CN106279022A - 一种[60]富勒烯并七元氮杂环衍生物的合成方法 - Google Patents

一种[60]富勒烯并七元氮杂环衍生物的合成方法 Download PDF

Info

Publication number
CN106279022A
CN106279022A CN201610637742.4A CN201610637742A CN106279022A CN 106279022 A CN106279022 A CN 106279022A CN 201610637742 A CN201610637742 A CN 201610637742A CN 106279022 A CN106279022 A CN 106279022A
Authority
CN
China
Prior art keywords
sulfonyl
reaction
compounds
aminoacetophenone
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610637742.4A
Other languages
English (en)
Inventor
张朋玲
刘统信
刘青锋
张志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201610637742.4A priority Critical patent/CN106279022A/zh
Publication of CN106279022A publication Critical patent/CN106279022A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/32Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种[60]富勒烯并七元氮杂环衍生物的合成方法,具体步骤为:以C60N‑磺酰基‑O‑氨基苯乙酮类化合物或N‑磺酰基‑O‑氨基苯乙酮O‑甲基肟类化合物为反应原料,在Cu(OAc)2和Cs2CO3的存在下,C60N‑磺酰基‑O‑氨基苯乙酮类化合物或N‑磺酰基‑O‑氨基苯乙酮O‑甲基肟类化合物发生[5+2]环加成反应合成[60]富勒烯并七元氮杂环衍生物。本发明的合成工艺具有底物适用范围广,化学选择性高,原料相对易得且操作简单等特点。

Description

一种[60]富勒烯并七元氮杂环衍生物的合成方法
技术领域
本发明属于富勒烯衍生物的合成技术领域,具体涉及一种[60]富勒烯并七元氮杂环衍生物的合成方法。
背景技术
自由基反应是功能化富勒烯的强有力工具,众多不同类型的衍生物已经被合成与制备。与传统的过氧化物和光引发的富勒烯自由基反应相比,过渡金属催化与促进的富勒烯自由基反应在构建衍生物的结构多样性、反应的选择性与有效性以及底物的适用性等方面都展现出了明显的优势,在近年来已引起了人们的重要关注,逐渐发展成为功能化富勒烯的一种主要方法学。另一方面,在众多已知的[60]富勒烯环化衍生物中,仅有少量的报道是有关七元环化衍生物合成的例子。2006年Orfanopoulos课题组报道了C60与二烯基环丙烷的光化学环加成反应,反应给出了五元、七元和九元环化衍生物的混合物,如式1所示。
式1C60与二烯基环丙烷的光化学反应
之后,Chuang等人报道了C60与N-磺酰基取代的2-氨基联苯类化合物在Pd(OAc)2的催化作用下,通过C-H活化策略构建了一系列二氢二苯并氮杂卓类衍生物,如式2所示。另外,Jin课题组报道了C60与1,8-双(溴甲基)萘通过CoCl2dppe催化的自由基反应合成了tetrahydrocycloheptanaphthalene衍生物,如式3所示。
式2Pd(OAc)2催化的二氢二苯并氮杂卓类衍生物
式3CoCl2dppe催化的自由基反应
本发明发展了一种新型、高效且具有广泛底物适用范围的新方法,从而为构建结构有限的[60]富勒烯七元环化衍生物及相应的应用研究提供物质基础和方法支持。
发明内容
本发明解决的技术问题是提供了一种底物适用范围广、化学选择性高且原料相对简单易得的[60]富勒烯并七元氮杂环衍生物的合成方法。
本发明为解决上述技术问题采用如下技术方案,一种[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:以C60和N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物为反应原料,在Cu(OAc)2和Cs2CO3的存在下,C60与N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物发生[5+2]环加成反应合成[60]富勒烯并七元氮杂环衍生物,该合成过程中的反应方程式为:
其中X为O、N-OMe或N-OBn,R'为H或取代基,该取代基为Br或MeO,取代基为苯环上的一元取代或二元取代,R为4-MeOPh、4-NO2Ph、4-MePh、Me或2-噻吩基。
进一步优选,所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物的投料摩尔比为1:(1-4.5):(1-2):(2-6)。
进一步优选,所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:首先将C60加入到干燥的反应试管中,加入邻二氯苯并超声使C60完全溶解,再将Cu(OAc)2、Cs2CO3和N-磺酰基-O-氨基苯乙酮类化合物加入到反应试管中,加入乙腈并超声溶解,然后塞上旋塞置于80℃或90℃的油浴锅中搅拌反应,TLC检测反应,至反应终点时停止反应,将反应产物湿法上样、过短硅胶柱,以甲苯为洗脱剂除去产物中的不溶性物质,减压蒸馏旋干,将剩余的固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,再用体积比CS2/CH2Cl2=3:1的CS2与CH2Cl2的混合溶液作为洗脱剂,得到目标产物,所述的N-磺酰基-O-氨基苯乙酮类化合物为:
进一步优选,所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮类化合物的投料摩尔比为1:2:1:4。
进一步优选,所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:首先将C60加入到干燥的反应试管中,加入邻二氯苯并超声使C60完全溶解,再将Cu(OAc)2、Cs2CO3和N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物加入到反应试管中,加入乙腈并超声溶解,然后塞上旋塞置于120℃或130℃的油浴锅中搅拌反应,TLC检测反应,至反应终点时停止反应,将反应产物湿法上样、过短硅胶柱,以甲苯为洗脱剂除去产物中的不溶性物质,减压蒸馏旋干,将剩余的固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,再用体积比CS2/CH2Cl2=3:1的CS2与CH2Cl2的混合溶液作为洗脱剂,得到目标产物,所述的N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物为:
进一步优选,所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物的投料摩尔比为1:2:2:4。
本发明发展了一种简便、有效的氧化脱氢来合成新型[60]富勒烯并七元氮杂环衍生物的反应,反应表现出了广泛的底物适用性与官能团兼容性。本发明的合成工艺具有底物适用范围广,化学选择性高,原料相对易得且操作简单等特点。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
C60与底物1a-1g在Cu(OAc)2促进下形成产物2a-2g:
反应路线:
反应步骤:
首先将C60(36.0mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将Cu(OAc)2(18.2mg,0.10mmol)、Cs2CO3(16.3mg,0.05mmol)和1a(1b-1g,0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声溶解,之后塞上旋塞,放置于指定温度80℃(或90℃)的油浴锅中搅拌加热,TLC检测反应,至反应终点时停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱、先用CS2作为洗脱剂收集未反应的C60,之后用CS2/CH2Cl2=3/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物2a(2b-2g)。
其中底物1a-1g分别为:
2a:1HNMR(400MHz,CDCl3/CS2)δ8.51–8.47(m,1H),7.86(d,J=8.4Hz,2H),7.68–7.65(m,2H),7.40–7.38(m,1H),7.26(d,J=8.4 Hz,2H),6.11(d,J=15.6 Hz,1H),4.59(d,J=15.2 Hz,1H),2.40(s,3H)。
13C NMR(100 MHz,CS2/CDCl3)δ194.11(CO),155.21,154.69,150.99,148.06,147.87,147.34,146.46,146.23,146.19,146.07,146.01,145.94,145.87,145.83,145.77,145.31(2C),145.26,145.17(4C),145.10,144.88,144.78,144.49,144.40,144.25,144.17(2C),143.98,143.83,142.90,142.63,142.59(2C),142.43(2C),142.37,142.24,142.06,142.00,141.91(2C),141.88,141.71,141.54,141.32,141.24,141.02,140.65,140.11(2C),140.08,139.73,139.31,139.06,138.11,136.13,136.10,135.65,134.59,134.08,131.60,130.36,129.55(aryl C),129.51(2C,aryl C),127.90(2C,aryl C),83.26(sp3-Cof C60),64.23(sp3-C of C60),56.90,21.54。
FT-IRν/cm-1(KBr)2923,1678,1594,1450,1431,1352,1296,1163,1087,1046,920,813,767,716,672,570,527。
UV-vis(CHCl3max/nm(logε)257(5.06),317(4.62),432(3.39),692(2.51).MALDI-TOF MS m/z calcd for C75H13NO3SNa[M+Na]+1030.0508,found 1030.0500。
2b:1H NMR(400 MHz,CDCl3/CS2)δ7.86(s,1H),7.85(d,J=8.0 Hz,2H),7.29(d,J=8.0 Hz,2H),6.64(s,1H),5.93(d,J=15.2 Hz,1H),4.50(d,J=15.2 Hz,1H),4.04(s,3H),3.75(s,3H),2.45(s,3H)。
13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ192.99(CO),155.41,154.95,153.88,150.97,149.83,148.18(2C),147.46,146.56,146.36,146.34,146.19,146.13,146.07,145.96,145.94,145.82,145.44(2C),145.40,145.29(3C),145.27,145.23,145.06,144.90,144.59,144.54,144.47,144.33,144.30,144.09,143.92,143.03,142.80,142.72,142.55(2C),142.51,142.34,142.21,142.17,142.05,142.03,141.99,141.83,141.75,141.45,141.34,141.12,140.81,140.40,140.20(2C),139.84,139.38(2C),138.22,137.00,136.50,136.42,134.24,129.49(2C,aryl C),129.15(aryl C),127.99(2C,aryl C),112.12(aryl C),111.77(aryl C),83.80(sp3-C of C60),64.74(sp3-C of C60),56.89,55.83(2C),21.58。
FT-IRν/cm-1(KBr)2922,1664,1573,1516,1436,1372,1350,1290,1221,1159,1085,1041,997,816,764,711,675,631,609,565,543,526.λmax/nm(logε)258(5.07),318(4.66),433(3.46),693(2.67).MALDI-TOF MS m/z calcd for C77H17NO5SNa[M+Na]+1090.0720,found 1090.0725。
2c:1H NMR(400 MHz,CDCl3/CS2)δ8.59(d,J=2.4 Hz,1H),7.84(d,J=8.4 Hz,2H),7.77(dd,J=2.4,8.4 Hz,1H),7.29(d,J=8.0 Hz,2H),7.23(d,J=8.4 Hz,1H),6.05(d,J=15.6 Hz,1H),4.58(d,J=15.6 Hz,1H),2.45(s,3H)。
13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ192.51(CO),155.05,154.50,150.68,148.13,147.68,147.40,146.53,146.29(2C),146.15,146.08,146.02,145.94,145.90,145.82,145.40,145.35,145.34,145.28,145.25(3C),145.18,144.97,144.84,144.46,144.38,144.21,144.19,144.09,144.02,143.98,142.96,142.67,142.52(2C),142.50,142.45,142.30,142.12,142.01,142.00,141.93(2C),141.76,141.63,141.49,141.40,141.32,141.09,140.66,140.21,140.18,140.13,139.86,139.42,138.94,138.18,137.31,137.01,136.28,136.13,134.44,134.02,131.94,129.60(2C,aryl C),127.94(2C,aryl C),124.52(aryl C),83.33(sp3-C of C60),64.15(sp3-C of C60),56.67,21.58。
FT-IRν/cm-1(KBr)2921,1681,1576,1515,1467,1430,1393,1353,1265,1185,1162,1087,1045,919,811,767,712,672,569,527.λmax/nm(logε)257(5.12),318(4.70),432(3.46),690(2.57).MALDI-TOF MS m/z calcd for C75H12BrNO3SNa[M+Na]+1107.9613,found1107.9615。
2d:1H NMR(400 MHz,CDCl3/CS2)δ8.50–8.47(m,1H),7.90(d,J=8.8 Hz,2H),7.70–7.67(m,2H),7.39–7.37(m,1H),6.93(d,J=8.8 Hz,2H),6.09(d,J=15.6 Hz,1H),4.56(d,J=15.6 Hz,1H),3.86(s,3H)。
13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ193.89(CO),162.82(aryl C),155.29,154.81,151.17,148.07(2C),147.35,146.47,146.24,146.20,146.07,146.02,145.95,145.87,145.83,145.75,145.33(2C),145.28,145.18(3C),145.16,145.11,144.90,144.80,144.47,144.42,144.29,144.20(2C),144.01,142.91,142.74,142.63,142.61,142.44(2C),142.38,142.25,142.08,142.02,141.94,141.92,141.89,141.71,141.56,141.33,141.27,141.04,140.66,140.14,140.12,140.05,139.75,139.35,138.15,136.12(2C),135.73,134.45,134.11,133.63,131.59,130.42,129.99(2C,aryl C),129.43(aryl C),113.94(2C,aryl C),83.20(sp3-C of C60),64.29(sp3-C of C60),56.88,55.24。
FT-IRν/cm-1(KBr)2922,1675,1574,1519,1431,1382,1353,1260,1180,1155,1088,1047,1025,920,829,802,769,719,676,588,567,550,527.λmax/nm(logε)255(5.03),318(4.61),433(3.37),693(2.50).MALDI-TOF MS m/z calcd for C75H13NO4SNa[M+Na]+1046.0457,found 1046.0461。
2e:1H NMR(400 MHz,CDCl3/CS2)δ8.53(dd,J=2.4,7.2 Hz,1H),8.34(d,J=8.8Hz,2H),8.20(d,J=8.8 Hz,2H),7.74–7.71(m,2H),7.31–7.29(m,1H),6.03(d,J=16.0Hz,1H),4.63(d,J=16.0 Hz,1H)。
13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ193.02(CO),154.95,154.20,150.16,149.79,148.12,147.38,147.01,146.86,146.54,146.26,146.24,146.12,146.07,146.01,145.96,145.90,145.89,145.40,145.32,145.25(3C),145.18(2C),145.15,144.82,144.80,144.44,144.12,144.06,144.04,143.96,143.93, 142.98,142.68,142.53(2C),142.42,142.35,142.09(2C),141.97,141.95,141.90,141.86,141.75(2C),141.54,141.34,141.30,141.12,140.51,140.35,140.26,140.06,139.87,139.44,138.21,136.33,135.85,135.71,134.69,133.98,131.97,130.00(aryl C),129.89(aryl C),129.09(2C,aryl C),124.05(2C,arylC),83.65(sp3-C of C60),64.02(sp3-C of C60),56.86。
FT-IRν/cm-1(KBr)2923,1679,1574,1529,1476,1431,1361,1349,1296,1168,1087,1044,922,854,745,735,682,655,614,596,565,550,527.λmax/nm(logε)256(5.10),318(4.69),432(3.47),690(2.78).MALDI-TOF MS m/z calcd for C74H10N2O5SNa[M+Na]+1061.0203,found 1061.0201。
2f:1H NMR(400 MHz,CDCl3/CS2)δ8.50(dd,J=2.0,7.6 Hz,1H),7.76–7.67(m,3H),7.64–7.61(m,2H),7.04(dd,J=4.0,4.8 Hz,1H),6.02(d,J=15.6 Hz,1H),4.57(d,J=15.6 Hz,1H)。
13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ193.46(CO),155.07,154.62,150.61,148.08,147.34,147.14,146.49,146.25(2C),146.08,146.04,145.96,145.88(2C),145.83,145.35,145.31,145.29,145.25,145.19(3C),145.12,144.91,144.77,144.50,144.43,144.29,144.17,144.08,143.98,143.33,142.89,142.71,142.62,142.47(2C),142.45,142.40,142.28,142.08,142.02,141.94(3C),141.73,141.53,141.36,141.30,141.05,140.51,140.19,140.18,140.14,139.80,139.33,138.00,136.36,136.07,135.26,134.67,134.23,134.03,132.86,131.58,130.31(aryl C),129.54(aryl C),126.87(aryl C),83.22(sp3-C ofC60),64.28(sp3-C of C60),56.81。
FT-IRν/cm-1(KBr)2928,1675,1592,1510,1476,1448,1355,1294,1222,1159,1089,1045,1014,920,853,767,713,673,609,591,575,545,526.λmax/nm(logε)258(5.17),318(4.73),432(3.50),691(2.66).MALDI-TOF MS m/z calcd for C72H9NO3S2Na[M+Na]+1021.9916,found 1021.9917。
2g:1H NMR(400 MHz,CDCl3/CS2)δ8.49(dd,J=1.6,7.6 Hz,1H),7.77(td,J=1.6,7.6Hz,1H),7.69(td,J=0.8,7.6 Hz,1H),7.57(dd,J=0.8,8.0 Hz,1H),5.90(d,J=15.6Hz,1H),4.53(d,J=15.6 Hz,1H),3.58(s,3H)。
13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ193.34(CO),155.11,154.42,150.83,148.13,147.43,147.10,146.52,146.28(2C),146.12,146.06,146.03,145.93,145.89,145.74,145.39,145.38,145.30,145.27,145.26(3C),145.17,144.96,144.87,144.53,144.20,144.15,144.13,144.06,143.84,142.95,142.74,142.65,142.52(2C),142.45,142.35(2C),142.18,142.02,141.97,141.94,141.90,141.71,141.63,141.38,141.26,141.25,140.80,140.74,140.28,140.17,139.83,139.58,138.88,136.44,136.10,135.16,134.83,134.00,131.66(aryl C),130.10(aryl C),129.51(aryl C),83.00(sp3-C of C60),64.11(sp3-C of C60),56.83,45.55。
FT-IRν/cm-1(KBr)2928,1731,1676,1593,1476,1430,1349,1295,1224,1158,1047,957,766,646,566,529.λmax/nm(logε)255(5.11),318(4.72),432(3.54),691(2.78).MALDI-TOF MS m/z calcd for C69H9NO3SNa[M+Na]+954.0195,found 954.0198。
实施例2
C60与底物1a合成产物3a的实验步骤:
反应路线:
反应步骤:
首先将C60(36.4mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将CuSO4(16.3mg,0.10mmol)、Cs2CO3(16.4mg,0.05mmol)和1a(57.8mg,0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声使之溶解,之后旋上旋塞,放置于80℃的油浴锅中搅拌加热,TLC检测反应,2h停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60(24.4mg,67%),用CS2/CH2Cl2=5/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物3a(8.2mg,16%)。
3a:1H NMR(400MHz,CD3COCD3/CS2)δ11.09(s,1H),8.63(d,J=7.6Hz,1H),7.77(d,J=8.4Hz,1H),7.68(d,J=8.4Hz,2H),7.59(t,J=7.6Hz,1H),7.26(t,J=8.0Hz,1H),7.23(d,J=8.4Hz,2H),5.83(s,1H),2.36(s,3H)。
13C NMR(100MHz,CDCl3/CS2with Cr(acac)3as relaxation reagent,all 2Cunless indicated)δ192.04(CO)(1C),147.14,145.85,145.04,144.98,144.93,144.89(4C),144.80,144.43(3C),144.39,144.36,144.35,144.20(1C),144.14,143.61,143.56(1C),143.37,143.01,142.90(1C),142.77,142.69(3C),142.49,142.08,141.94,141.76(4C),141.08(1C),140.96,140.69,139.07,136.53(1C),136.35,135.74(1C),131.04(1C),129.50(aryl C),127.18(aryl C),122.76(1C,aryl C),120.91(1C,aryl C),119.47(1C,aryl C),71.65(sp3-C of C60),44.64(1C),21.56(1C)。FT-IRν/cm-1(KBr)2925,1646,1600,1572,1490,1449,1333,1205,1158,1090,1007,912,872,811,745,659,564,545,526.λmax/nm(logε)258(4.97),327(4.48),428(3.37),687(2.49).MALDI-TOF MS m/z calcd forC75H13NO3SNa[M+Na]+1030.0508,found1030.0507。
实施例3
C60与底物4a-4h在Cu(OAc)2促进下形成产物5a-5h:
反应路线:
反应步骤:
首先将C60(36.0mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将Cu(OAc)2(18.2mg,0.10mmol)、Cs2CO3(32.6mg,0.10mmol)和4a(4b-4h,0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声溶解,之后旋上旋塞,放置于指定温度120℃(或130℃)的油浴锅中搅拌加热,TLC检测反应,停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,之后用CS2/CH2Cl2=4/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物5a(5b-5h)。
其中底物4a-4h分别为:
5a:1H NMR(400MHz,CDCl3/CS2)δ8.40(d,J=8.0Hz,1H),7.84(d,J=8.4Hz,2H),7.51(t,J=7.6Hz,1H),7.39(t,J=7.6Hz,1H),7.25(d,J=8.4Hz,2H),7.18(d,J=7.6Hz,1H),5.46(d,J=17.2,1H),5.38(d,J=17.2,1H),4.13(s,3H),2.43(s,3H)。
13C NMR(100MHz,CDCl3/CS2with Cr(acac)3as relaxation reagent,all 1Cunless indicated)δ155.85,155.83,152.50,151.65,148.27,148.03,147.35,146.40,146.19,146.12,146.04,145.97,145.88,145.83,145.78,145.72,145.44,145.29,145.11(4C),145.07,145.03,144.94,144.81,144.73,144.63,144.48,144.38,144.18,144.13,143.30,142.86,142.61(2C),142.39(2C),142.30,142.23,142.05(2C),141.93(2C),141.89,141.69(2C),141.22,141.20,140.97,140.81,140.09,139.93(3C),139.61,139.54,139.23,138.12,136.09,135.75,135.34, 134.77,130.51(aryl C),130.06(arylC),129.33(2C,aryl C),129.14(aryl C),128.32(aryl C),127.81(2C,aryl C),82.98(sp3-C of C60),64.73(sp3-C of C60),62.23,39.64,21.54。
FT-IRν/cm-1(KBr)2929,1573,1520,1432,1380,1353,1277,1183,1163,1090,1047,921,898,812,762,715,680,667,590,566,547,527.λmax/nm(logε)260(5.07),317(4.63),434(3.59),694(2.94).MALDI-TOF MS m/z calcd for C76H16N2O3SNa[M+Na]+1059.0774,found 1059.0757。
5b:1H NMR(400 MHz,CDCl3/CS2)δ7.834(s,1H),7.83(d,J=8.0 Hz,2H),7.25(d,J=8.0 Hz,2H),6.49(s,1H),5.42(d,J=16.8 Hz,1H),5.29(d,J=16.8 Hz,1H),4.09(s,3H),4.01(s,3H),3.65(s,3H),2.43(s,3H)。
13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ155.90(2C),152.42,151.48,150.41,149.56,148.42,148.13,147.45,146.46,146.27,146.24,146.13,146.05,145.97,145.89,145.87,145.76,145.50,145.39,145.21(2C),145.17(2C),145.12,145.09,145.05,144.88,144.72,144.71,144.68,144.49,144.28,144.20,143.60,142.95,142.70(2C),142.48,142.46,142.40,142.30,142.16,142.14,142.00,141.98(2C),141.86,141.79,141.27(2C),141.02,140.95,140.35,139.98,139.92,139.67,139.54,139.26,138.22,136.37,135.98,134.86,133.09,129.37(2C,aryl C),128.10(aryl C),127.85(2C,aryl C),112.71(aryl C),108.93(aryl C),83.60(sp3-C of C60),65.08(sp3-C of C60),62.20,55.72,55.67,39.47,21.51。
FT-IRν/cm-1(KBr)2927,1574,1519,1433,1382,1356,1277,1218,1165,1090,1046,932,770,705,671,595,571,547,526.λmax/nm(logε)257(5.02),317(4.61),432(3.37),694(2.53).MALDI-TOF MS m/z calcd for C78H20N2O5SNa[M+Na]+1119.0985,found1119.0981.5c:1H NMR(400 MHz,CDCl3/CS2)δ8.57(d,J=2.0 Hz,1H),7.81(d,J=8.4 Hz,2H),7.50(dd,J=2.0,8.4 Hz,1H),7.26(d,J=8.4 Hz,2H),7.05(d,J=8.4 Hz,1H),5.43(d,J=17.2 Hz,1H),5.38(d,J=17.2 Hz,1H),4.15(s,3H),2.43(s,3H)。
13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ155.51,155.49,151.38,151.16,148.03,147.92,147.34,146.39,146.16,146.15,146.05,145.96,145.88,145.83,145.78,145.70,145.37,145.31,145.12,145.10(3C),145.08,145.06,144.95,144.77,144.52,144.45,144.36(2C),144.13,144.07,143.53,142.85,142.59,142.44,142.39(2C),142.31,142.21,142.02,141.99,141.92,141.88(2C),141.70,141.67,141.20(2C),140.96,140.73,140.13,139.92,139.88,139.64,139.26,139.21,138.77,138.11,136.98,136.21,135.71,134.58,132.96,131.93,130.94(aryl C),129.41(2C,aryl C),127.76(2C,aryl C),123.96(aryl C),83.00(sp3-C of C60),64.62(sp3-C of C60),62.45,39.33,21.49。
FT-IRν/cm-1(KBr)2929,1594,1509,1465,1431,1400,1356,1259,1217,1183,1165,1090,1045,906,810,726,667,584,568,549,527.λmax/nm(logε)258(4.98),317(4.51),433 (3.32),691(2.43).MALDI-TOF MS m/z calcd for C76H15BrN2O3SNa[M+Na]+1136.9879,found 1136.9880。
5d:1H NMR(400 MHz,CDCl3/CS2)δ8.39(d,J=8.0 Hz,1H),7.85(d,J=8.8 Hz,2H),7.49(t,J=7.2 Hz,1H),7.38(t,J=7.2 Hz,1H),7.16(d,J=8.0 Hz,1H),6.89(d,J=8.8 Hz,2H),5.42(d,J=17.2 Hz,1H),5.36(d,J=17.2 Hz,1H),4.12(s,3H),3.84(s,3H)。
13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ162.73(aryl C),155.96,155.94,152.80,151.81,148.43,148.14,147.46,146.49,146.27,146.23,146.13,146.07,145.98,145.94,145.88,145.82,145.53,145.39,145.23,145.21,145.18(3C),145.11,145.05,144.90,144.79,144.73,144.59,144.47,144.26,144.24,142.96,142.69,142.65,142.49(2C),142.39,142.33,142.14(2C),142.01(3C),141.80(2C),141.33,141.27,141.06,140.93,140.19,140.07,140.02,139.92,139.70,139.34,138.25,136.16,135.75,135.44,134.88,134.06,130.70(arylC),130.23(aryl C),129.94(2C,aryl C),129.33(aryl C),128.39(aryl C),113.91(2C,aryl C),83.04(sp3-C of C60),64.85(sp3-C of C60),62.36,55.32,39.81。
FT-IRν/cm-1(KBr)2928,1575,1520,1428,1382,1348,1277,1262,1157,1089,1048,1022,932,830,772,680,591,567,527.λmax/nm(logε)257(4.92),325(4.52),433(3.28),694(2.53).MALDI-TOF MS m/z calcd for C76H16N2O4SNa[M+Na]+1075.0723,found1075.0725.5e:1H NMR(400 MHz,CDCl3/CS2)δ8.41(d,J=7.2 Hz,1H),8.30(d,J=8.4 Hz,2H),8.15(d,J=8.8 Hz,2H),7.55(t,J=7.2 Hz,1H),7.42(t,J=7.2 Hz,1H),7.09(d,J=7.6 Hz,1H),5.42(d,J=17.2 Hz,1H),5.35(d,J=17.2 Hz,1H),4.14(s,3H)。
FT-IRν/cm-1(KBr)2933,1530,1513,1431,1359,1310,1219,1170,1091,1049,903,855,735,684,660,615,604,574,564,549,527.λmax/nm(logε)257(5.09),318(4.63),432(3.55),689(2.93).MALDI-TOF MS m/z calcd for C75H13N3O5SNa[M+Na]+1090.0468,found1090.0467.
5f:1H NMR(400 MHz,CDCl3/CS2)δ8.42(dd,J=1.2,8.4 Hz,1H),7.66(dd,J=1.2,4.0Hz,1H),7.58(dd,J=1.2,5.2 Hz,1H),7.55–7.51(m,1H),7.48–7.42(m,2H),7.02(dd,J=3.6,4.8 Hz,1H),5.42(d,J=17.6 Hz,1H),5.37(d,J=17.6 Hz,1H),4.12(s,3H)。
13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1Cunless indicated)δ155.80,155.74,152.51,151.31,148.17,147.57,147.48,146.54,146.30(2C),146.17,146.11,146.00,145.96,145.95,145.93,145.53,145.45,145.26,145.23(2C),145.21(2C),145.18,145.08,144.89,144.86,144.66,144.64,144.50,144.27,144.23,143.69,142.96,142.76,142.72,142.54,142.52,142.44,142.38,142.17(2C),142.07(2C),142.04,141.84,141.81,141.38,141.33,141.10,140.80,140.23,140.12,140.08,139.79,139.76,139.35,138.12,136.40,135.75,135.03,134.81,133.99(aryl C),132.67(aryl C),130.55(aryl C),130.47(aryl C),129.46(aryl C),128.32(aryl C),126.88(aryl C),83.14(sp3-C of C60),64.88(sp3-C of C60),62.41,39.66。
FT-IRν/cm-1(KBr)2927,1598,1511,1432,1357,1223,1162,1091,1046,1015,898,851,761,715,680,668,575,544,526.λmax/nm(logε)256(5.11),317(4.64),433(3.47),693(2.60).MALDI-TOF MS m/z calcd for C73H12N2O3S2Na[M+Na]+1051.0182,found1051.0177.
5g:1H NMR(400MHz,CDCl3/CS2)δ8.41(d,J=6.8Hz,1H),7.53–7.46(m,2H),7.40(d,J=8.4Hz,1H),5.36(d,J=17.2Hz,1H),5.25(d,J=17.2Hz,1H),4.09(s,3H),3.49(s,3H)。
FT-IRν/cm-1(KBr)2915,1512,1443,1346,1219,1183,1156,1085,1046,987,958,904,872,768,656,563,538,527.λmax/nm(logε)256(5.06),317(4.59),433(3.40),694(2.49).MALDI-TOF MS m/z calcd for C70H12N2O3SNa[M+Na]+983.0461,found 983.0448.
5h:1H NMR(400MHz,CDCl3/CS2)δ8.54(d,J=2.4Hz,1H),7.81(d,J=8.4Hz,2H),7.48(dd,J=2.4,8.4Hz,1H),7.31–7.22(m,7H),7.05(d,J=8.0Hz,1H),5.47(d,J=16.4Hz,1H),5.40(d,J=16.4Hz,1H),5.397(d,J=12.0Hz,1H),5.34(d,J=12.4Hz,1H),2.43(s,3H)。
13C NMR(100MHz,CDCl3/CS2with Cr(acac)3as relaxation reagent,all 1Cunless indicated)δ155.41,155.39,151.75,151.09,148.02,147.93,147.33,146.39,146.16,146.15,146.04,145.96,145.88,145.82,145.79,145.69,145.36,145.30,145.13(2C),145.09(3C),145.03,144.96,144.75,144.50,144.43,144.37(2C),144.14,144.04,143.56,142.83,142.59,142.53,142.40,142.38,142.31,142.20,142.02,142.00,141.91,141.88(2C),141.71,141.66,141.24,141.17,140.99,140.68,140.16,139.93,139.89,139.61,139.27,139.17,138.84,138.10,136.84,136.72,136.30,135.84,134.52,133.07,131.90,130.85,129.42(2C,aryl C),128.32(2C,aryl C),127.78(2C,aryl C),127.75(3C,aryl C),123.96(aryl C),83.07(sp3-C of C60),76.95,64.71(sp3-C of C60),39.32,21.51。
FT-IRν/cm-1(KBr)2924,1643,1596,1550,1465,1402,1354,1261,1162,1089,1047,911,811,727,667,570,548,527.λmax/nm(logε)258(4.81),317(4.35),433(3.21),694(2.47).MALDI-TOF MS m/z calcd for C82H19BrN2O3SNa[M+Na]+1213.0192,found1213.0196。
实施例4
自由基捕捉剂存在条件下1a与C60的反应:
反应路线
反应步骤:
首先将C60(36.0mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将Cu(OAc)2(18.2mg,0.10mmol)、Cs2CO3(16.3mg,0.05mmol)、1a(57.9mg,0.20mmol)和TEMPO(0.05mmol,0.20mmol,0.40mmol)或者加尔万氧基自由基(0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声溶解,之后将体系密封,放置于80℃的油浴锅中搅拌加热,2h停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,之后用CS2/CH2Cl2=3/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物2a。结果证明TEMPO和加尔万氧基自由基均能够抑制2a的生成。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (6)

1.一种[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:以C60和N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物为反应原料,在Cu(OAc)2和Cs2CO3的存在下,C60与N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物发生[5+2]环加成反应合成[60]富勒烯并七元氮杂环衍生物,该合成过程中的反应方程式为:
其中X为O、N-OMe或N-OBn,R'为H或取代基,该取代基为Br或MeO,取代基为苯环上的一元取代或二元取代,R为4-MeOPh、4-NO2Ph、4-MePh、Me或2-噻吩基。
2.根据权利要求1所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于:所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物的投料摩尔比为1:(1-4.5):(1-2):(2-6)。
3.根据权利要求1所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:首先将C60加入到干燥的反应试管中,加入邻二氯苯并超声使C60完全溶解,再将Cu(OAc)2、Cs2CO3和N-磺酰基-O-氨基苯乙酮类化合物加入到反应试管中,加入乙腈并超声溶解,然后塞上旋塞置于80℃或90℃的油浴锅中搅拌反应,TLC检测反应,至反应终点时停止反应,将反应产物湿法上样、过短硅胶柱,以甲苯为洗脱剂除去产物中的不溶性物质,减压蒸馏旋干,将剩余的固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,再用体积比CS2/CH2Cl2=3:1的CS2与CH2Cl2的混合溶液作为洗脱剂,得到目标产物,所述的N-磺酰基-O-氨基苯乙酮类化合物为:
4.根据权利要求1所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于:所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮类化合物的投料摩尔比为1:2:1:4。
5.根据权利要求1所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:首先将C60加入到干燥的反应试管中,加入邻二氯苯并超声使C60完全溶解,再将Cu(OAc)2、Cs2CO3和N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物加入到反应试管中,加入乙腈并超声溶解,然后塞上旋塞置于120℃或130℃的油浴锅中搅拌反应,TLC检测反应,至反应终点时停止反应,将反应产物湿法上样、过短硅胶柱,以甲苯为洗脱剂除去产物中的不溶性物质,减压蒸馏旋干,将剩余的固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,再用体积比CS2/CH2Cl2=3:1的CS2与CH2Cl2的混合溶液作为洗脱剂,得到目标产物,所述的N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物为:
6.根据权利要求1所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于:所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物的投料摩尔比为1:2:2:4。
CN201610637742.4A 2016-08-08 2016-08-08 一种[60]富勒烯并七元氮杂环衍生物的合成方法 Pending CN106279022A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610637742.4A CN106279022A (zh) 2016-08-08 2016-08-08 一种[60]富勒烯并七元氮杂环衍生物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610637742.4A CN106279022A (zh) 2016-08-08 2016-08-08 一种[60]富勒烯并七元氮杂环衍生物的合成方法

Publications (1)

Publication Number Publication Date
CN106279022A true CN106279022A (zh) 2017-01-04

Family

ID=57665775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610637742.4A Pending CN106279022A (zh) 2016-08-08 2016-08-08 一种[60]富勒烯并七元氮杂环衍生物的合成方法

Country Status (1)

Country Link
CN (1) CN106279022A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629017A (zh) * 2017-10-09 2018-01-26 河南师范大学 一种[60]富勒烯噁唑衍生物及[60]富勒醇衍生物的合成方法
CN107954961A (zh) * 2017-11-30 2018-04-24 河南师范大学 一种[60]富勒烯二氢呋喃衍生物的合成方法
CN108863735A (zh) * 2018-07-17 2018-11-23 河南师范大学 一种[60]富勒烯并环戊酮和[60]富勒烯并2-环己烯酮类化合物的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONG-XIN LIU,等: "Synthesis of [60]Fullerene-Fused Tetrahydroazepinones and Azepinonimines via Cu(OAc)2-Promoted N-Heteroannulation Reaction", 《ORGANIC LETTERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629017A (zh) * 2017-10-09 2018-01-26 河南师范大学 一种[60]富勒烯噁唑衍生物及[60]富勒醇衍生物的合成方法
CN107954961A (zh) * 2017-11-30 2018-04-24 河南师范大学 一种[60]富勒烯二氢呋喃衍生物的合成方法
CN108863735A (zh) * 2018-07-17 2018-11-23 河南师范大学 一种[60]富勒烯并环戊酮和[60]富勒烯并2-环己烯酮类化合物的合成方法
CN108863735B (zh) * 2018-07-17 2021-06-04 河南师范大学 一种[60]富勒烯并环戊酮和[60]富勒烯并2-环己烯酮类化合物的合成方法

Similar Documents

Publication Publication Date Title
He et al. ZnBr 2-Mediated oxidative spiro-bromocyclization of propiolamide for the synthesis of 3-bromo-1-azaspiro [4.5] deca-3, 6, 9-triene-2, 8-dione
Arote et al. Direct oxidative conversion of aldehydes to nitriles using IBX in aqueous ammonia
CN106279022A (zh) 一种[60]富勒烯并七元氮杂环衍生物的合成方法
Zhou et al. Direct access to bis-S-heterocycles via copper-catalyzed three component tandem cyclization using S 8 as a sulfur source
Reddy et al. Copper oxide nanoparticles catalyzed vinylation of imidazoles with vinyl halides under ligand-free conditions
CN104447599A (zh) 一种四氮唑类杂环化合物及其制备方法
CN105218506A (zh) 一种由邻卤苯甲酸甲酯与末端炔烃制备异香豆素类化合物的方法
CN109081807A (zh) 一种制备三取代4-氨基咔唑类和二取代1-氨基二苯并[b,d]噻吩类化合物的方法
Ghandi et al. Efficient access to novel hexahydro-chromene and tetrahydro-pyrano [2, 3-d] pyrimidine-annulated benzo-δ-sultones via a domino Knöevenagel-hetero-Diels–Alder reaction in water
Samanta et al. Thiol-mediated tandem Michael–aldol reaction: a convenient method for the synthesis of fused cyclopentenones
Qiao et al. Research advances in palladium-catalysed intermolecular C–H annulation of aryl halides with various aromatic ring precursors
CN107501278A (zh) 一种5h‑呋喃‑2‑酮并哌啶类化合物的合成方法
CN106046002B (zh) 一种吡啶并咪唑并[1,2,3]三氮唑并喹啉类化合物的合成方法
CN107602452A (zh) 一种3‑酰基吡啶类化合物的合成方法
CN109651367A (zh) 一种制备1,4-二氢喹啉及吡咯并[1,2-a]喹啉类化合物的方法
CN108314642A (zh) 一种2-甲基吡啶类化合物的合成方法
JP6067700B2 (ja) アルコール酸化触媒及びそれを用いたアルコール酸化方法
CN106279014A (zh) 一种合成苯甘氨酸类衍生物及方法
CN110483265A (zh) 一种二烯醛或二烯酮类化合物的合成方法
CN105801576A (zh) 一种中氮茚类化合物的合成方法
CN105693778A (zh) N-甲氧基甲酰胺导向合成二茂铁并吡啶酮衍生物的方法
CN110981844A (zh) 一种亚砜类黄酮和砜类黄酮的制备方法
Witulski et al. Application to the synthesis of natural products
CN107176965B (zh) 一种合成醋酸阿比特龙新方法
Dai et al. A novel metal-free synthesis of 6 H-isoindolo [2, 1-α] indol-6-one

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104

WD01 Invention patent application deemed withdrawn after publication