CN106298456A - 垂直结构功率半导体器件的衬底转移方法 - Google Patents

垂直结构功率半导体器件的衬底转移方法 Download PDF

Info

Publication number
CN106298456A
CN106298456A CN201610830637.2A CN201610830637A CN106298456A CN 106298456 A CN106298456 A CN 106298456A CN 201610830637 A CN201610830637 A CN 201610830637A CN 106298456 A CN106298456 A CN 106298456A
Authority
CN
China
Prior art keywords
power semiconductor
substrate
gan
substrate transfer
transfer method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610830637.2A
Other languages
English (en)
Inventor
黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Hiwafer Technology Co Ltd
Original Assignee
Chengdu Hiwafer Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hiwafer Technology Co Ltd filed Critical Chengdu Hiwafer Technology Co Ltd
Priority to CN201610830637.2A priority Critical patent/CN106298456A/zh
Publication of CN106298456A publication Critical patent/CN106298456A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02016Backside treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种垂直结构功率半导体器件的衬底转移方法,通过特殊的晶圆级键合技术,将设置在Si基衬底上的GaN功率半导体器件转移至目标Cu衬底上。该方法是一种全新的衬底转移技术,大的热传导系数的Cu基板可以有效的帮助GaN功率半导体器件散热,消除高功率晶体管的自热效应,同时可降低GaN功率器件的功耗及提高设备在高温下的可靠性。该方法操作简单,可推动GaN器件在下一代毫米波雷达收发组件(T/R)组件以及复杂宇航级领域的应用,具有明显的创新性和研究价值。

Description

垂直结构功率半导体器件的衬底转移方法
技术领域
本发明涉及一种全新的垂直结构功率半导体器件的衬底转移方法,属于半导体制造领域。
背景技术
硅基芯片经历几十年发展,随着Si基CMOS尺寸不断缩小,其频率性能也不断提高,预计特征尺寸达到25nm时,其fT可达490GHz。但Si材料的Johnson优值仅为0.5 THzV, 尺寸的缩小Si CMOS器件的击穿电压将远小于1V,这极大地限制了硅基芯片在超高速数字领域的应用。近年来,人们不断地寻找其替代品, 由于宽禁带半导体氮化镓(GaN)材料具有超高的Johnson优值(5 THzV), 其器件沟道尺寸达到10nm量级时,击穿电压仍能保持10 V左右,已逐渐的引起了国内外广泛的重视。GaN功率器件在要求高转换效率和精确阈值控制、宽带、大动态范围的电路(如超宽带ADC、DAC)数字电子领域具有广阔和特殊的应用前景,支持国防通信、机载和空间系统。
在多种的GaN功率器件中,Si衬底GaN功率器件由于超低的成本优势以及与Si基CMOS的无缝集成,引起了国内外广泛的关注,其中多个公司已经将Si基GaN产品实用化。但是,Si衬底GaN功率器件仍然遭遇到一些瓶颈问题:一方面,如在大电流、大电压应用时,产生强烈的自加热效应,导致极大的增大器件的功耗;另一方面,大功率Si基GaN射频器件性能随着操作温度的升高,电子迁移率的不断下降,从而影响器件截止频率,并导致GaN设备的可靠性的退化。
因此,在本发明中,提供了一种垂直结构功率半导体器件的衬底转移方法,通过特殊的晶圆级键合技术,将设置在Si基衬底上的GaN功率半导体器件转移至目标Cu衬底上。大的热传导系数的Cu基板可以有效的帮助GaN功率半导体器件散热,消除高功率晶体管的自热效应,同时可降低GaN功率器件的功耗及提高设备在高温下的可靠性。
发明内容
本发明主要解决的技术问题是提供一种垂直结构功率半导体器件的衬底转移方法,能够通过特殊的晶圆级键合技术,将设置在Si基衬底上的GaN功率半导体器件转移至目标Cu衬底上,该方法简单易行,可在同行业中进行推广。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种垂直结构功率半导体器件的衬底转移方法,其特征在于,包括如下步骤:
步骤1:在原有的GaN功率半导体器件的上表面涂覆一层聚酰亚胺作为GaN器件的保护层,并将其放入真空烘箱进行固化;
步骤2:在固化后的聚酰亚胺层上方涂覆石蜡层,采用晶圆级键合技术将石蜡层键合到蓝宝石表面;
步骤3:通过湿法腐蚀办法去除原GaN功率器件的硅衬底;
步骤4:在原硅衬底处溅射一层金属种子层,然后在种子层上方电镀铜作为GaN功率器件的新衬底;
步骤5:将GaN功率半导体器件从蓝宝石在片上剥离,并去除所述GaN功率半导体器件表面的剩余石蜡,通过去除液浸泡去掉GaN器件的聚酰亚胺保护层。
优选地,所述湿法腐蚀办法采用氢氟酸(HF)、浓硝酸(HNO3)、醋酸(CH3COOH)的混合水溶液与单晶硅衬底进行反应,并密切控制应力,确保器件有源区没有裂痕。
优选地,所述种子层采用钛(Ti)或者金(Au)材料,采用钛作为种子层时,其厚度为100nm;采用金作为种子层时,其厚度为1000nm。
优选地,剥离蓝宝石衬底的过程采用激光剥离技术。
区别于现有技术的情况,本发明的有益效果是:
1、采用热传导系数大的Cu基板可以有效的帮助GaN功率半导体器件进行散热,消除高功率晶体管的自热效应。
2、Cu基板与传统硅衬底器件相比,可以降低器件的功耗以及提高设备在高温下的可靠性。
3、该方法操作简单,可推动GaN器件在下一代毫米波雷达收发组件(T/R)组件以及复杂宇航级领域的应用,具有明显的创新性和研究价值。
附图说明
图1是本发明实施例垂直结构功率半导体器件的衬底转移方法的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
提供一种垂直结构功率半导体器件的衬底转移方法,其特征在于,包括如下步骤:
步骤1:在原有的GaN功率半导体器件的上表面涂覆一层聚酰亚胺作为GaN器件的保护层,并将其放入真空烘箱进行固化;
步骤2:在固化后的聚酰亚胺层上方涂覆石蜡层,采用晶圆级键合技术将石蜡层键合到蓝宝石表面;
步骤3:通过湿法腐蚀办法去除原GaN功率器件的硅衬底;
步骤4:在原硅衬底处溅射一层金属种子层,然后在种子层上方电镀铜作为GaN功率器件的新衬底;
步骤5:将GaN功率半导体器件从蓝宝石在片上剥离,并去除所述GaN功率半导体器件表面的剩余石蜡,通过去除液浸泡去掉GaN器件的聚酰亚胺保护层。
在本发明中,所述湿法腐蚀办法采用氢氟酸(HF)、浓硝酸(HNO3)、醋酸(CH3COOH)的混合水溶液与单晶硅衬底进行反应,密切控制应力,确保器件有源区没有裂痕。
所述种子层采用钛(Ti)或者金(Au)材料,采用钛作为种子层时,其厚度为100nm;采用金作为种子层时,其厚度为1000nm。
剥离蓝宝石衬底的过程采用激光剥离技术将功率半导体器件从蓝宝石衬底上剥离。
通过上述方式,本发明实施例的垂直结构功率半导体器件的衬底转移方法通过特殊的晶圆级键合技术,将设置在Si基衬底上的GaN功率半导体器件转移至目标Cu衬底上,有效的帮助GaN功率半导体器件散热,消除高功率晶体管的自热效应,同时降低器件的功耗及提高设备在高温下的可靠性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

1.一种垂直结构功率半导体器件的衬底转移方法,其特征在于,包括如下步骤:
步骤1:在原有的GaN功率半导体器件的上表面涂覆一层聚酰亚胺作为GaN器件的保护层,并将其放入真空烘箱进行固化;
步骤2:完成步骤1后,在固化后的聚酰亚胺层上方涂覆石蜡层,采用晶圆级键合技术将石蜡层键合到蓝宝石表面;
步骤3:通过湿法腐蚀办法去除原GaN功率器件的硅衬底;
步骤4:在原硅衬底处溅射一层金属种子层,然后在种子层上方电镀铜作为GaN功率器件的新衬底;
步骤5:将GaN功率半导体器件从蓝宝石在片上剥离,并去除所述GaN功率半导体器件表面的剩余石蜡,通过去除液浸泡去掉GaN器件的聚酰亚胺保护层。
2.根据权利要求1所述的垂直结构功率半导体器件的衬底转移方法,其特征在于:所述湿法腐蚀办法采用氢氟酸(HF)、浓硝酸(HNO3)、醋酸(CH3COOH)的混合水溶液与单晶硅衬底进行反应,并密切控制应力,确保器件有源区没有裂痕。
3.根据权利要求1所述的垂直结构功率半导体器件的衬底转移方法,其特征在于:所述种子层采用钛(Ti)或者金(Au)材料,采用钛作为种子层时,其厚度为100nm;采用金作为种子层时,其厚度为1000nm。
4.根据权利要求1所述的垂直结构功率半导体器件的衬底转移方法,其特征在于:剥离蓝宝石衬底的过程采用激光剥离技术。
CN201610830637.2A 2016-09-19 2016-09-19 垂直结构功率半导体器件的衬底转移方法 Pending CN106298456A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610830637.2A CN106298456A (zh) 2016-09-19 2016-09-19 垂直结构功率半导体器件的衬底转移方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610830637.2A CN106298456A (zh) 2016-09-19 2016-09-19 垂直结构功率半导体器件的衬底转移方法

Publications (1)

Publication Number Publication Date
CN106298456A true CN106298456A (zh) 2017-01-04

Family

ID=57712604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610830637.2A Pending CN106298456A (zh) 2016-09-19 2016-09-19 垂直结构功率半导体器件的衬底转移方法

Country Status (1)

Country Link
CN (1) CN106298456A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009467A (zh) * 2019-12-06 2020-04-14 华南理工大学 一种基于Cu衬底基GaN整流器及其制备方法
CN111627856A (zh) * 2019-02-28 2020-09-04 中国科学院物理研究所 GaN基半导体器件及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937188A (zh) * 2006-10-17 2007-03-28 杭州电子科技大学 一种改善氮化镓功率晶体管散热性能的方法
CN102054875A (zh) * 2010-10-29 2011-05-11 中山大学 一种功率型GaN基肖特基二极管及其制作方法
CN102082214A (zh) * 2010-11-29 2011-06-01 华南师范大学 一种GaN基LED半导体芯片的制备方法
CN103305909A (zh) * 2012-03-14 2013-09-18 东莞市中镓半导体科技有限公司 一种用于GaN生长的复合衬底的制备方法
US20140312359A1 (en) * 2011-11-29 2014-10-23 Imec Method for bonding semiconductor substrates
CN104538303A (zh) * 2014-12-24 2015-04-22 中国科学院半导体研究所 转移衬底的氮化镓基高电子迁移率晶体管制作的方法
CN104576846A (zh) * 2014-12-17 2015-04-29 江苏能华微电子科技发展有限公司 一种垂直结构功率半导体器件二次衬底转移的方法
CN204577454U (zh) * 2015-04-28 2015-08-19 东莞市中镓半导体科技有限公司 一种含有扩散阻挡层的GaN基复合衬底
US20160049563A1 (en) * 2012-12-27 2016-02-18 Agency For Science, Technology And Research Vertical light emitting diode with photonic nanostructures and method of fabrication thereof
CN105514224A (zh) * 2014-09-25 2016-04-20 东莞市中镓半导体科技有限公司 一种用于GaN生长的低应力状态复合衬底的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937188A (zh) * 2006-10-17 2007-03-28 杭州电子科技大学 一种改善氮化镓功率晶体管散热性能的方法
CN102054875A (zh) * 2010-10-29 2011-05-11 中山大学 一种功率型GaN基肖特基二极管及其制作方法
CN102082214A (zh) * 2010-11-29 2011-06-01 华南师范大学 一种GaN基LED半导体芯片的制备方法
US20140312359A1 (en) * 2011-11-29 2014-10-23 Imec Method for bonding semiconductor substrates
CN103305909A (zh) * 2012-03-14 2013-09-18 东莞市中镓半导体科技有限公司 一种用于GaN生长的复合衬底的制备方法
US20160049563A1 (en) * 2012-12-27 2016-02-18 Agency For Science, Technology And Research Vertical light emitting diode with photonic nanostructures and method of fabrication thereof
CN105514224A (zh) * 2014-09-25 2016-04-20 东莞市中镓半导体科技有限公司 一种用于GaN生长的低应力状态复合衬底的制备方法
CN104576846A (zh) * 2014-12-17 2015-04-29 江苏能华微电子科技发展有限公司 一种垂直结构功率半导体器件二次衬底转移的方法
CN104538303A (zh) * 2014-12-24 2015-04-22 中国科学院半导体研究所 转移衬底的氮化镓基高电子迁移率晶体管制作的方法
CN204577454U (zh) * 2015-04-28 2015-08-19 东莞市中镓半导体科技有限公司 一种含有扩散阻挡层的GaN基复合衬底

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627856A (zh) * 2019-02-28 2020-09-04 中国科学院物理研究所 GaN基半导体器件及其制备方法
CN111009467A (zh) * 2019-12-06 2020-04-14 华南理工大学 一种基于Cu衬底基GaN整流器及其制备方法

Similar Documents

Publication Publication Date Title
CN105140122B (zh) 一种改善GaN HEMT器件散热性能的方法
US9824891B1 (en) Method of manufacturing the thin film
CN102610638A (zh) 用于功率集成电路的SiC-BJT器件及其制作方法
CN106981423B (zh) 基于Si衬底外延SiC基GaN HEMT的工艺方法
CN104576410A (zh) 一种垂直结构功率半导体器件的衬底转移方法
CN102969341A (zh) 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构
CN110148561A (zh) Si基AlGaN/GaN 高电子迁移率晶体管转移至柔性衬底的方法
CN103794471A (zh) 一种化合物半导体衬底的制备方法
CN106298456A (zh) 垂直结构功率半导体器件的衬底转移方法
CN106384711A (zh) 一种GaN功率半导体器件的衬底转移方法
CN106783645A (zh) 一种金刚石与GaN晶圆片直接键合的方法
CN108376705A (zh) 具有石墨烯散热层的倒装结构的氮化镓基功率器件及其制备方法
CN104465373A (zh) 在硅片上制作氮化镓高电子迁移率晶体管的方法
CN204946885U (zh) 一种GaN基倒装HEMT器件结构
CN105448974B (zh) 一种GaN基薄膜晶体管结构及其制备方法
CN100407386C (zh) 一种改善氮化镓功率晶体管散热性能的方法
CN104465403B (zh) 增强型AlGaN/GaN HEMT器件的制备方法
CN100390974C (zh) 一种大功率半导体器件用的大面积散热结构
CN105070701A (zh) 一种GaN基倒装HEMT器件结构及其制备方法
CN104409344A (zh) 降低Ni/Au与p-GaN欧姆接触的比接触电阻率的方法
CN103745923A (zh) 氮化镓衬底上生长栅介质的方法及电学性能测试方法
CN205944089U (zh) 一种无源单片高q电感的隔离层结构
CN106298458B (zh) 一种功率半导体器件的衬底转移方法
CN206947354U (zh) 高阻衬底上的GaNHEMT管芯结构
CN102055053B (zh) 一种基于键合技术制作微波传输线的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104

RJ01 Rejection of invention patent application after publication