CN106282975B - 在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用 - Google Patents

在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用 Download PDF

Info

Publication number
CN106282975B
CN106282975B CN201610602935.6A CN201610602935A CN106282975B CN 106282975 B CN106282975 B CN 106282975B CN 201610602935 A CN201610602935 A CN 201610602935A CN 106282975 B CN106282975 B CN 106282975B
Authority
CN
China
Prior art keywords
super
hydroxyapatite
film layer
hydrophobic film
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610602935.6A
Other languages
English (en)
Other versions
CN106282975A (zh
Inventor
康志新
张俊逸
牛蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610602935.6A priority Critical patent/CN106282975B/zh
Publication of CN106282975A publication Critical patent/CN106282975A/zh
Application granted granted Critical
Publication of CN106282975B publication Critical patent/CN106282975B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/086Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明属于金属材料表面处理技术领域,公开了在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用。所述方法为(1)预处理:将镁合金进行表面预处理;(2)混合溶液的配制:采用乙醇和水将乙酸钙、磷酸二氢钠和脂肪酸配制成溶液,得到混合溶液;(3)将镁合金与混合溶液同时置于水热反应釜中,在100~230℃下反应1~3h,得到羟基磷灰石超疏水膜层。本发明在镁合金表面水热法一步制备羟基磷灰石超疏水膜层,该方法简单;超疏水表面羟基磷灰石分布均匀,能显著提高镁合金的耐腐蚀性能;该膜层用于医用镁合金领域。

Description

在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用
技术领域
本发明属于金属材料表面处理技术领域,涉及一种在镁合金表面制备羟基磷灰石超疏水膜层的方法以及采用该方法制备得到的羟基磷灰石超疏水膜层和该膜层的应用。
背景技术
近年来,随着人们生活质量的提高,生物医疗器械的需求逐年增加。镁及其合金作为一种新型的生物可降解材料,由于其良好的组织相容性,无毒副作用,与人体骨骼相近的密度、弹性模量和良好的力学性能,受到了企业和研究者的广泛关注。然而,镁标准电极电位(-2.37V)较低,腐蚀速率过快。这会导致镁合金植入材料在组织尚未完全愈合前就已被严重腐蚀而失去支撑作用,进而影响机体生理功能。
针对镁合金耐腐蚀性能差的问题,科研工作者们展开了大量的研究,其中在镁合金表面制备一层耐腐蚀性能优异的防护膜层是最快捷和实用的方法。镁合金表面的防腐蚀膜层能有效防止基体镁合金的腐蚀,使其在材料植入人体的初期保持完整的几何结构和力学性能。在众多防腐蚀膜层中,羟基磷灰石膜层由于其优异的生物相容性和骨传导性而备受关注。例如专利号为ZL201410118521.7、名称为“一种直接制备含有羟基磷灰石的微弧氧化陶瓷膜的方法”的专利中公开了一种采用微弧氧化工艺制备羟基磷灰石膜层的方法。Dunne等(C.F.Dunne,G.K.Levy,O.Hakimi,E.Aghion,B.Twomey,K.T.Stanton.Corrosionbehaviour of biodegradable magnesium alloys with hydroxyapatite coatings[J].Surface&Coatings Technology,2016,289:37–44)采用爆炸喷涂技术在不同镁合金表面制备羟基磷灰石膜层,其耐腐蚀性能较未喷镀镁合金提高了1倍。虽然经表面羟基磷灰石处理后的镁合金耐腐蚀性能普遍升高,但由于表面致密性和钙磷膜层性能的影响,仍然不能满足生物医用植入材料对腐蚀性能的要求。
自然界中以荷叶为代表的超疏水表面由于不沾水、自清洁等众多独特的功能引起了广大学者的极大兴趣。在镁合金表面制备不沾水的超疏水表面能有效地阻碍水及水溶液在固体表面的润湿面积,使镁合金表面的腐蚀速率大大降低。因此在镁合金表面制备羟基磷灰石超疏水膜层能在获得羟基磷灰石高生物相容性的基础上,显著提高镁合金耐腐蚀性能,达到生物医用植入材料的腐蚀要求。
发明内容
为了解决现有技术中制备羟基磷灰石超疏水膜层制备工艺复杂和设备要求高的问题,同时为了提高镁合金耐腐蚀性能,本发明的首要目的在于提供一种在镁合金表面制备羟基磷灰石超疏水膜层的方法,该法为一步水热法。利用该方法对镁合金表面处理后,得到的镁合金具备超疏水性能,且耐腐蚀性能优异,可作为生物医用植入镁合金表面的处理技术。
本发明的另一目的在于提供上述方法制备得到的羟基磷灰石超疏水膜层。
本发明的再一目的在于提供上述羟基磷灰石超疏水膜层的应用。所述羟基磷灰石超疏水膜层应用于医用镁合金。
本发明目的通过以下技术方案实现:
一种在镁合金表面制备羟基磷灰石超疏水膜层的方法,包括如下步骤:
(1)预处理:将镁合金进行表面预处理
(2)混合溶液的配制:采用乙醇和水将乙酸钙、磷酸二氢钠和脂肪酸配制成溶液,得到混合溶液;所述脂肪酸为硬脂酸或十四酸中的一种以上;
(3)将镁合金与混合溶液同时置于水热反应釜中,在100~230℃下反应1~3h,得到羟基磷灰石超疏水膜层即在镁合金表面获得具有超疏水特性的羟基磷灰石表面膜层。
所述混合溶液中乙酸钙的浓度为0.01~0.05mol/L;磷酸二氢钠的浓度为0.005~0.03mol/L,脂肪酸的浓度为0.01~0.05mol/L。
所述混合溶液中乙醇和水的体积比为3:7~7:3。
所述混合溶液的具体配制步骤为:将乙酸钙和磷酸二氢钠溶于水中,调节pH至溶液澄清(pH为4~5),得到含钙磷的水溶液;将脂肪酸溶于乙醇中,得到脂肪酸的乙醇溶液;将脂肪酸的乙醇溶液缓慢倒入含钙磷的水溶液中,40~70℃搅拌0.5~2h,获得混合溶液。
所述的预处理为本领域常规的打磨、清洗及去油脂等处理,优选包括以下步骤:将金属表面用砂纸打磨至1500~2000#,室温下酒精超声清洗10min,冷风吹干待用。
本发明提供了一种制备镁合金表面羟基磷灰石超疏水膜层的方法,通过水热法,在镁合金表面一步完成了具有微纳粗糙尺寸的特殊形状羟基磷灰石结构的构筑和低表面自由能物质的修饰。
上述方法得到的羟基磷灰石超疏水膜层,其水滴表面接触角均大于150°。通过电化学测试发现,所制备的羟基磷灰石超疏水膜层耐腐蚀性能较未处理的镁合金降低了4个数量级。
与现有技术相比,本发明具有如下优点及有益效果:
(1)本发明的方法可一步同时完成在金属表面制备超疏水表面所需的粗糙结构和低表面能物质,制备方法简便;
(2)获得的超疏水表面羟基磷灰石分布均匀,能显著提高镁合金的耐腐蚀性能;
(3)本发明设计的溶液配方均对环境和人类身体无害,甚至有益,可用于生物医用镁合金的表面处理。
附图说明
图1为实施例1制备的羟基磷灰石超疏水膜层的SEM图;
图2为实施例1制备的羟基磷灰石超疏水膜层与基体的极化曲线图;
图3为实施例2制备的羟基磷灰石超疏水膜层与基体的XRD图;
图4为实施例2制备的羟基磷灰石超疏水膜层与蒸馏水的接触角。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
尺寸为20×20×2(mm)的Mg-Gd-Nd-Zn-Zr镁合金,经表面预处理后水热处理一步获得结构特征突出的羟基磷灰石超疏水膜层,具体包括以下步骤:
(1)将镁合金表面用砂纸打磨至2000#后放入无水乙醇中,超声波清洗10min,分别用蒸馏水和乙醇冲洗,冷风吹干表面;
(2)将乙酸钙、磷酸二氢钠溶于水中,采用0.5M盐酸溶液调节pH至5,得到含钙磷的水溶液;将硬脂酸溶于无水乙醇中,得到硬脂酸的乙醇溶液;将硬脂酸的乙醇溶液缓慢倒入含钙磷的水溶液中,50℃搅拌1.5h(搅拌的转速为400r/min),获得水热反应溶液;所述水热反应溶液中乙醇与水的体积比为4:6,乙酸钙的浓度为0.01mol/L,磷酸二氢钠的浓度为0.005mol/L,硬脂酸的浓度为0.02mol/L;
(3)取80mL步骤(2)的水热反应溶液置于100mL水热反应釜内胆中,同时放入打磨好的镁合金试样,在220℃条件下水热反应3h,在镁合金表面获得羟基磷灰石超疏水膜层。
本实施例通过水热反应在镁合金表面获得羟基磷灰石超疏水膜层,其结构表征(SEM图)如图1所示。
其性能测试即极化测试曲线如图2所示,从图2中可知,对比未经处理的镁合金和表面有羟基磷灰石超疏水膜层的镁合金在模拟体液中的腐蚀性能,镁合金基体的腐蚀电流密度为13μA/cm2,而表面有羟基磷灰石超疏水膜层的镁合金腐蚀电流密度降低至2.1nA/cm2。这证明所制备超疏水膜层可以将腐蚀电流密度降低4个数量级。
本实施例通过水热反应在镁合金表面获得羟基磷灰石超疏水膜层与蒸馏水的接触角达到154℃。
实施例2
尺寸为20×20×2(mm)的Mg-Gd-Nd-Zn-Zr镁合金,经表面预处理后水热处理一步获得结构特征突出的超疏水表面,具体包括以下步骤及工艺条件:
(1)将镁合金表面打磨至2000#后放入无水乙醇中,超声波清洗10min,分别用蒸馏水和乙醇冲洗,冷风吹干表面;
(2)将乙酸钙、磷酸二氢钠溶于水中,采用0.1M盐酸溶液调节pH至4.5,得到含钙磷的水溶液;将硬脂酸溶于无水乙醇中,得到硬脂酸的乙醇溶液;将硬脂酸的乙醇溶液缓慢倒入含钙磷的水溶液中,60℃搅拌1h(搅拌的转速为400r/min),获得水热反应溶液;所述水热反应溶液中乙醇与水的体积比为6:4,乙酸钙的浓度为0.026mol/L,磷酸二氢钠的浓度为0.015mol/L,硬脂酸的浓度为0.05mol/L;
(3)取80mL步骤(2)的水热反应溶液置于100mL水热反应釜内胆中,同时放入打磨好的镁合金试样,在200℃条件下水热反应2h,在镁合金表面获得羟基磷灰石超疏水膜层。
本实施例通过水热反应在镁合金表面获得羟基磷灰石超疏水膜层的XRD图如图3所示;从图3中可知,表面生成了羟基磷灰石和硬脂酸钙。本实施例的羟基磷灰石超疏水膜层的表面接触角的表征图如图4所示,其接触角达到155°。在极化测试中,该超疏水膜层在模拟体液中的腐蚀电流密度降低至8.0nA/cm2,相较于Mg-Gd-Nd-Zn-Zr镁合金基体(镁合金基体的腐蚀电流密度为13μA/cm2)降低了4个数量级。
实施例3
尺寸为20×20×2(mm)的Mg-Mn-Ce镁合金,经表面预处理后水热处理一步获得羟基磷灰石超疏水膜层,具体包括以下步骤及工艺条件:
(1)将镁合金表面用砂纸打磨至2000#后放入无水乙醇中,超声波清洗10min,分别用蒸馏水和乙醇冲洗,冷风吹干表面;
(2)将乙酸钙、磷酸二氢钠溶于水中,采用0.1M盐酸溶液调节pH至4,得到含钙磷的水溶液;将硬脂酸溶于无水乙醇中,得到硬脂酸的乙醇溶液;将硬脂酸的乙醇溶液缓慢倒入含钙磷的水溶液中,70℃搅拌1h,获得水热反应溶液,所述水热反应溶液中乙醇与水的体积比为5:5,乙酸钙的浓度为0.05mol/L,磷酸二氢钠的浓度为0.03mol/L,硬脂酸的浓度为0.03mol/L;
(3)取80mL步骤(2)的水热反应溶液置于100mL水热反应釜内胆中,同时放入打磨好的镁合金试样;在100℃条件下水热反应2h,获得具有超疏水特性的羟基磷灰石膜层。
本实施例中通过水热反应获得的羟基磷灰石超疏水膜层与蒸馏水的接触角达到了152°。在极化测试中,该超疏水膜层在模拟体液中的腐蚀电流密度降低至3.0nA/cm2,相较于Mg-Mn-Ce镁合金基体(35μA/cm2)降低了4个数量级。
实施例4
尺寸为20×20×2(mm)的AZ31镁合金,经表面预处理后水热处理一步获得羟基磷灰石超疏水膜层,具体包括以下步骤:
(1)将镁合金表面用砂纸打磨至2000#后放入无水乙醇中,超声波清洗10min,分别用蒸馏水和乙醇冲洗,冷风吹干表面;
(2)将乙酸钙、磷酸二氢钠溶于水中,采用0.1M盐酸溶液调节pH至4.5,得到含钙磷的水溶液;将硬脂酸溶于无水乙醇中,得到硬脂酸的乙醇溶液;将硬脂酸的乙醇溶液缓慢倒入含钙磷的水溶液中,60℃搅拌2h,获得水热反应溶液,所述水热反应溶液中乙醇与水的体积比为3:7,乙酸钙的浓度为0.02mol/L,磷酸二氢钠的浓度为0.011mol/L,硬脂酸的浓度为0.02mol/L;
(3)取80mL步骤(2)的水热反应溶液置于100mL水热反应釜内胆中,同时放入打磨好的镁合金试样;在200℃条件下水热反应1h,在镁合金表面获得羟基磷灰石超疏水膜层。
本实施例中通过水热反应获得的羟基磷灰石超疏水膜层与蒸馏水的接触角达到了157°。在极化测试中,该超疏水膜层在模拟体液中的腐蚀电流密度降低至1.6nA/cm2,相较于AZ31镁合金基体(27μA/cm2)降低了4个数量级。
实施例5
尺寸为20×20×2(mm)的ZK60镁合金,经表面预处理后水热处理一步获得羟基磷灰石超疏水膜层,具体包括以下步骤:
(1)将镁合金表面用砂纸打磨至2000#后放入无水乙醇中,超声波清洗10min,分别用蒸馏水和乙醇冲洗,冷风吹干表面;
(2)将乙酸钙、磷酸二氢钠溶于水中,采用0.1M盐酸溶液调节pH至4,得到含钙磷的水溶液;将硬脂酸溶于无水乙醇中,得到硬脂酸的乙醇溶液;将硬脂酸的乙醇溶液缓慢倒入含钙磷的水溶液中,70℃搅拌2h,获得水热反应溶液,所述水热反应溶液中乙醇与水的体积比为7:3,乙酸钙的浓度为0.04mol/L,磷酸二氢钠的浓度为0.023mol/L,硬脂酸的浓度为0.03mol/L;
(3)取80mL步骤(2)的水热反应溶液置于100mL水热反应釜内胆中,同时放入打磨好的镁合金试样;在150℃条件下水热反应2h,在镁合金表面获得羟基磷灰石超疏水膜层。
本实施例中通过水热反应获得的羟基磷灰石超疏水膜层与蒸馏水的接触角达到了157°。在极化测试中,该超疏水膜层在模拟体液中的腐蚀电流密度降低至9.2nA/cm2,相较于ZK60镁合金基体(22μA/cm2)降低了4个数量级。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种在镁合金表面制备羟基磷灰石超疏水膜层的方法,其特征在于包括如下步骤:
(1)预处理:将镁合金进行表面预处理;
(2)混合溶液的配制:采用乙醇和水将乙酸钙、磷酸二氢钠和脂肪酸配制成溶液,得到混合溶液;所述混合溶液中乙酸钙的浓度为0.01~0.05mol/L;磷酸二氢钠的浓度为0.005~0.03mol/L,脂肪酸的浓度为0.01~0.05mol/L;
(3)将镁合金与混合溶液同时置于水热反应釜中,在100~230℃下反应1~3h,得到羟基磷灰石超疏水膜层。
2.根据权利要求1所述在镁合金表面制备羟基磷灰石超疏水膜层的方法,其特征在于:所述脂肪酸为硬脂酸或十四酸中的一种以上。
3.根据权利要求1所述在镁合金表面制备羟基磷灰石超疏水膜层的方法,其特征在于:所述混合溶液中乙醇和水的体积比为3:7~7:3。
4.根据权利要求1所述在镁合金表面制备羟基磷灰石超疏水膜层的方法,其特征在于:所述混合溶液的具体配制步骤为:将乙酸钙和磷酸二氢钠溶于水中,调节pH为4~5,得到含钙磷的水溶液;将脂肪酸溶于乙醇中,得到脂肪酸的乙醇溶液;将脂肪酸的乙醇溶液缓慢倒入含钙磷的水溶液中,40~70℃搅拌0.5~2h,获得混合溶液。
5.根据权利要求1所述在镁合金表面制备羟基磷灰石超疏水膜层的方法,其特征在于:所述的预处理包括以下步骤:将金属表面用砂纸打磨至1500~2000#,室温下酒精超声清洗10min,冷风吹干待用。
6.一种由权利要求1~5任一项所述的方法制备得到的羟基磷灰石超疏水膜层。
7.根据权利要求6所述羟基磷灰石超疏水膜层的应用,其特征在于:所述羟基磷灰石超疏水膜层应用于医用镁合金。
CN201610602935.6A 2016-07-27 2016-07-27 在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用 Expired - Fee Related CN106282975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610602935.6A CN106282975B (zh) 2016-07-27 2016-07-27 在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610602935.6A CN106282975B (zh) 2016-07-27 2016-07-27 在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用

Publications (2)

Publication Number Publication Date
CN106282975A CN106282975A (zh) 2017-01-04
CN106282975B true CN106282975B (zh) 2019-01-18

Family

ID=57662785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610602935.6A Expired - Fee Related CN106282975B (zh) 2016-07-27 2016-07-27 在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用

Country Status (1)

Country Link
CN (1) CN106282975B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107789665B (zh) * 2017-10-31 2021-01-15 重庆理工大学 一种镁合金表面超疏水羟基磷灰石膜层的制备方法
CN110592569B (zh) * 2019-09-23 2021-02-05 河海大学 一种在镁锂合金表面构建超疏水耐蚀转化膜的方法及具有超疏水耐蚀性能的镁锂合金
CN110591146B (zh) * 2019-09-25 2021-08-27 南昌航空大学 一种利用牡蛎壳制备超疏水pdms/ha海绵的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089041A1 (en) * 2009-10-19 2011-04-21 Biomet Manufacturing Corp. Methods of depositing discrete hydroxyapatite regions on medical implants
CN103451640A (zh) * 2013-09-16 2013-12-18 同济大学 一种可降解生物医用镁合金/钙磷涂层复合材料的制备方法
CN103966578A (zh) * 2014-05-09 2014-08-06 哈尔滨工程大学 在镁合金表面构筑羟基磷灰石超疏水膜层的方法
CN105297402A (zh) * 2015-10-16 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种疏水纤维表面生长羟基磷灰石的制备方法
CN105420789A (zh) * 2015-11-27 2016-03-23 福州大学 纯镁或镁合金表面疏水复合生物活性涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089041A1 (en) * 2009-10-19 2011-04-21 Biomet Manufacturing Corp. Methods of depositing discrete hydroxyapatite regions on medical implants
CN103451640A (zh) * 2013-09-16 2013-12-18 同济大学 一种可降解生物医用镁合金/钙磷涂层复合材料的制备方法
CN103966578A (zh) * 2014-05-09 2014-08-06 哈尔滨工程大学 在镁合金表面构筑羟基磷灰石超疏水膜层的方法
CN105297402A (zh) * 2015-10-16 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种疏水纤维表面生长羟基磷灰石的制备方法
CN105420789A (zh) * 2015-11-27 2016-03-23 福州大学 纯镁或镁合金表面疏水复合生物活性涂层及其制备方法

Also Published As

Publication number Publication date
CN106282975A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Yu et al. Novel fluoridated hydroxyapatite/MAO composite coating on AZ31B magnesium alloy for biomedical application
Ren et al. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy
Zhang et al. Degradable behavior and bioactivity of micro-arc oxidized AZ91D Mg alloy with calcium phosphate/chitosan composite coating in m-SBF
Ye et al. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy
Kar et al. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications
CN107789665B (zh) 一种镁合金表面超疏水羟基磷灰石膜层的制备方法
Li et al. Corrosion resistance and cytotoxicity of a MgF2 coating on biomedical Mg–1Ca alloy via vacuum evaporation deposition method
Xia et al. Effect of Ca/P ratio on the structural and corrosion properties of biomimetic CaP coatings on ZK60 magnesium alloy
Zhang et al. In-situ defect repairing in hydroxyapatite/phytic acid hybrid coatings on AZ31 magnesium alloy by hydrothermal treatment
Narayanan et al. Anodic TiO2 nanotubes from stirred baths: hydroxyapatite growth & osteoblast responses
CN106282975B (zh) 在镁合金表面制备的羟基磷灰石超疏水膜层及方法与应用
Liu et al. The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy
Jiang et al. Synthesis and characterization of magnesium phytic acid/apatite composite coating on AZ31 Mg alloy by microwave assisted treatment
Zheng et al. Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating
Kang et al. A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties
Dong et al. Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications
Zhao et al. The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass–ceramic coatings and corrosion resistance for biomedical applications
Wang et al. Fabrication and corrosion resistance of calcium phosphate glass-ceramic coated Mg alloy via a PEG assisted sol–gel method
Zheng et al. Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface
Tao et al. Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation
Song et al. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg–3Zn alloy
CN100430099C (zh) 一种钛或钛合金表面生物活性涂层及其制备方法
CN106676510A (zh) 利用一步水热法制备镁合金表面锶掺杂钙磷涂层的方法
Maitz et al. Promoted calcium-phosphate precipitation from solution on titanium for improved biocompatibility by ion implantation
CN107740083B (zh) 一种镁合金表面超疏水氟转化涂层的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190118

Termination date: 20210727

CF01 Termination of patent right due to non-payment of annual fee