂的方法
CN101485978A (zh) * 2008-12-25 2009-07-22 西华大学 微波制备负载型纳米TiO2复合光催化材料的方法
CN102974321A (zh) * 2012-12-31 2013-03-20 青岛信锐德科技有限公司 一种以木质素为载体的掺杂ZnO的TiO2空气净化剂材料、制备方法及其用途
CN105251541A (zh) * 2015-11-27 2016-01-20 孙铭岐 一种掺杂氧化硅的空气净化材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FEI TIAN ET AL.: ""Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation"", 《NANOSCALE RESEARCH LETTERS》 *
姜洪泉等: ""N-P-TiO2纳米粒子的溶胶-水热制备及太阳光下光催化降解4-氯酚性能"", 《化学学报》 *
李亚峰等: ""Ce-N-TiO2/AC光催化剂催化氧化染料废水试验"", 《沈阳建筑大学学报(自然科学版)》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570141A (zh) * 2017-10-16 2018-01-12 河海大学 一种活性炭负载钨酸铋光催化剂及其制备方法与应用
CN110157267A (zh) * 2019-05-30 2019-08-23 廊坊师范学院 节能减排功能涂料的制备方法及对带孔芯板的处理方法
CN110157267B (zh) * 2019-05-30 2021-02-26 廊坊师范学院 节能减排功能涂料的制备方法及对带孔芯板的处理方法
CN111921494A (zh) * 2020-06-30 2020-11-13 长江大学 一种文冠果活性炭吸附剂及其制备方法和应用
CN112691643A (zh) * 2020-12-23 2021-04-23 中北大学 一种微米球形活性炭的制备方法
CN113304742A (zh) * 2021-04-30 2021-08-27 昆明理工大学 一种Ti3+自掺杂TiO2载活性炭的光催化材料的制备方法
CN113304742B (zh) * 2021-04-30 2023-09-29 昆明理工大学 一种活性炭负载Ti3+自掺杂TiO2光催化材料制备方法
CN114377705A (zh) * 2022-03-09 2022-04-22 成都工业学院 一种基于粉煤灰的磷掺杂碳点光催化材料及其制备方法和应用
CN114377705B (zh) * 2022-03-09 2023-07-18 成都工业学院 一种基于粉煤灰的磷掺杂碳点光催化材料及其制备方法和应用
CN115212843A (zh) * 2022-07-19 2022-10-21 安徽省农业科学院植物保护与农产品质量安全研究所 一种负载金属氧化物的掺杂改性活性炭制备方法及应用

Similar Documents

Publication Publication Date Title
CN106345504A (zh) 微波强化活性炭负载TiO2光催化剂制备及降解方法
CN104084228B (zh) 一种氧掺杂氮化碳/氧化锌光催化剂及其制备方法与应用
CN108355696B (zh) 黑磷/g-C3N4复合可见光光催化材料及其制备方法和应用
CN102335602B (zh) 一种钨酸铋复合光催化剂及其制备和应用
CN108786923A (zh) 一种核壳结构可见光催化剂的制备方法
CN103657623B (zh) 微球型二氧化钛光催化剂及其制备方法
CN103480353A (zh) 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN102527410B (zh) 炭纤维毡负载CdS/TiO2复合光催化材料的制备方法
CN101244383A (zh) 一种活性炭负载二氧化钛光催化剂的制备方法
CN104056620A (zh) 一种可见光催化剂及其制备方法与应用
CN106732719A (zh) 一种氮化碳/二硫化锡量子点复合光催化剂的制备方法
CN104959158A (zh) 一种Mo2C/CdS复合光催化剂及其制备和应用
CN103191725B (zh) BiVO4/Bi2WO6复合半导体材料及其水热制备方法和其应用
CN106076389A (zh) 钼酸铋/石墨相氮化碳复合催化剂的制备方法及应用
CN107597151A (zh) 一种可见光下氧化有机硼的Bi/Bi4O5X2(X=Br,I)光催化剂的制备方法
CN103831107B (zh) 一种三氧化二铁纳米片包裹纳米碳纤维催化剂的制备方法
CN103272622B (zh) 一种磷酸银光催化剂的制备方法
CN105214689A (zh) 一种TiO2/CdS/石墨烯复合光催化材料及其制备方法
CN104998686A (zh) 硝基锌酞菁/含硫氮化碳复合催化剂的制备方法及其应用
CN106824243A (zh) Z型BiVO4‑Au/g‑C3N4光催化材料的制备及其光催化还原CO2的应用
CN102764650A (zh) 一种改性二氧化钛/竹炭复合材料及其制备方法
CN108404995A (zh) 多孔磁性复合羊毛负载铑掺杂BiOBr光催化剂的制备
CN111822027B (zh) 二氧化钛包覆氮化碳复合光催化材料的制备方法
CN110624566A (zh) CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
CN101632920A (zh) 一种制备二氧化钛/竹炭复合材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125