CN106328690A - 具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法 - Google Patents

具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法 Download PDF

Info

Publication number
CN106328690A
CN106328690A CN201610801864.2A CN201610801864A CN106328690A CN 106328690 A CN106328690 A CN 106328690A CN 201610801864 A CN201610801864 A CN 201610801864A CN 106328690 A CN106328690 A CN 106328690A
Authority
CN
China
Prior art keywords
groove
epitaxial layer
dielectric
polycrystalline
type mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610801864.2A
Other languages
English (en)
Inventor
高耿辉
焦世龙
高秀秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Yuanshun Microelectronics Technology Co ltd
Xiamen Jishun Semiconductor Manufacturing Co ltd
Unisonic Technologies Co Ltd
Original Assignee
Xiamen Yuanshun Microelectronics Technology Co ltd
Xiamen Jishun Semiconductor Manufacturing Co ltd
Unisonic Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Yuanshun Microelectronics Technology Co ltd, Xiamen Jishun Semiconductor Manufacturing Co ltd, Unisonic Technologies Co Ltd filed Critical Xiamen Yuanshun Microelectronics Technology Co ltd
Priority to CN201610801864.2A priority Critical patent/CN106328690A/zh
Publication of CN106328690A publication Critical patent/CN106328690A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种具有深槽和T‑POLY结构的沟槽型MOS肖特基整流器及制造方法,包括外延层,外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,所述沟槽自外延层的上表面向下延伸,所述外延层的厚度为D,其中D大于0,所述沟槽的深度为;每个沟槽的底部以及两内侧壁均设有绝缘介质,位于两内侧壁的绝缘介质呈台阶状;每个沟槽内淀积有多晶,多晶呈T型结构,多晶由横向肩部和纵向延伸部组成,横向肩部的上表面与外延层的上表面平齐,下表面延伸至纵向延伸部的上表面;横向肩部的厚度为沟槽深度的三分之一至二分之一。本发明在高反向偏置下,增加了的电势纵向降落空间,改善了沟槽底部拐角附近和氧化物内部的电场分布以及减小势垒金属附近电场强度。

Description

具有深槽和T-POLY结构的沟槽型MOS肖特基整流器及制造 方法
技术领域
本发明涉及电子元器件领域,尤其涉及一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器及其制造方法。
背景技术
沟槽型肖特基整流器TMBS通常采用接近于工艺限制的小尺寸沟槽结构(沟槽宽度和深度)以充分利用有源区面积和电流通路。首先,在外延层上刻蚀沟槽,随后是热生长或者淀积一定厚度的二氧化硅于沟槽侧壁和底部;掺杂多晶填充并回刻至沟槽顶部台阶高度后,剩余多晶伫立于沟槽内二氧化硅之间,形貌上类似于英文字母“I”;最后是势垒金属淀积或溅射、退火、传导金属淀积等。一般地,完成这类器件制造需要三层掩膜。多晶(POLY)可以形成多种结构,包括T型多晶结构,简称为T-POLY结构。传统沟槽型肖特基整流器TMBS,由于结构与外延层电阻率的制约,作为两项主要性能指标的正向压降与反向耐压的优化空间受到较大限制,不利于充分发挥此类器件的优势。
发明内容
本发明的目的是针对以上不足之处,提供了一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器及制造方法,在高反向偏置下,增加了的电势纵向降落空间,改善了沟槽底部拐角附近和氧化物内部的电场分布以及减小势垒金属附近电场强度。。
本发明解决技术问题所采用的方案是:一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器,包括外延层,所述外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,其特征在于,所述沟槽自外延层的上表面向下延伸,所述外延层的厚度为D,其中D大于0,所述沟槽的深度为;每个沟槽的底部以及两内侧壁均设有绝缘介质,位于两内侧壁的绝缘介质呈上窄下宽的台阶状;每个沟槽内淀积有多晶,所述多晶呈T型结构且与所述绝缘介质紧密贴合,所述多晶由上下设置于沟槽内的横向肩部和纵向延伸部组成;所述横向肩部的厚度为沟槽深度的三分之一至二分之一;所述纵向延伸部的上表面位于横向肩部的下表面,所述纵向延伸部的下表面延伸至位于底部的绝缘介质处。
进一步的,所述外延层的掺杂材料为硅,并且硅的电阻率为0.48~0.72 ohm.cm。
进一步的,所述绝缘介质为二氧化硅。
进一步的,所述外延层上覆有介质层。
本发明还提供一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器的制造方法,包括以下步骤:
步骤S1:在外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,所述沟槽自外延层的上表面向下延伸,设定所述外延层的厚度为D,其中D大于0,所述沟槽的深度为
步骤S2:在每个沟槽的底部以及两内侧壁热生长或淀积有绝缘介质;
步骤S3:在每个沟槽内淀积有多晶并且回刻至每个沟槽深度的三分之一至二分之一处,形成多晶台阶;
步骤S4:刻蚀位于每个沟槽两侧壁的绝缘介质形成下部绝缘介质,使得下部绝缘介质的上表面与多晶台阶的上表面平齐;
步骤S5:刻蚀去掉多晶台阶,并在每个沟槽两侧壁下部绝缘介质的上表面以上热生长有上部绝缘介质,所述上部绝缘介质的厚度小于下部绝缘介质的厚度,并且上部绝缘介质的上表面与外延层上表面平齐;
步骤S6:在每个沟槽内重新淀积多晶并且回刻至外延层上表面,此时在每个沟槽内形成T型多晶结构;
步骤S7:分别在外延层的上表面和下表面依次淀积势垒金属和传导金属。
进一步的,在所述步骤S1中,通过干法刻蚀形成沟槽。
与现有技术相比,本发明有以下有益效果:由于具有深沟槽的肖特基势垒器件能够有效改善反向耐压性能,尤其是对于相对较高掺杂浓度的半导体材料,例如硅,在提高击穿电压的同时,显著降低器件正向压降。本发明提供的肖特基整流器通过深槽和T型多晶结构用于改善反向偏置下沟槽底部拐角附近的电场分布以及减小势垒金属与半导体界面附近电场强度。在T型多晶结构(即T-POLY结构)与沟槽侧壁和底部之间是热生长或淀积绝缘介质,其中绝缘介质为二氧化硅。
附图说明
下面结合附图对本发明专利进一步说明。
图1是本发明实施例的肖特基整流器沟槽刻蚀后的截面图之一部分。
图2是本发明实施例的肖特基整流器完成沟槽填充绝缘介质的一个晶胞。
图3是本发明实施例的肖特基整流器完成沟槽填充多晶并回刻的晶胞;
图4是本发明实施例的肖特基整流器完成绝缘介质回刻至下部绝缘介质后的晶胞;
图5是本发明实施例的肖特基整流器完成多晶剥离并且热氧化生成上部绝缘介质后的晶胞;
图6是本发明实施例的肖特基整流器完成多晶填充并回刻的晶胞;
图7是本发明实施例的肖特基整流器完成势垒金属淀积以及传导金属淀积后的晶胞;
图8是本发明实施例为包含一个完整T-POLY结构的肖特基整流器的另一视角。
图中:1-外延层;11-介质层;12-沟槽;2-绝缘介质;20-上部绝缘介质;21-下部绝缘介质;3-多晶;30-横向肩部;31-纵向延伸部;32-多晶台阶;4-传导金属。
具体实施方式
下面结合附图和具体实施方式对本发明进一步说明。
如图8所示,本发明实施例提供一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器,包括外延层1,所述外延层1上沿横向间隔刻蚀形成若干个纵向的沟槽12,其特征在于,所述沟槽12自外延层1的上表面向下延伸,所述外延层1的厚度为D,其中D大于0,所述沟槽12的深度为;每个沟槽12的底部以及两内侧壁均设有绝缘介质2,位于两内侧壁的绝缘介质2呈上窄下宽的台阶状;每个沟槽12内淀积有多晶3,所述多晶3呈T型结构且与所述绝缘介质2紧密贴合,所述多晶3由上下设置于沟槽12内的横向肩部30和纵向延伸部31组成,所述横向肩部30的上表面与外延层1的上表面平齐,下表面延伸至纵向延伸部31的上表面,所述横向肩部30的厚度为沟槽12深度的三分之一至二分之一;所述纵向延伸部31的上表面位于横向肩部30的下表面,下表面延伸至位于底部的绝缘介质2处。所述外延层1的电阻率接近或者低于传统浅槽肖特基势垒器件外延层材料电阻率的二分之一。
从上述可知,本发明的有益效果在于:相对于传统的TMBS器件(TMBS:沟槽12金属氧化物半导体势垒肖特基整流器),本发明采用高掺杂的外延层1,用于减低正向压降,本发明外延层1掺杂材料的电阻率接近或小于传统TMBS外延掺杂材料的电阻率的二分之一,100V TMBS传统电阻率1.2ohm.cm,本发明外延层1的电阻率为0.5ohm.cm,掺杂材料为外延硅。采用深沟槽12结构,沟槽12的深度接近外延层1厚度的二分之一,以增加高反向偏置下的电势纵向降落空间,沟槽12宽度取决于绝缘介质2的厚度和由工艺能力限制的多晶3填充最小宽度。由于高掺杂外延层1的存在,沟槽12内需填充较厚的绝缘介质2,以减缓底部拐角和绝缘介质2氧化物内部的电势降落。沟槽12上部1/3至1/2处的绝缘介质2需要被刻蚀去除,然后热氧化在该处沟槽12侧壁生成较薄上部绝缘介质2。经多晶3淀积和回刻,形成T型多晶结构,以增强耐压和减小肖特基接触界面附近电场强度。
在本实施例中,所述绝缘介质2为二氧化硅。
在本实施例中,所述外延层1上覆有硅介质层11。
本发明还提供一种具有深槽和T-POLY结构的沟槽12型MOS肖特基整流器的制造方法,包括以下步骤:
步骤S1:在外延层1上沿横向间隔刻蚀形成若干个纵向的沟槽12,所述沟槽12自外延层1的上表面向下延伸,设定所述外延层1的厚度为D,其中D大于0,所述沟槽12的深度为,如图1所示;
步骤S2:在每个沟槽12的底部以及两内侧壁热生长或淀积有绝缘介质2,如图2所示;
步骤S3:在每个沟槽12内淀积有多晶3并且回刻至每个沟槽12深度的三分之一至二分之一处,形成多晶台阶32,如图3所示;
步骤S4:刻蚀位于每个沟槽12两侧壁的绝缘介质2形成下部绝缘介质2,使得下部绝缘介质2的上表面与多晶台阶32的上表面平齐,如图4所示;
步骤S5:刻蚀去掉多晶3台阶,并在每个沟槽12两侧壁下部绝缘介质21的上表面以上热生长有上部绝缘介质20,所述上部绝缘介质20的厚度小于下部绝缘介质21的厚度,并且上部绝缘介质20的上表面与外延层1上表面平齐,如图5所示;
步骤S6:在每个沟槽12内重新淀积多晶3并且回刻至外延层1上表面,此时在每个沟槽12内形成T型多晶结构,如图6所示;
步骤S7:分别在外延层1的上表面和下表面依次淀积势垒金属和传导金属4,如图7-8所示。
在本实施例中,在所述步骤S1中,通过干法刻蚀形成沟槽12。在外延层1上覆有硅介质层11,便于通过干法刻蚀形成沟槽12。
综上所述,本发明提供的具有深槽和T-POLY结构的沟槽型MOS肖特基整流器及制造方法,通过深沟槽和T型多晶结构,改善了反向偏置下沟槽底部拐角附近的电场分布以及减小势垒金属附近电场强度。
本发明提供的上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器,包括外延层,所述外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,其特征在于,所述沟槽自外延层的上表面向下延伸,所述外延层的厚度为D,其中D大于0,所述沟槽的深度为;每个沟槽的底部以及两内侧壁均设有绝缘介质,位于两内侧壁的绝缘介质呈上窄下宽的台阶状;每个沟槽内淀积有多晶,所述多晶呈T型结构且与所述绝缘介质紧密贴合,所述多晶由上下设置于沟槽内的横向肩部和纵向延伸部组成,所述横向肩部的上表面与外延层的上表面平齐,下表面延伸至纵向延伸部的上表面;所述横向肩部的厚度为沟槽深度的三分之一至二分之一;所述纵向延伸部的上表面位于横向肩部的下表面,所述纵向延伸部的下表面延伸至位于底部的绝缘介质处。
2.根据权利要求1所述的一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器,其特征在于,所述外延层的掺杂材料为硅,并且硅的电阻率为0.48~0.72 ohm.cm。
3.根据权利要求1所述的一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器,其特征在于,所述绝缘介质为二氧化硅。
4.根据权利要求1所述的一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器,其特征在于,所述外延层上覆有介质层。
5.一种具有深槽和T-POLY结构的沟槽型MOS肖特基整流器的制造方法,其特征在于,包括以下步骤:
步骤S1:在外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,所述沟槽自外延层的上表面向下延伸,设定所述外延层的厚度为D,其中D大于0,所述沟槽的深度为
步骤S2:在每个沟槽的底部以及两内侧壁热生长或淀积有绝缘介质;
步骤S3:在每个沟槽内淀积有多晶并且回刻至每个沟槽深度的三分之一至二分之一处,形成多晶台阶;
步骤S4:刻蚀位于每个沟槽两侧壁的绝缘介质形成下部绝缘介质,使得下部绝缘介质的上表面与多晶台阶的上表面平齐;
步骤S5:刻蚀去掉多晶台阶,并在每个沟槽两侧壁下部绝缘介质的上表面以上热生长有上部绝缘介质,所述上部绝缘介质的厚度小于下部绝缘介质的厚度,并且上部绝缘介质的上表面与外延层上表面平齐;
步骤S6:在每个沟槽内重新淀积多晶并且回刻至外延层上表面,此时在每个沟槽内形成T型多晶结构;
步骤S7:分别在外延层的上表面和下表面依次淀积势垒金属和传导金属。
6.根据权利要求5所述的具有深槽和T-POLY结构的沟槽型MOS肖特基整流器的制造方法,其特征在于,在所述步骤S1中,通过干法刻蚀形成沟槽。
CN201610801864.2A 2016-09-05 2016-09-05 具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法 Pending CN106328690A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610801864.2A CN106328690A (zh) 2016-09-05 2016-09-05 具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610801864.2A CN106328690A (zh) 2016-09-05 2016-09-05 具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法

Publications (1)

Publication Number Publication Date
CN106328690A true CN106328690A (zh) 2017-01-11

Family

ID=57786545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610801864.2A Pending CN106328690A (zh) 2016-09-05 2016-09-05 具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法

Country Status (1)

Country Link
CN (1) CN106328690A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755325A (zh) * 2017-11-01 2019-05-14 北京大学 一种新型双槽型金属氧化物半导体势垒肖特基二极管结构及实现方法
CN111341852A (zh) * 2020-03-10 2020-06-26 安徽安芯电子科技股份有限公司 一种具有屏蔽氧化物的沟槽型肖特基整流器及其加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
EP1168455A2 (en) * 2000-06-30 2002-01-02 Kabushiki Kaisha Toshiba Power semiconductor switching element
CN101057340A (zh) * 2004-11-08 2007-10-17 罗伯特·博世有限公司 半导体装置及用于其制造的方法
CN105810755A (zh) * 2016-03-16 2016-07-27 杭州立昂微电子股份有限公司 一种沟槽栅结构半导体整流器及其制造方法
CN105870207A (zh) * 2016-06-20 2016-08-17 淄博汉林半导体有限公司 一种厚底氧化层的沟槽式肖特基芯片及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
EP1168455A2 (en) * 2000-06-30 2002-01-02 Kabushiki Kaisha Toshiba Power semiconductor switching element
CN101057340A (zh) * 2004-11-08 2007-10-17 罗伯特·博世有限公司 半导体装置及用于其制造的方法
CN105810755A (zh) * 2016-03-16 2016-07-27 杭州立昂微电子股份有限公司 一种沟槽栅结构半导体整流器及其制造方法
CN105870207A (zh) * 2016-06-20 2016-08-17 淄博汉林半导体有限公司 一种厚底氧化层的沟槽式肖特基芯片及制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755325A (zh) * 2017-11-01 2019-05-14 北京大学 一种新型双槽型金属氧化物半导体势垒肖特基二极管结构及实现方法
CN111341852A (zh) * 2020-03-10 2020-06-26 安徽安芯电子科技股份有限公司 一种具有屏蔽氧化物的沟槽型肖特基整流器及其加工工艺

Similar Documents

Publication Publication Date Title
CN105702739B (zh) 屏蔽栅沟槽mosfet器件及其制造方法
CN101517752B (zh) 具有浮岛的结势垒肖特基二极管
CN102768994B (zh) 在功率mosfet内集成肖特基二极管
CN101853852B (zh) 单胞中集成肖特基二极管的沟槽mos器件及制造方法
CN101800252B (zh) 沟槽型肖特基势垒整流器及其制造方法
CN107331616A (zh) 一种沟槽结势垒肖特基二极管及其制作方法
CN105895516B (zh) 具有屏蔽栅的沟槽栅mosfet的制造方法
CN105206660A (zh) 一种用于制备半导体功率器件的方法
CN105742185A (zh) 屏蔽栅功率器件及其制造方法
CN102157493A (zh) 金属塞及其制造方法
CN101814528B (zh) 一种具有改进型终端的半导体器件及其制造方法
CN105870194A (zh) 一种沟槽型CoolMOS及其制作方法
CN109755325A (zh) 一种新型双槽型金属氧化物半导体势垒肖特基二极管结构及实现方法
CN106876449A (zh) 一种沟槽金属-氧化物半导体及其制备方法
CN201663162U (zh) 单胞中集成肖特基二极管的沟槽mos器件
CN105575781A (zh) 沟槽型超级结的制造方法
CN106328690A (zh) 具有深槽和t‑poly结构的沟槽型mos肖特基整流器及制造方法
CN106920752A (zh) 低压超结mosfet栅源氧化层结构及制造方法
CN201877431U (zh) 一种具有改进型终端的半导体器件
CN109065637B (zh) 一种沟槽肖特基势垒二极管及其制造方法
EP1947699A1 (en) Trench gate power mosfet
CN107437557A (zh) 沟槽型碳化硅mosfet器件及其制备方法
CN206697482U (zh) 一种沟槽金属-氧化物半导体
CN201629336U (zh) 沟槽型肖特基势垒整流器
CN206059399U (zh) 一种沟槽肖特基二极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: The North Industrial Zone Road in Jimei District of Xiamen City, Fujian Province, No. 501 361021

Applicant after: Xiamen lucky Microelectronics Co., Ltd.

Applicant after: Xiamen unit is along microelectric technique company limited

Applicant after: UNISONIC TECHNOLOGIES Co.,Ltd.

Address before: 361021 Xiamen Industrial Zone, Jimei, Xiamen, Fujian

Applicant before: Xiamen Jicheng Semiconductor Manufacturing Co., Ltd.

Applicant before: Xiamen unit is along microelectric technique company limited

Applicant before: UNISONIC TECHNOLOGIES Co.,Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111

RJ01 Rejection of invention patent application after publication