CN106219491B - 基于热能及副产品回收利用的综合法二氧化氯制备工艺 - Google Patents

基于热能及副产品回收利用的综合法二氧化氯制备工艺 Download PDF

Info

Publication number
CN106219491B
CN106219491B CN201610598182.6A CN201610598182A CN106219491B CN 106219491 B CN106219491 B CN 106219491B CN 201610598182 A CN201610598182 A CN 201610598182A CN 106219491 B CN106219491 B CN 106219491B
Authority
CN
China
Prior art keywords
tower
hypo
electrolyte
chlorine dioxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610598182.6A
Other languages
English (en)
Other versions
CN106219491A (zh
Inventor
王双飞
詹磊
徐萃声
黄丙贵
班飞
谭浪
李忠平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Boshike Environmental Protection Technology Co ltd
Guangxi Boshike Environmental Technology Co ltd
Original Assignee
Guangxi Bossco Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Bossco Environmental Protection Technology Co Ltd filed Critical Guangxi Bossco Environmental Protection Technology Co Ltd
Priority to CN201610598182.6A priority Critical patent/CN106219491B/zh
Publication of CN106219491A publication Critical patent/CN106219491A/zh
Application granted granted Critical
Publication of CN106219491B publication Critical patent/CN106219491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/025Preparation from chlorites or chlorates from chlorates without any other reaction reducing agent than chloride ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种基于热能及副产品回收利用的综合法二氧化氯制备工艺,其特征在于:由NaClO3电解单元、ClO2生成单元、HCl合成单元组成及海波液回收利用单元等四个部分组成。通过利用电解单元电解液产生的热量加热二氧化氯生产单元的反应液,不但无需用蒸汽,而且电解液通过对反应液进行加热,其温度得以降低从而减少冷却水的消耗量,取消加入发生器下循环管的氯酸钠溶液冷却器,节约了冷却水,达到节能目的;不再用蒸汽加热弱氯酸钠溶液,而是用弱氯酸钠溶液与系统在生产过程中产生的副产品海波液反应后回收利用到电解单元中,达到了节约资源,保护环境的目的。

Description

基于热能及副产品回收利用的综合法二氧化氯制备工艺
技术领域
本发明涉及二氧化氯生产领域,具体是一种基于热能及副产品回收利用的综合法二氧化氯制备工艺。
背景技术
二氧化氯是一种强氧化剂,稳定的二氧化氯已被世界卫生组织认为是效果好的杀菌剂和性能优良、效果很好的杀菌消毒剂,广泛应用于制浆厂的漂白工段。当前我国已经实现小型消毒用二氧化氯生产设备的国产化。现场制备和现场使用消化的大型二氧化氯制备系统,已在国内开始使用。如造纸企业新建的大型二氧化氯生产系统就已经开始采用国产的成套设备技术。
综合法二氧化氯制备过程包括氯酸钠和盐酸混合,其中盐酸既作为还原剂又作为反应的酸性介质,反应式为:
NaClO3+2HCl→ClO2+1/2Cl2+H2O+NaCl
氯酸钠是生产二氧化氯的主要原料之一,它是电解盐水得到的产物。在电解槽中的氯化钠和水经过一系列反应后最终生成氯酸钠和氢气,反应式如下:
NaCl+3H2O→NaClO3+3H2
盐酸是生产二氧化氯的另一种原料,它是通过氯气与氢气燃烧生成氯化氢气体,用纯水吸收得到32%的盐酸,反应式如下:
Cl2+H2→2HCl
在现有综合法二氧化氯制备工艺中,如期刊论文《综合法制备二氧化氯实例》(刊名:中华纸业,2009年08期63-65页),这些传统的综合法二氧化氯制备装置进入发生器的反应液是通过低压蒸汽加热的,从发生器下循环管抽取的弱氯酸钠溶液需用低压蒸汽加热,返回电解槽的电解液需用冷却水冷却后才返回电解槽,从电解单元来的氯酸钠溶液要先冷却后通过过滤器进入发生器下循环管;且系统中产生的氯气虽然有尾气处理装置吸收,但产生的氢气循环带走的那部分氯气无法吸收回用,不仅浪费资源还造成环境污染。
发明内容
本发明提供具体是一种基于热能及副产品回收利用的综合法二氧化氯制备工艺,通过电解液输送至反应液加热器将反应液温度加热,利用电解单元电解液产生的热量加热二氧化氯生产单元的反应液,无需用蒸汽;增设的氢气洗涤塔可以洗去含有氯气的过量氢气,生成海波混合液进行回收。
本发明采用如下技术方案解决上述技术问题:
一种基于热能及副产品回收利用的综合法二氧化氯制备装置,由NaClO3电解单元、ClO2生成单元、HCl合成单元及海波液回收利用单元组成,其中,海波液回收利用单元包括:氢气洗涤塔循环泵(25)出口通过管道连接氢气洗涤塔循环液冷却器(27)进口、氢气洗涤塔循环液冷却器(27)出口通过管道连接氢气洗涤塔(29)进口,氢气洗涤塔(29)进口通过管道与氢气洗涤塔循环泵(25)进口连接,构成了氢气洗涤循环回路,氢气洗涤塔(29)的下部安装有氢气洗涤塔液位控制器(30),氢气洗涤塔(29)的气体入口与氢气冷却器(46)的气体出口用管道相连,氢气洗涤塔循环泵(25)出口与海波储槽(38)的入口管道相连;所述ClO2生成单元包括:反应液加热器(12)出口通过下循环管(14)与二氧化氯发生器(15)进口连接,二氧化氯发生器(15)出口通过上循环管(13)与反应液加热器(12)进口连接,反应液加热器(12)与电解液热源供给泵(6)相连,发生器循环泵(11)连接下循环管(14),下循环管(14)通过弱氯酸钠溶液抽取泵(16)与电解单元的反应器(2)连接,二氧化氯发生器(15)出口与发生器排气管(17)连接。
优选地,为监控反应液温度,反应液加热器(12)的中下部安装有反应液温度监控器(10)。
优选地,为进一步回收尾气,所述海波液回收利用单元还包括,由海波塔循环泵(31)、海波塔循环液冷却器(33)、海波塔(35)构成的系统尾气洗涤循环回路,其中,海波塔循环泵(31)出口通过管道与海波塔循环液冷却器(33)进口连接,海波塔循环液冷却器(33)出口通过管道与海波塔(35)进口连接,海波塔(35)出口通过管道与海波塔循环泵(31)进口连接,海波塔(35)的下部设有海波塔液位控制器(37)和尾气输入管(36),海波塔碱液补充管(34)设置在海波塔循环液冷却器(33)与海波塔(35)连接的管道之间,海波塔循环液流量调节阀(32)设置在海波塔循环泵(31)出口管道,海波储槽(38)进口与海波塔循环泵(31)出口管道相连,海波储槽(38)出口与输送泵(39)进口管道相连,海波液输送泵(39)出口输送管与弱氯酸钠溶液抽取泵(16)出口输送管连接,汇成总管进入电解液缓冲槽(3)B侧。
优选地,为了制备氯酸钠溶液,所述NaClO3电解单元包括由反应器(2)、电解液缓冲槽(3)、电解液循环泵(4)、电解液冷却器(5)构成的电解循环回路,电解液缓冲槽(3)内用隔板分隔成A、B两部分,反应器(2)出口与电解液缓冲槽(3)A侧通过管道相接,电解液缓冲槽(3)B侧通过电解液循环泵(4)与电解液冷却器(5)进口管道连接,电解液冷却器(5)出口与反应器(2)进口管道连接,电解槽(1)进出口通过钛管与反应器(2)连接,反应器(2)排气口与氢气冷却器(46)连接,电解液缓冲槽(3)与电解液热源供给泵(6)连接,电解液流量调节阀(7)设置在电解液热源供给泵(6)出口管道上,电解液缓冲槽(3)还通过氯酸钠供料泵(8)与氯酸钠过滤器(9)连接。
优选地,为使回收的氢气和氯气反应生产盐酸,所述HCl合成单元包括:氢气冷却器(46)、氢气除雾器(45)、盐酸炉(43)、盐酸储存槽(42)、盐酸供料泵(41)、盐酸过滤器(40)通过管道依次连接,盐酸供料泵(41)与反应液加热器(12)上部的管道连接,强氯气加入管(44)设置在盐酸炉(43)与气液分离器(23)的连接管道之间。
优选地,为控制碱液流量和补充碱液,氢气洗涤塔循环液冷却器(27)进口管道上设有氢气洗涤塔循环液流量调节阀(26),氢气洗涤塔循环液冷却器(27)和氢气洗涤塔(29)连接的管道上设有氢气洗涤塔碱液补充管(28)。
优选地,为将二氧化氯气体吸收制取二氧化氯溶液,所述ClO2生成单元还包括:由发生器排气管(17)、间冷器(18)、二氧化氯吸收塔(19)、真空泵(22)、气液分离器(23)构成二氧化氯溶液制取系统,其中,发生器排气管(17)与间冷器(18)进口管道相连,间冷器(18)出口与二氧化氯吸收塔(19)进口管道相连,二氧化氯吸收塔(19)通过真空泵(22)与气液分离器(23)相连,气液分离器(23)通过稀二氧化氯溶液冷却器(21)与二氧化氯吸收塔(19)相连,气液分离器(23)出口还与盐酸炉(43)进口管道相连,二氧化氯吸收塔(19)设有二氧化氯溶液输出管(20)和冷冻水输入管(24)。
本发明还提供一种基于热能及副产品回收利用的综合法二氧化氯制备工艺,包括以下步骤:
步骤1,先用食盐水在电解槽(1)内进行电解,生成85~88℃含强NaClO3的电解液,还产生大量氢气,电解液先溢流进电解液缓冲槽(3)的A侧,再从电解液缓冲槽(3)的A侧溢流进B侧,产生的氢气经氢气冷却器(46)、氢气除雾器(45)进入盐酸炉(43);
步骤2,氯酸钠供料泵(8)将电解液缓冲槽(3)A侧的含有强氯酸钠的电解液泵送通过氯酸钠过滤器(9)进入发生器下循环管(14),电解液热源供给泵(6)将电解液缓冲槽(3)A侧的85~88℃电解液输送至反应液加热器(12)将反应液温度加热到71~75℃;
步骤3,从NaClO3电解单元送过来的氢气经氢气冷却器(46)冷却、氢气除雾器(45)除去水汽后与从强氯气加入管(44)来的强氯气及二氧化氯生成单元来的弱氯气在盐酸炉(43)内燃烧形成氯化氢气体,再经冷却、吸收形成盐酸进入盐酸储槽(42),盐酸输送泵(41)将盐酸经盐酸过滤器(40)送至二氧化氯制备单元;
步骤4,从NaClO3电解单元送过来的强氯酸钠溶液从发生器下循环管(14)加入,从盐酸合成单元送过来的盐酸在反应液加热器(12)上部的喉管喷射加入,在二氧化氯发生器(15)内发生反应、闪蒸,反应生成二氧化氯、氯气、氯化钠和水蒸汽;
步骤5,从NaClO3电解单元送过来的氢气混合气体经氢气冷却器(46)冷却后含有氯气的过量氢气进入氢气洗涤塔(29)下部,碱液从塔顶喷淋下来,与从塔底上来的氢气混合气中的氯气发生化学反应生成海波混合液。气洗涤塔液位控制器(30)及氢气洗涤塔循环液流量调节阀(26)用来调节循环液的排出量从而维持洗涤塔液位的稳定,过量的循环液送至海波储槽(38),氢气洗涤塔循环泵(25)为液体循环及输送提供动力,从氢气冷却器(46)来的的氢气及反应过程中产生的热量导致循环液温度升高,氢气洗涤塔循环液冷却器(27)用来冷却温度升高的循环液,新鲜的碱液从氢气洗涤塔碱液补充管(28)加入氢气洗涤塔(29)以维持洗涤液的碱浓度,保持洗涤效果;
步骤6,系统产生的含有氯气的尾气从尾气输入管(36)进入海波塔(35)下部,碱液从塔顶喷淋下来,与从塔底上来的系统尾气中的氯气发生化学反应生成海波混合液,海波塔液位控制器(37)及海波塔循环液流量调节阀(32)用来调节循环液的排出量从而维持海波塔(35)液位的稳定,过量的循环液送至海波储槽(38),海波塔循环泵(31)为液体循环及输送提供动力,反应过程中产生的热量导致循环液温度升高,海波塔循环液冷却器(33)用来冷却温度升高的循环液,新鲜的碱液从海波塔碱液补充管(34)加入海波塔(35)以维持洗涤液的碱浓度,保持洗涤效果;
步骤7,海波液输送泵(39)将海波液外送,弱氯酸钠溶液抽取泵(16)从发生器下循环管(14)抽取弱氯酸钠溶液外送,氯酸钠溶液与海波液在管道内混合,海波液中NaOH与弱氯酸钠溶液中HCl的反应生成NaCl和H2O,反应后的液体从电解液缓冲槽(3)的上部进入电解液缓冲槽(3)B侧,通过电解液循环泵(4)送回电解槽继续参加电解。
优选的是,步骤1所得电解液含有浓度为480~500g/l氯酸钠溶液和浓度为100~120g/l氯化钠溶液。
优选的是,为调节反应液温度,步骤2中的反应液温度通过安装在反应液加热器(12)上的反应液温度监控器(10)进行监控,根据温度的具体数据由电解液流量调节阀(7)来控制电解液热源的供给量。
优选的是,为吸收二氧化氯尾气,步骤4生成二氧化氯、氯气和水蒸汽的混合气体从二氧化氯发生器(15)顶部排出,流经发生器排气管(17)及间冷器(18)冷却后进入二氧化氯吸收塔(19),从冷冻水输入管(24)进入二氧化氯吸收塔(19)内的5~7℃冷冻水将混合气体吸收制成浓度为8~10g/l的二氧化氯水溶液,二氧化氯溶液从塔底二氧化氯溶液输出管(20)外送使用,从吸收塔(15)出来的尾气进入气液分离器(23),液体经稀二氧化氯溶液冷却器(21)后回流进入吸收塔(15),弱氯气被送到盐酸炉(43)与从电解单元来的氢气及外来的强氯气燃烧制备盐酸。
优选的是,为达到二氧化氯最优反应条件,步骤4所述二氧化氯发生器(15)内的反应温度范围71~75℃,所述发生器内的真空度为-67~-71KPa,所述二氧化氯发生器内(15)加入的氯酸钠溶液浓度为480~500g/l,加入的盐酸溶液重量浓度为30%~32%。
本发明的优点和效果:
1、通过将85~88℃电解液输送至反应液加热器将反应液温度加热到71~75℃,利用电解单元电解液产生的热量加热二氧化氯生产单元的反应液,不但无需用蒸汽,而且电解液通过对反应液进行加热,其温度得以降低,从而减少冷却水的消耗量,达到节能目的。
2、增设的氢气洗涤塔可以洗去含有氯气的过量氢气,塔顶喷淋碱液与从塔底上来的氢气混合气中的氯气发生化学反应生成海波混合液进行回收。
3、海波液中NaOH与弱氯酸钠溶液中HCl的反应生成NaCl和H2O,
反应后的NaCl通过电解液循环泵送回电解槽继续参加电解。
附图说明
图1为本发明所述的基于热能及副产品回收利用的综合法二氧化氯制备工艺流程图。
图中:
1、电解槽;2、反应器;3、电解液缓冲槽;4、电解液循环泵;5、电解液冷却器;6、电解液热源供给泵;7、电解液流量调节阀;8、氯酸钠供料泵;9、氯酸钠过滤器;10、反应液温度监控器;11、发生器循环泵;12、反应液加热器;13、发生器上循环管;14、发生器下循环管;15、发生器;16、弱氯酸钠溶液抽取泵;17、发生器排气管;18、间冷器;19、二氧化氯吸收塔;20、二氧化氯溶液输出管;21、稀二氧化氯溶液冷却器;22、真空泵;23、气液分离器;24、冷冻水输入管;25、氢气洗涤塔循环泵;26、氢气洗涤塔循环液流量调节阀;27、氢气洗涤塔循环液冷却器;28、氢气洗涤塔碱液补充管;29、氢气洗涤塔;30、氢气洗涤塔液位控制器;31、海波塔循环泵;32、海波塔循环液流量调节阀;33、海波塔循环液冷却器;34、海波塔碱液补充管;35、海波塔;36、尾气输入管;37、海波塔液位控制器;38、海波储槽;39、海波液输送泵;40、盐酸过滤器;41、盐酸供料泵;42、盐酸储槽;43、盐酸炉;44、强氯气加入管;45、氢气除雾器;46、氢气冷却器。
具体实施方式
下面结合说明书附图和具体实施案例对本发明所说的高效的氯酸钠电解系统作进一步的说明。下述实施案例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。
实施例1:
一种基于热能及副产品回收利用的综合法二氧化氯制备工艺,由NaClO3电解单元、ClO2生成单元、HCl合成单元及海波液回收利用单元组成,其中,海波液回收利用单元包括:氢气洗涤塔循环泵(25)出口通过管道连接氢气洗涤塔循环液冷却器(27)进口、氢气洗涤塔循环液冷却器(27)出口通过管道连接氢气洗涤塔(29)进口,氢气洗涤塔(29)进口通过管道与氢气洗涤塔循环泵(25)进口连接,构成了氢气洗涤循环回路,氢气洗涤塔(29)的下部安装有氢气洗涤塔液位控制器(30),氢气洗涤塔(29)的气体入口与氢气冷却器(46)的气体出口用管道相连,氢气洗涤塔循环泵(25)出口与海波储槽(38)的入口管道相连,氢气洗涤塔循环液冷却器(27)进口管道上设有氢气洗涤塔循环液流量调节阀(26),氢气洗涤塔循环液冷却器(27)和氢气洗涤塔(29)连接的管道上设有氢气洗涤塔碱液补充管(28);所述ClO2生成单元包括:反应液加热器(12)出口通过下循环管(14)与二氧化氯发生器(15)进口连接,二氧化氯发生器(15)出口通过上循环管(13)与反应液加热器(12)进口连接,反应液加热器(12)与电解液热源供给泵(6)相连,发生器循环泵(11)连接下循环管(14),下循环管(14)通过弱氯酸钠溶液抽取泵(16)与电解单元的反应器(2)连接,二氧化氯发生器(15)出口与发生器排气管(17)连接,由发生器排气管(17)、间冷器(18)、二氧化氯吸收塔(19)、真空泵(22)、气液分离器(23)构成二氧化氯溶液制取系统,其中,发生器排气管(17)与间冷器(18)进口管道相连,间冷器(18)出口与二氧化氯吸收塔(19)进口管道相连,二氧化氯吸收塔(19)通过真空泵(22)与气液分离器(23)相连,气液分离器(23)通过稀二氧化氯溶液冷却器(21)与二氧化氯吸收塔(19)相连,气液分离器(23)出口还与盐酸炉(43)进口管道相连,二氧化氯吸收塔(19)设有二氧化氯溶液输出管(20)和冷冻水输入管(24),反应液加热器(12)的中下部安装有反应液温度监控器(10)。
所述海波液回收利用单元还包括:由海波塔循环泵(31)、海波塔循环液冷却器(33)、海波塔(35)构成的系统尾气洗涤循环回路,其中,海波塔循环泵(31)出口通过管道与海波塔循环液冷却器(33)进口连接,海波塔循环液冷却器(33)出口通过管道与海波塔(35)进口连接,海波塔(35)出口通过管道与海波塔循环泵(31)进口连接,海波塔(35)的下部设有海波塔液位控制器(37)和尾气输入管(36),海波塔碱液补充管(34)设置在海波塔循环液冷却器(33)与海波塔(35)连接的管道之间,海波塔循环液流量调节阀(32)设置在海波塔循环泵(31)出口管道,海波储槽(38)进口与海波塔循环泵(31)出口管道相连,海波储槽(38)出口与输送泵(39)进口管道相连,海波液输送泵(39)出口输送管与弱氯酸钠溶液抽取泵(16)出口输送管连接,汇成总管进入电解液缓冲槽(3)B侧。
所述NaClO3电解单元包括由反应器(2)、电解液缓冲槽(3)、电解液循环泵(4)、电解液冷却器(5)构成的电解循环回路,电解液缓冲槽(3)内用隔板分隔成A、B两部分,反应器(2)出口与电解液缓冲槽(3)A侧通过管道相接,电解液缓冲槽(3)B侧通过电解液循环泵(4)与电解液冷却器(5)进口管道连接,电解液冷却器(5)出口与反应器(2)进口管道连接,电解槽(1)进出口通过钛管与反应器(2)连接,反应器(2)排气口与氢气冷却器(46)连接,电解液缓冲槽(3)与电解液热源供给泵(6)连接,电解液流量调节阀(7)设置在电解液热源供给泵(6)出口管道上,电解液缓冲槽(3)还通过氯酸钠供料泵(8)与氯酸钠过滤器(9)连接。
所述HCl合成单元包括:氢气冷却器(46)、氢气除雾器(45)、盐酸炉(43)、盐酸储存槽(42)、盐酸供料泵(41)、盐酸过滤器(40)通过管道依次连接,盐酸供料泵(41)与反应液加热器(12)上部的管道连接,强氯气加入管(44)设置在盐酸炉(43)与气液分离器(23)的连接管道之间。
本发明方法的操作过程如下:
步骤1,先用食盐水在电解槽(1)内进行电解,生成85℃含有浓度为480g/l氯酸钠溶液和浓度为100g/l氯化钠溶液的电解液,还产生大量氢气,电解液先溢流进电解液缓冲槽(3)的A侧,再从电解液缓冲槽(3)的A侧溢流进B侧;产生的氢气经氢气冷却器(46)、氢气除雾器(45)进入盐酸炉(43);
步骤2,氯酸钠供料泵(8)将电解液缓冲槽(3)A侧的含有强氯酸钠的电解液泵送通过氯酸钠过滤器(9)进入发生器下循环管(14),电解液热源供给泵(6)将电解液缓冲槽(3)A侧的85℃电解液输送至反应液加热器(12)将反应液温度加热到71℃,反应液温度通过安装在反应液加热器(12)上的反应液温度监控器(10)进行监控,根据温度的具体数据由电解液流量调节阀(7)来控制电解液热源的供给量;
步骤3,从NaClO3电解单元送过来的氢气经氢气冷却器(46)冷却、氢气除雾器(45)除去水汽后与从强氯气加入管(44)来的强氯气及二氧化氯生成单元来的弱氯气在盐酸炉(43)内燃烧形成氯化氢气体,再经冷却、吸收形成盐酸进入盐酸储槽(42),盐酸输送泵(41)将盐酸经盐酸过滤器(40)送至二氧化氯制备单元;
步骤4,从NaClO3电解单元送过来的强氯酸钠溶液从发生器下循环管(14)加入,从盐酸合成单元送过来的盐酸在反应液加热器(12)上部的喉管喷射加入,在二氧化氯发生器(15)内发生反应、闪蒸,反应生成二氧化氯、氯气、氯化钠和水蒸汽,其中,反应温度范围71℃,所述发生器内的真空度为-67KPa,所述二氧化氯发生器内(15)加入的氯酸钠溶液浓度为480g/l,加入的盐酸溶液重量浓度为30%。生成的混合气体从二氧化氯发生器(15)顶部排出,流经发生器排气管(17)及间冷器(18)冷却后进入二氧化氯吸收塔(19),从冷冻水输入管(24)进入二氧化氯吸收塔(19)内的5℃冷冻水将混合气体吸收制成浓度为8g/l的二氧化氯水溶液,二氧化氯溶液从塔底二氧化氯溶液输出管(20)外送使用,从吸收塔(15)出来的尾气进入气液分离器(23),液体经稀二氧化氯溶液冷却器(21)后回流进入吸收塔(15),弱氯气被送到盐酸炉(43)与从电解单元来的氢气及外来的强氯气燃烧制备盐酸;
步骤5,从NaClO3电解单元送过来的氢气混合气体经氢气冷却器(46)冷却后含有氯气的过量氢气进入氢气洗涤塔(29)下部,碱液从塔顶喷淋下来,与从塔底上来的氢气混合气中的氯气发生化学反应生成海波混合液。气洗涤塔液位控制器(30)及氢气洗涤塔循环液流量调节阀(26)用来调节循环液的排出量从而维持洗涤塔液位的稳定,过量的循环液送至海波储槽(38),氢气洗涤塔循环泵(25)为液体循环及输送提供动力,从氢气冷却器(46)来的的氢气及反应过程中产生的热量导致循环液温度升高,氢气洗涤塔循环液冷却器(27)用来冷却温度升高的循环液,新鲜的碱液从氢气洗涤塔碱液补充管(28)加入氢气洗涤塔(29)以维持洗涤液的碱浓度,保持洗涤效果;
步骤6,系统产生的含有氯气的尾气从尾气输入管(36)进入海波塔(35)下部,碱液从塔顶喷淋下来,与从塔底上来的系统尾气中的氯气发生化学反应生成海波混合液,海波塔液位控制器(37)及海波塔循环液流量调节阀(32)用来调节循环液的排出量从而维持海波塔(35)液位的稳定,过量的循环液送至海波储槽(38),海波塔循环泵(31)为液体循环及输送提供动力,反应过程中产生的热量导致循环液温度升高,海波塔循环液冷却器(33)用来冷却温度升高的循环液,新鲜的碱液从海波塔碱液补充管(34)加入海波塔(35)以维持洗涤液的碱浓度,保持洗涤效果;
步骤7,海波液输送泵(39)将海波液外送,弱氯酸钠溶液抽取泵(16)从发生器下循环管(14)抽取弱氯酸钠溶液外送,氯酸钠溶液与海波液在管道内混合,海波液中NaOH与弱氯酸钠溶液中HCl的反应生成NaCl和H2O,反应后的液体从电解液缓冲槽(3)的上部进入电解液缓冲槽(3)B侧,通过电解液循环泵(4)送回电解槽继续参加电解。
实施例2:
一种基于热能及副产品回收利用的综合法二氧化氯制备工艺,由NaClO3电解单元、ClO2生成单元、HCl合成单元及海波液回收利用单元组成,其中,海波液回收利用单元包括:氢气洗涤塔循环泵(25)出口通过管道连接氢气洗涤塔循环液冷却器(27)进口、氢气洗涤塔循环液冷却器(27)出口通过管道连接氢气洗涤塔(29)进口,氢气洗涤塔(29)进口通过管道与氢气洗涤塔循环泵(25)进口连接,构成了氢气洗涤循环回路,氢气洗涤塔(29)的下部安装有氢气洗涤塔液位控制器(30),氢气洗涤塔(29)的气体入口与氢气冷却器(46)的气体出口用管道相连,氢气洗涤塔循环泵(25)出口与海波储槽(38)的入口管道相连,氢气洗涤塔循环液冷却器(27)进口管道上设有氢气洗涤塔循环液流量调节阀(26),氢气洗涤塔循环液冷却器(27)和氢气洗涤塔(29)连接的管道上设有氢气洗涤塔碱液补充管(28);所述ClO2生成单元包括:反应液加热器(12)出口通过下循环管(14)与二氧化氯发生器(15)进口连接,二氧化氯发生器(15)出口通过上循环管(13)与反应液加热器(12)进口连接,反应液加热器(12)与电解液热源供给泵(6)相连,发生器循环泵(11)连接下循环管(14),下循环管(14)通过弱氯酸钠溶液抽取泵(16)与电解单元的反应器(2)连接,二氧化氯发生器(15)出口与发生器排气管(17)连接,由发生器排气管(17)、间冷器(18)、二氧化氯吸收塔(19)、真空泵(22)、气液分离器(23)构成二氧化氯溶液制取系统,其中,发生器排气管(17)与间冷器(18)进口管道相连,间冷器(18)出口与二氧化氯吸收塔(19)进口管道相连,二氧化氯吸收塔(19)通过真空泵(22)与气液分离器(23)相连,气液分离器(23)通过稀二氧化氯溶液冷却器(21)与二氧化氯吸收塔(19)相连,气液分离器(23)出口还与盐酸炉(43)进口管道相连,二氧化氯吸收塔(19)设有二氧化氯溶液输出管(20)和冷冻水输入管(24),反应液加热器(12)的中下部安装有反应液温度监控器(10)。
所述海波液回收利用单元还包括:由海波塔循环泵(31)、海波塔循环液冷却器(33)、海波塔(35)构成的系统尾气洗涤循环回路,其中,海波塔循环泵(31)出口通过管道与海波塔循环液冷却器(33)进口连接,海波塔循环液冷却器(33)出口通过管道与海波塔(35)进口连接,海波塔(35)出口通过管道与海波塔循环泵(31)进口连接,海波塔(35)的下部设有海波塔液位控制器(37)和尾气输入管(36),海波塔碱液补充管(34)设置在海波塔循环液冷却器(33)与海波塔(35)连接的管道之间,海波塔循环液流量调节阀(32)设置在海波塔循环泵(31)出口管道,海波储槽(38)进口与海波塔循环泵(31)出口管道相连,海波储槽(38)出口与输送泵(39)进口管道相连,海波液输送泵(39)出口输送管与弱氯酸钠溶液抽取泵(16)出口输送管连接,汇成总管进入电解液缓冲槽(3)B侧。
所述NaClO3电解单元包括由反应器(2)、电解液缓冲槽(3)、电解液循环泵(4)、电解液冷却器(5)构成的电解循环回路,电解液缓冲槽(3)内用隔板分隔成A、B两部分,反应器(2)出口与电解液缓冲槽(3)A侧通过管道相接,电解液缓冲槽(3)B侧通过电解液循环泵(4)与电解液冷却器(5)进口管道连接,电解液冷却器(5)出口与反应器(2)进口管道连接,电解槽(1)进出口通过钛管与反应器(2)连接,反应器(2)排气口与氢气冷却器(46)连接,电解液缓冲槽(3)与电解液热源供给泵(6)连接,电解液流量调节阀(7)设置在电解液热源供给泵(6)出口管道上,电解液缓冲槽(3)还通过氯酸钠供料泵(8)与氯酸钠过滤器(9)连接。
所述HCl合成单元包括:氢气冷却器(46)、氢气除雾器(45)、盐酸炉(43)、盐酸储存槽(42)、盐酸供料泵(41)、盐酸过滤器(40)通过管道依次连接,盐酸供料泵(41)与反应液加热器(12)上部的管道连接,强氯气加入管(44)设置在盐酸炉(43)与气液分离器(23)的连接管道之间。
本发明方法的操作过程如下:
步骤1,先用食盐水在电解槽(1)内进行电解,生成88℃含有浓度为500g/l氯酸钠溶液和浓度为120g/l氯化钠溶液的电解液,还产生大量氢气,电解液先溢流进电解液缓冲槽(3)的A侧,再从电解液缓冲槽(3)的A侧溢流进B侧;产生的氢气经氢气冷却器(46)、氢气除雾器(45)进入盐酸炉(43);
步骤2,氯酸钠供料泵(8)将电解液缓冲槽(3)A侧的含有强氯酸钠的电解液泵送通过氯酸钠过滤器(9)进入发生器下循环管(14),电解液热源供给泵(6)将电解液缓冲槽(3)A侧的88℃电解液输送至反应液加热器(12)将反应液温度加热到75℃,反应液温度通过安装在反应液加热器(12)上的反应液温度监控器(10)进行监控,根据温度的具体数据由电解液流量调节阀(7)来控制电解液热源的供给量;
步骤3,从电解单元送过来的氢气经氢气冷却器(46)冷却、氢气除雾器(45)除去水汽后与从强氯气加入管(44)来的强氯气及二氧化氯生成单元来的弱氯气在盐酸炉(43)内燃烧形成氯化氢气体,再经冷却、吸收形成盐酸进入盐酸储槽(42),盐酸输送泵(41)将盐酸经盐酸过滤器(40)送至二氧化氯制备单元;
步骤4,从电解单元送过来的强氯酸钠溶液从发生器下循环管(14)加入,从盐酸合成单元送过来的盐酸在反应液加热器(12)上部的喉管喷射加入,在二氧化氯发生器(15)内发生反应、闪蒸,反应生成二氧化氯、氯气、氯化钠和水蒸汽,其中,反应温度范围75℃,所述发生器内的真空度为-71KPa,所述二氧化氯发生器内(15)加入的氯酸钠溶液浓度为500g/l,加入的盐酸溶液重量浓度为32%。生成的混合气体从二氧化氯发生器(15)顶部排出,流经发生器排气管(17)及间冷器(18)冷却后进入二氧化氯吸收塔(19),从冷冻水输入管(24)进入二氧化氯吸收塔(19)内的7℃冷冻水将混合气体吸收制成浓度为10g/l的二氧化氯水溶液,二氧化氯溶液从塔底二氧化氯溶液输出管(20)外送使用,从吸收塔(15)出来的尾气进入气液分离器(23),液体经稀二氧化氯溶液冷却器(21)后回流进入吸收塔(15),弱氯气被送到盐酸炉(43)与从电解单元来的氢气及外来的强氯气燃烧制备盐酸;
步骤5,从电解单元送过来的氢气混合气体经氢气冷却器(46)冷却后含有氯气的过量氢气进入氢气洗涤塔(29)下部,碱液从塔顶喷淋下来,与从塔底上来的氢气混合气中的氯气发生化学反应生成海波混合液,气洗涤塔液位控制器(30)及氢气洗涤塔循环液流量调节阀(26)用来调节循环液的排出量从而维持洗涤塔液位的稳定,过量的循环液送至海波储槽(38),氢气洗涤塔循环泵(25)为液体循环及输送提供动力,从氢气冷却器(46)来的的氢气及反应过程中产生的热量导致循环液温度升高,氢气洗涤塔循环液冷却器(27)用来冷却温度升高的循环液,新鲜的碱液从氢气洗涤塔碱液补充管(28)加入氢气洗涤塔(29)以维持洗涤液的碱浓度,保持洗涤效果;
步骤6,系统产生的含有氯气的尾气从尾气输入管(36)进入海波塔(35)下部,碱液从塔顶喷淋下来,与从塔底上来的系统尾气中的氯气发生化学反应生成海波混合液,海波塔液位控制器(37)及海波塔循环液流量调节阀(32)用来调节循环液的排出量从而维持海波塔(35)液位的稳定,过量的循环液送至海波储槽(38),海波塔循环泵(31)为液体循环及输送提供动力,反应过程中产生的热量导致循环液温度升高,海波塔循环液冷却器(33)用来冷却温度升高的循环液,新鲜的碱液从海波塔碱液补充管(34)加入海波塔(35)以维持洗涤液的碱浓度,保持洗涤效果;
步骤7,海波液输送泵(39)将海波液外送,弱氯酸钠溶液抽取泵(16)从发生器下循环管(14)抽取弱氯酸钠溶液外送,氯酸钠溶液与海波液在管道内混合,海波液中NaOH与弱氯酸钠溶液中HCl的反应生成NaCl和H2O,反应后的液体从电解液缓冲槽(3)的上部进入电解液缓冲槽(3)B侧,通过电解液循环泵(4)送回电解槽继续参加电解。
实施例3:
一种基于热能及副产品回收利用的综合法二氧化氯制备工艺,由NaClO3电解单元、ClO2生成单元、HCl合成单元及海波液回收利用单元组成,其中,海波液回收利用单元包括:氢气洗涤塔循环泵(25)出口通过管道连接氢气洗涤塔循环液冷却器(27)进口、氢气洗涤塔循环液冷却器(27)出口通过管道连接氢气洗涤塔(29)进口,氢气洗涤塔(29)进口通过管道与氢气洗涤塔循环泵(25)进口连接,构成了氢气洗涤循环回路,氢气洗涤塔(29)的下部安装有氢气洗涤塔液位控制器(30),氢气洗涤塔(29)的气体入口与氢气冷却器(46)的气体出口用管道相连,氢气洗涤塔循环泵(25)出口与海波储槽(38)的入口管道相连,氢气洗涤塔循环液冷却器(27)进口管道上设有氢气洗涤塔循环液流量调节阀(26),氢气洗涤塔循环液冷却器(27)和氢气洗涤塔(29)连接的管道上设有氢气洗涤塔碱液补充管(28);所述ClO2生成单元包括:反应液加热器(12)出口通过下循环管(14)与二氧化氯发生器(15)进口连接,二氧化氯发生器(15)出口通过上循环管(13)与反应液加热器(12)进口连接,反应液加热器(12)与电解液热源供给泵(6)相连,发生器循环泵(11)连接下循环管(14),下循环管(14)通过弱氯酸钠溶液抽取泵(16)与电解单元的反应器(2)连接,二氧化氯发生器(15)出口与发生器排气管(17)连接,由发生器排气管(17)、间冷器(18)、二氧化氯吸收塔(19)、真空泵(22)、气液分离器(23)构成二氧化氯溶液制取系统,其中,发生器排气管(17)与间冷器(18)进口管道相连,间冷器(18)出口与二氧化氯吸收塔(19)进口管道相连,二氧化氯吸收塔(19)通过真空泵(22)与气液分离器(23)相连,气液分离器(23)通过稀二氧化氯溶液冷却器(21)与二氧化氯吸收塔(19)相连,气液分离器(23)出口还与盐酸炉(43)进口管道相连,二氧化氯吸收塔(19)设有二氧化氯溶液输出管(20)和冷冻水输入管(24),反应液加热器(12)的中下部安装有反应液温度监控器(10)。
所述海波液回收利用单元还包括:由海波塔循环泵(31)、海波塔循环液冷却器(33)、海波塔(35)构成的系统尾气洗涤循环回路,其中,海波塔循环泵(31)出口通过管道与海波塔循环液冷却器(33)进口连接,海波塔循环液冷却器(33)出口通过管道与海波塔(35)进口连接,海波塔(35)出口通过管道与海波塔循环泵(31)进口连接,海波塔(35)的下部设有海波塔液位控制器(37)和尾气输入管(36),海波塔碱液补充管(34)设置在海波塔循环液冷却器(33)与海波塔(35)连接的管道之间,海波塔循环液流量调节阀(32)设置在海波塔循环泵(31)出口管道,海波储槽(38)进口与海波塔循环泵(31)出口管道相连,海波储槽(38)出口与输送泵(39)进口管道相连,海波液输送泵(39)出口输送管与弱氯酸钠溶液抽取泵(16)出口输送管连接,汇成总管进入电解液缓冲槽(3)B侧。
所述NaClO3电解单元包括由反应器(2)、电解液缓冲槽(3)、电解液循环泵(4)、电解液冷却器(5)构成的电解循环回路,电解液缓冲槽(3)内用隔板分隔成A、B两部分,反应器(2)出口与电解液缓冲槽(3)A侧通过管道相接,电解液缓冲槽(3)B侧通过电解液循环泵(4)与电解液冷却器(5)进口管道连接,电解液冷却器(5)出口与反应器(2)进口管道连接,电解槽(1)进出口通过钛管与反应器(2)连接,反应器(2)排气口与氢气冷却器(46)连接,电解液缓冲槽(3)与电解液热源供给泵(6)连接,电解液流量调节阀(7)设置在电解液热源供给泵(6)出口管道上,电解液缓冲槽(3)还通过氯酸钠供料泵(8)与氯酸钠过滤器(9)连接。
所述HCl合成单元包括:氢气冷却器(46)、氢气除雾器(45)、盐酸炉(43)、盐酸储存槽(42)、盐酸供料泵(41)、盐酸过滤器(40)通过管道依次连接,盐酸供料泵(41)与反应液加热器(12)上部的管道连接,强氯气加入管(44)设置在盐酸炉(43)与气液分离器(23)的连接管道之间。
本发明方法的操作过程如下:
步骤1,先用食盐水在电解槽(1)内进行电解,生成86℃含有浓度为490g/l氯酸钠溶液和浓度为110g/l氯化钠溶液的电解液,还产生大量氢气,电解液先溢流进电解液缓冲槽(3)的A侧,再从电解液缓冲槽(3)的A侧溢流进B侧;产生的氢气经氢气冷却器(46)、氢气除雾器(45)进入盐酸炉(43);
步骤2,氯酸钠供料泵(8)将电解液缓冲槽(3)A侧的含有强氯酸钠的电解液泵送通过氯酸钠过滤器(9)进入发生器下循环管(14),电解液热源供给泵(6)将电解液缓冲槽(3)A侧的86℃电解液输送至反应液加热器(12)将反应液温度加热到73℃,反应液温度通过安装在反应液加热器(12)上的反应液温度监控器(10)进行监控,根据温度的具体数据由电解液流量调节阀(7)来控制电解液热源的供给量;
步骤3,从电解单元送过来的氢气经氢气冷却器(46)冷却、氢气除雾器(45)除去水汽后与从强氯气加入管(44)来的强氯气及二氧化氯生成单元来的弱氯气在盐酸炉(43)内燃烧形成氯化氢气体,再经冷却、吸收形成盐酸进入盐酸储槽(42),盐酸输送泵(41)将盐酸经盐酸过滤器(40)送至二氧化氯制备单元;
步骤4,从电解单元送过来的强氯酸钠溶液从发生器下循环管(14)加入,从盐酸合成单元送过来的盐酸在反应液加热器(12)上部的喉管喷射加入,在二氧化氯发生器(15)内发生反应、闪蒸,反应生成二氧化氯、氯气、氯化钠和水蒸汽,其中,反应温度范围73℃,所述发生器内的真空度为-70KPa,所述二氧化氯发生器内(15)加入的氯酸钠溶液浓度为490g/l,加入的盐酸溶液重量浓度为31%。生成的混合气体从二氧化氯发生器(15)顶部排出,流经发生器排气管(17)及间冷器(18)冷却后进入二氧化氯吸收塔(19),从冷冻水输入管(24)进入二氧化氯吸收塔(19)内的6℃冷冻水将混合气体吸收制成浓度为9g/l的二氧化氯水溶液,二氧化氯溶液从塔底二氧化氯溶液输出管(20)外送使用,从吸收塔(15)出来的尾气进入气液分离器(23),液体经稀二氧化氯溶液冷却器(21)后回流进入吸收塔(15),弱氯气被送到盐酸炉(43)与从电解单元来的氢气及外来的强氯气燃烧制备盐酸;
步骤5,从电解单元送过来的氢气混合气体经氢气冷却器(46)冷却后含有氯气的过量氢气进入氢气洗涤塔(29)下部,碱液从塔顶喷淋下来,与从塔底上来的氢气混合气中的氯气发生化学反应生成海波混合液,气洗涤塔液位控制器(30)及氢气洗涤塔循环液流量调节阀(26)用来调节循环液的排出量从而维持洗涤塔液位的稳定,过量的循环液送至海波储槽(38),氢气洗涤塔循环泵(25)为液体循环及输送提供动力,从氢气冷却器(46)来的的氢气及反应过程中产生的热量导致循环液温度升高,氢气洗涤塔循环液冷却器(27)用来冷却温度升高的循环液,新鲜的碱液从氢气洗涤塔碱液补充管(28)加入氢气洗涤塔(29)以维持洗涤液的碱浓度,保持洗涤效果;
步骤6,系统产生的含有氯气的尾气从尾气输入管(36)进入海波塔(35)下部,碱液从塔顶喷淋下来,与从塔底上来的系统尾气中的氯气发生化学反应生成海波混合液,海波塔液位控制器(37)及海波塔循环液流量调节阀(32)用来调节循环液的排出量从而维持海波塔(35)液位的稳定,过量的循环液送至海波储槽(38),海波塔循环泵(31)为液体循环及输送提供动力,反应过程中产生的热量导致循环液温度升高,海波塔循环液冷却器(33)用来冷却温度升高的循环液,新鲜的碱液从海波塔碱液补充管(34)加入海波塔(35)以维持洗涤液的碱浓度,保持洗涤效果;
步骤7,海波液输送泵(39)将海波液外送,弱氯酸钠溶液抽取泵(16)从发生器下循环管(14)抽取弱氯酸钠溶液外送,氯酸钠溶液与海波液在管道内混合,海波液中NaOH与弱氯酸钠溶液中HCl的反应生成NaCl和H2O,反应后的液体从电解液缓冲槽(3)的上部进入电解液缓冲槽(3)B侧,通过电解液循环泵(4)送回电解槽继续参加电解。
对比例:
采用传统综合法二氧化氯制备工艺,所述二氧化氯发生器(22)内的反应温度范围71℃,真空度为-67KPa,加入二氧化氯发生器(22)的氯酸钠溶液浓度为480g/l,盐酸溶液重量浓度为30%。
实验例:利用本发明和对比例方法生产二氧化氯
表1综合法二氧化氯制备实验
备注:“消耗蒸汽”是指ClO2生成单元的反应液加热工序和弱氯酸钠加热工序需消耗的蒸汽;“消耗的冷却水”是指NaClO3电解单元和ClO2生成单元需消耗的冷却水。
通过对比例可知,采用本发明一种基于热能及副产品回收利用的综合法二氧化氯制备工艺与采用传统的综合法二氧化氯制备工艺相比,在产量相同的情况下,利用氯酸钠电解单元产生的热能加热ClO2生成单元的反应液并取消了弱氯酸钠加热工序,ClO2生成单元无需消耗蒸汽,NaClO3电解单元和ClO2生成单元需消耗量的冷却水大大降低。

Claims (12)

1.一种基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:由NaClO3电解单元、ClO2生成单元、HCl合成单元及海波液回收利用单元组成,其中,海波液回收利用单元包括:氢气洗涤塔循环泵(25)出口通过管道连接氢气洗涤塔循环液冷却器(27)进口、氢气洗涤塔循环液冷却器(27)出口通过管道连接氢气洗涤塔(29)进口,氢气洗涤塔(29)出口通过管道与氢气洗涤塔循环泵(25)进口连接,构成了氢气洗涤循环回路,氢气洗涤塔(29)的下部安装有氢气洗涤塔液位控制器(30),氢气洗涤塔(29)的气体入口与氢气冷却器(46)的气体出口用管道相连,氢气洗涤塔循环泵(25)出口与海波储槽(38)的入口管道相连;
所述ClO2生成单元包括:反应液加热器(12)出口通过下循环管(14)与二氧化氯发生器(15)进口连接,二氧化氯发生器(15)出口通过上循环管(13)与反应液加热器(12)进口连接,反应液加热器(12)与电解液热源供给泵(6)相连,发生器循环泵(11)连接下循环管(14),下循环管(14)通过弱氯酸钠溶液抽取泵(16)与电解单元的反应器(2)连接,二氧化氯发生器(15)出口与发生器排气管(17)连接。
2.如权利要求1所述基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:反应液加热器(12)的中下部安装有反应液温度监控器(10)。
3.如权利要求1所述基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:所述海波液回收利用单元还包括,由海波塔循环泵(31)、海波塔循环液冷却器(33)、海波塔(35)构成的系统尾气洗涤循环回路,其中,海波塔循环泵(31)出口通过管道与海波塔循环液冷却器(33)进口连接,海波塔循环液冷却器(33)出口通过管道与海波塔(35)进口连接,海波塔(35)出口通过管道与海波塔循环泵(31)进口连接,海波塔(35)的下部设有海波塔液位控制器(37)和尾气输入管(36),海波塔碱液补充管(34)设置在海波塔循环液冷却器(33)与海波塔(35)连接的管道之间,海波塔循环液流量调节阀(32)设置在海波塔循环泵(31)出口管道,海波储槽(38)进口与海波塔循环泵(31)出口管道相连,海波储槽(38)出口与输送泵(39)进口管道相连,海波液输送泵(39)出口输送管与弱氯酸钠溶液抽取泵(16)出口输送管连接,汇成总管进入电解液缓冲槽(3)B侧。
4.如权利要求3所述基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:所述NaClO3电解单元包括由反应器(2)、电解液缓冲槽(3)、电解液循环泵(4)、电解液冷却器(5)构成的电解循环回路,电解液缓冲槽(3)内用隔板分隔成A、B两部分,反应器(2)出口与电解液缓冲槽(3)A侧通过管道相接,电解液缓冲槽(3)B侧通过电解液循环泵(4)与电解液冷却器(5)进口管道连接,电解液冷却器(5)出口与反应器(2)进口管道连接,电解槽(1)进出口通过钛管与反应器(2)连接,反应器(2)排气口与氢气冷却器(46)连接,电解液缓冲槽(3)与电解液热源供给泵(6)连接,电解液流量调节阀(7)设置在电解液热源供给泵(6)出口管道上,电解液缓冲槽(3)还通过氯酸钠供料泵(8)与氯酸钠过滤器(9)连接。
5.如权利要求4所述基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:所述HCl合成单元包括:氢气冷却器(46)、氢气除雾器(45)、盐酸炉(43)、盐酸储存槽(42)、盐酸供料泵(41)、盐酸过滤器(40)通过管道依次连接,盐酸供料泵(41)与反应液加热器(12)上部的管道连接,强氯气加入管(44)设置在盐酸炉(43)与气液分离器(23)的连接管道之间。
6.如权利要求1所述基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:氢气洗涤塔循环液冷却器(27)进口管道上设有氢气洗涤塔循环液流量调节阀(26),氢气洗涤塔循环液冷却器(27)和氢气洗涤塔(29)连接的管道上设有氢气洗涤塔碱液补充管(28)。
7.如权利要求1所述基于热能及副产品回收利用的综合法二氧化氯制备装置,其特征在于:所述ClO2生成单元还包括:由发生器排气管(17)、间冷器(18)、二氧化氯吸收塔(19)、真空泵(22)、气液分离器(23)构成二氧化氯溶液制取系统,其中,发生器排气管(17)与间冷器(18)进口管道相连,间冷器(18)出口与二氧化氯吸收塔(19)进口管道相连,二氧化氯吸收塔(19)通过真空泵(22)与气液分离器(23)相连,气液分离器(23)通过稀二氧化氯溶液冷却器(21)与二氧化氯吸收塔(19)相连,气液分离器(23)出口还与盐酸炉(43)进口管道相连,二氧化氯吸收塔(19)设有二氧化氯溶液输出管(20)和冷冻水输入管(24)。
8.一种采用如权利要求5所述制备装置的综合法二氧化氯制备工艺,其特征在于包括以下步骤:
步骤1,先用食盐水在电解槽(1)内进行电解,生成85~88℃电解液,还产生氢气,电解液先溢流进电解液缓冲槽(3)的A侧,再从电解液缓冲槽(3)的A侧溢流进B侧,产生的氢气经氢气冷却器(46)、氢气除雾器(45)进入盐酸炉(43);
步骤2,氯酸钠供料泵(8)将电解液缓冲槽(3)A侧的含有强氯酸钠的电解液泵送通过氯酸钠过滤器(9)进入发生器下循环管(14),电解液热源供给泵(6)将电解液缓冲槽(3)A侧的85~88℃电解液输送至反应液加热器(12)将反应液温度加热到71~75℃;
步骤3,从NaClO3电解单元送过来的氢气经氢气冷却器(46)冷却、氢气除雾器(45)除去水汽后与从强氯气加入管(44)来的强氯气及二氧化氯生成单元来的弱氯气在盐酸炉(43)内燃烧形成氯化氢气体,再经冷却、吸收形成盐酸进入盐酸储槽(42),盐酸输送泵(41)将盐酸经盐酸过滤器(40)送至二氧化氯制备单元;
步骤4,从NaClO3电解单元送过来的强氯酸钠溶液从发生器下循环管(14)加入,从盐酸合成单元送过来的盐酸在反应液加热器(12)上部的喉管喷射加入,在二氧化氯发生器(15)内发生反应、闪蒸,反应生成二氧化氯、氯气、氯化钠和水蒸汽;
步骤5,从NaClO3电解单元送过来的氢气混合气体经氢气冷却器(46)冷却后含有氯气的过量氢气进入氢气洗涤塔(29)下部,碱液从塔顶喷淋下来,与从塔底上来的氢气混合气中的氯气发生化学反应生成海波混合液,气洗涤塔液位控制器(30)及氢气洗涤塔循环液流量调节阀(26)用来调节循环液的排出量,过量的循环液送至海波储槽(38),氢气洗涤塔循环泵(25)为液体循环及输送提供动力,从氢气冷却器(46)来的氢气及反应过程中产生的热量导致循环液温度升高,氢气洗涤塔循环液冷却器(27)用来冷却温度升高的循环液,碱液从氢气洗涤塔碱液补充管(28)加入氢气洗涤塔(29);
步骤6,系统产生的含有氯气的尾气从尾气输入管(36)进入海波塔(35)下部,碱液从塔顶喷淋下来,与从塔底上来的系统尾气中的氯气发生化学反应生成海波混合液,海波塔液位控制器(37)及海波塔循环液流量调节阀(32)用来调节循环液的排出量从而维持海波塔(35)液位的稳定,过量的循环液送至海波储槽(38),海波塔循环泵(31)为液体循环及输送提供动力,反应过程中产生的热量导致循环液温度升高,海波塔循环液冷却器(33)用来冷却温度升高的循环液,碱液从海波塔碱液补充管(34)加入海波塔(35);
步骤7,海波液输送泵(39)将海波液外送,弱氯酸钠溶液抽取泵(16)从发生器下循环管(14)抽取弱氯酸钠溶液外送,氯酸钠溶液与海波液在管道内混合,海波液中NaOH与弱氯酸钠溶液中HCl的反应生成NaCl和H2O,反应后的液体从电解液缓冲槽(3)的上部进入电解液缓冲槽(3)B侧,通过电解液循环泵(4)送回电解槽继续参加电解。
9.根据权利要求8所述的综合法二氧化氯制备工艺,其特征在于:步骤1所得电解液含有浓度为480~500g/l氯酸钠溶液和浓度为100~120g/l氯化钠溶液。
10.根据权利要求8所述的综合法二氧化氯制备工艺,其特征在于:步骤2中的反应液温度通过安装在反应液加热器(12)上的反应液温度监控器(10)进行监控,由电解液流量调节阀(7)来控制电解液热源的供给量。
11.根据权利要求8所述的综合法二氧化氯制备工艺,其特征在于:步骤4生成二氧化氯、氯气和水蒸汽的混合气体从二氧化氯发生器(15)顶部排出,流经发生器排气管(17)及间冷器(18)冷却后进入二氧化氯吸收塔(19),从冷冻水输入管(24)进入二氧化氯吸收塔(19)内的5~7℃冷冻水将混合气体吸收制成浓度为8~10g/l的二氧化氯水溶液,二氧化氯溶液从塔底二氧化氯溶液输出管(20)输出,从吸收塔(15)出来的尾气进入气液分离器(23),液体经稀二氧化氯溶液冷却器(21)后回流进入吸收塔(15),弱氯气被送到盐酸炉(43)与从电解单元来的氢气及外来的强氯气燃烧制备盐酸。
12.根据权利要求8所述的综合法二氧化氯制备工艺,其特征在于:步骤4所述二氧化氯发生器(15)内的反应温度范围71~75℃,所述发生器内的真空度为-67~-71KPa,所述二氧化氯发生器内(15)加入的氯酸钠溶液浓度为480~500g/l,加入的盐酸溶液重量浓度为30%~32%。
CN201610598182.6A 2016-07-27 2016-07-27 基于热能及副产品回收利用的综合法二氧化氯制备工艺 Active CN106219491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610598182.6A CN106219491B (zh) 2016-07-27 2016-07-27 基于热能及副产品回收利用的综合法二氧化氯制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610598182.6A CN106219491B (zh) 2016-07-27 2016-07-27 基于热能及副产品回收利用的综合法二氧化氯制备工艺

Publications (2)

Publication Number Publication Date
CN106219491A CN106219491A (zh) 2016-12-14
CN106219491B true CN106219491B (zh) 2018-02-27

Family

ID=57532970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610598182.6A Active CN106219491B (zh) 2016-07-27 2016-07-27 基于热能及副产品回收利用的综合法二氧化氯制备工艺

Country Status (1)

Country Link
CN (1) CN106219491B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079123A (en) * 1976-12-30 1978-03-14 Hooker Chemicals & Plastics Corporation Process for the production of chlorine dioxide
CN101024493A (zh) * 2007-02-09 2007-08-29 中北大学 一种二氧化氯气体发生装置
CN203253340U (zh) * 2013-04-28 2013-10-30 广西博世科环保科技股份有限公司 综合法二氧化氯制备系统的尾气处理装置
CN204170437U (zh) * 2014-10-09 2015-02-25 广西博世科环保科技股份有限公司 用于综合法二氧化氯制备系统的稀氯酸盐溶液蒸发器
CN105401163A (zh) * 2014-09-08 2016-03-16 大幸药品株式会社 电解式二氧化氯气体制造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079123A (en) * 1976-12-30 1978-03-14 Hooker Chemicals & Plastics Corporation Process for the production of chlorine dioxide
CN101024493A (zh) * 2007-02-09 2007-08-29 中北大学 一种二氧化氯气体发生装置
CN203253340U (zh) * 2013-04-28 2013-10-30 广西博世科环保科技股份有限公司 综合法二氧化氯制备系统的尾气处理装置
CN105401163A (zh) * 2014-09-08 2016-03-16 大幸药品株式会社 电解式二氧化氯气体制造装置
CN204170437U (zh) * 2014-10-09 2015-02-25 广西博世科环保科技股份有限公司 用于综合法二氧化氯制备系统的稀氯酸盐溶液蒸发器

Also Published As

Publication number Publication date
CN106219491A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
CN105439095B (zh) 一种以综合法二氧化氯工艺制备亚氯酸钠的方法及装置
CN107349752A (zh) 一种电解含氯废气综合回收处理方法
CN207042222U (zh) 二氧化氯气相氧化脱硫脱硝一体化装置
CN206103690U (zh) 一种酰氯化工序二氧化硫废气净化回收装置
CN110255504A (zh) 塔式连续法生产次氯酸钠的系统及工艺
CN102502507A (zh) 二氧化氯的制备装置及其工艺
CN106219491B (zh) 基于热能及副产品回收利用的综合法二氧化氯制备工艺
CN206660898U (zh) 一种提高氯化石蜡副产氯化氢吸收率及净化装置
CN206266717U (zh) 一种能回收氯气的制氯酸钠装置
CN101982404B (zh) 二氧化氯溶液制备的设备及方法
CN103755393B (zh) 三聚氰胺尾气联产硫酸钾复合肥的装置及方法
CN102491276A (zh) 二次加碱生产次氯酸钠的方法
CN205288123U (zh) 氨水制备系统
CN105254469A (zh) 一种氯乙烷的清洁生产工艺及装置
CN109593559A (zh) 一种氯化石蜡70产品及制备方法
CN109912395A (zh) 一种微分环流连续生产二氯频呐酮的装置与工艺
CN210366984U (zh) 一种塔式连续法生产次氯酸钠的系统
CN105565322B (zh) 一种由硅、氢气和四氯化硅反应得到的气/固混合体的处理方法和装置
CN102266713B (zh) 熔盐电解产生含氯气体的吸收方法
CN208561815U (zh) 一种铝盐混凝剂的生产装置
CN101941679A (zh) 低温真空蒸发结晶生产氯酸钠的方法
CN109809361A (zh) 一种高效环保的盐酸脱析工艺
CN105947985A (zh) 一种可回收酸式硫酸钠的二氧化氯制备方法
CN104928715A (zh) 一种烧碱生产用电解液回收再利用系统
CN216080464U (zh) 一种氯碱厂能源综合回收利用装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20161214

Assignee: Guangxi Kexin environmental treatment Co.,Ltd.

Assignor: GUANGXI BOSSCO ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Contract record no.: X2023980034951

Denomination of invention: Comprehensive preparation process of chlorine dioxide based on thermal energy and by-product recycling

Granted publication date: 20180227

License type: Common License

Record date: 20230424

EE01 Entry into force of recordation of patent licensing contract
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 242300 intersection of Dongcheng Avenue and Dongcheng Road, heli Park, Ningguo Economic and Technological Development Zone, Ningguo City, Xuancheng City, Anhui Province

Patentee after: Anhui Boshike Environmental Protection Technology Co.,Ltd.

Country or region after: China

Address before: 530007 12 Kexing Road, XiXiangTang high tech Zone, Nanning, the Guangxi Zhuang Autonomous Region

Patentee before: GUANGXI BOSSCO ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240430

Address after: 242300 intersection of Dongcheng Avenue and Dongcheng Road, heli Park, Ningguo Economic and Technological Development Zone, Ningguo City, Xuancheng City, Anhui Province

Patentee after: Anhui Boshike Environmental Protection Technology Co.,Ltd.

Country or region after: China

Patentee after: Guangxi Boshike Environmental Technology Co.,Ltd.

Address before: 242300 intersection of Dongcheng Avenue and Dongcheng Road, heli Park, Ningguo Economic and Technological Development Zone, Ningguo City, Xuancheng City, Anhui Province

Patentee before: Anhui Boshike Environmental Protection Technology Co.,Ltd.

Country or region before: China

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Comprehensive method for chlorine dioxide preparation based on thermal energy and by-product recovery and utilization

Granted publication date: 20180227

Pledgee: China Construction Bank Corporation Nanning New City Branch

Pledgor: Anhui Boshike Environmental Protection Technology Co.,Ltd.|Guangxi Boshike Environmental Technology Co.,Ltd.

Registration number: Y2024450000051