CN106200664B - 一种适应长时间失控的姿态控制方法 - Google Patents

一种适应长时间失控的姿态控制方法 Download PDF

Info

Publication number
CN106200664B
CN106200664B CN201610695170.5A CN201610695170A CN106200664B CN 106200664 B CN106200664 B CN 106200664B CN 201610695170 A CN201610695170 A CN 201610695170A CN 106200664 B CN106200664 B CN 106200664B
Authority
CN
China
Prior art keywords
attitude
control
delta
theta
quaternary number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610695170.5A
Other languages
English (en)
Other versions
CN106200664A (zh
Inventor
潘豪
王辉
李学锋
王晓东
胡煜荣
李新明
冯昊
李超兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Automatic Control Research Institute
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Automatic Control Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Aerospace Automatic Control Research Institute filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201610695170.5A priority Critical patent/CN106200664B/zh
Publication of CN106200664A publication Critical patent/CN106200664A/zh
Application granted granted Critical
Publication of CN106200664B publication Critical patent/CN106200664B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种适应长时间失控的姿态控制方法,属于运载火箭控制技术领域。该方法在起控后,采用角速度控制来减小角速度,为保证三通道角速度快速减小,采用喷管连续开启工作模式,三通道根据角速度方向开启相应喷管,直到角速度减小至0,并在三通道最后一个角速度下降到0附近时,三通道再同时切换至基于姿态角偏差的控制。在姿态角偏差的控制过程中,依据程序四元数和实际四元数,计算箭体系下姿态控制的角偏差。本发明能够快速抑制轨道转移飞行器偏离标准弹道的姿态,保证在全空间姿态指向下飞行器平稳可靠飞行。

Description

一种适应长时间失控的姿态控制方法
技术领域:
本发明涉及一种适应长时间失控的姿态控制方法,属于运载火箭控制技术领域。
背景技术:
轨道转移飞行器与基础级火箭分离后,需要进行长时间失控飞行,并在起控后完成载荷分离任务,之后仍要沿标准弹道程序角飞行。常规手段是采用欧拉角解算模式对姿态角进行结算,但是由于初始姿态角速度存在,在长时间失控飞行过程中,姿态角变化范围大,欧拉角解算模式易因姿态解算奇异而导致姿态控制发散,导致飞行器姿态偏离标准弹道,影响飞行器的平稳可靠飞行。
发明内容:
本发明解决的技术问题是:克服现有技术的不足,提供一种适应长时间失控的姿态控制方法,能够快速抑制轨道转移飞行器偏离标准弹道的姿态,保证在全空间姿态指向下飞行器平稳可靠飞行。
本发明的技术解决方案是:一种适应长时间失控的姿态控制方法,包括如下步骤:
(1)在起控后的每个控制计算周期T内,根据飞行器惯组给出的姿态角增量信息,计算飞行器箭体系三通道的角速度
其中,Δθx1、Δθy1、Δθz1分别为T时间内飞行器箭体系x1、y1、z1通道的角增量,ωx1GZ、ωy1GZ、ωz1GZ分别为T时间内飞行器绕箭体系x1、y1、z1轴的角速度;
(2)根据飞行器转动惯量理论值Jα、喷管推力理论值Pα、喷管到旋转轴距离理论值Lα,计算其中,α=x1,y1或z1。
(3)将中的最大值记为mxx,如果Δθα≤-mxx,则开启α通道使负向角速度减小的喷管;如果Δθα≥mxx,则开启α通道使正向角速度减小的喷管;如果|Δθα|<mxx或ΔθαΔθα,-1<0,则关闭α通道的喷管,该通道角速度控制结束,不再根据角增量大小Δθα控制喷管开启或关闭,其中Δθα,-1为前一控制计算周期的角速度;
(4)在x1、y1、z1通道的喷管全部关闭的时刻tq,根据程序四元数和实际四元数实时计算飞行器箭体系x1、y1、z1通道的姿态角偏差,利用姿态角偏差对飞行器进行控制,使飞行器运行到标准弹道姿态上。
所述步骤(4)中计算姿态角偏差的方法为:
(2.1)利用公式ΔQ=[Δq0 Δq1 Δq2 Δq3]T=Q-1οQcx计算程序四元数和实际四元数的偏差,其中,Q-1=[q0 -q1 -q2 -q3]T
(2.2)如果Δq0<0,则令ΔQ=-ΔQ,否则ΔQ不变;
(2.3)利用公式δθ=2arccos(Δq0)计算δθ,如果δθ<10-4弧度,则飞行器箭体系x1、y1、z1通道的姿态角偏差Δγ1、Δψ1分别为
如果δθ≥10-4弧度,则
所述步骤(4)中,利用公式
计算t时刻的实际四元数其中 由t-T时刻实际四元数确定,起飞时刻的实际四元数由初始对准测量得到。
所述步骤(4)中利用四元数固定目标的调姿方法,在线实时计算生成程序四元数其中程序四元数初值设置为全部喷管关闭时刻tq对应的实际四元数终值为调姿结束时刻te对应的程序四元数
其中,为调姿结束时刻te对应的弹道程序角,为已知量。
与现有技术相比,本发明具有如下有益效果:
(1)本发明通过控制通道喷管,能够快速实现角速度减小,从而有效抑制姿态漂离,在角速度控制结束后,采用基于四元数的姿态角偏差计算方法计算箭体系下的角偏差,实现姿态角调姿。从而在起控后,可快速抑制运载器姿态继续偏离标准弹道,并可保证在调姿角度不确定情况下的平稳可靠高精度控制,从而提高运载器飞行适应性。
(2)本发明在姿态角调姿过程中采用基于四元数的在线规划方式实时产生程序四元数,并根据导航不断更新的实时四元数,从而依据程序四元数和实时四元数,利用角速度匀速转动模式,计算箭体系下的姿态角偏差,从而有效避免了采用传统欧拉角解算模式可能会出现解算奇异现象的问题,能够快速抑制轨道转移飞行器偏离标准弹道的姿态,保证了在全空间姿态指向下飞行器平稳可靠飞行。
附图说明:
图1为本发明方法流程图;
图2为飞行器绕箭体系x1、y1、z1轴的角速度曲线;
图3为飞行器箭体系x1、y1、z1通道的姿态角偏差曲线。
具体实施方式:
本发明提出一种适应长时间失控的姿态控制方法,能够快速抑制轨道转移飞行器偏离标准弹道的姿态,保证在全空间姿态指向下飞行器平稳可靠飞行。设计思路如下:
(1)基于姿控喷管的三轴角速度控制方法
轨道转移飞行器失控飞行结束后,姿控喷管开始接收控制指令正常工作,起控后,为尽快抑制姿态角继续漂离,采用角速度控制来减小角速度,为保证三通道角速度快速减小,采用喷管连续开启工作模式,三通道根据角速度方向开启相应喷管,直到角速度减小至0,并在三通道角速度最后一个下降到0附近时,三通道再同时切换至基于角偏差的控制。
(2)调姿过程基于四元数的姿态角偏差计算方法
角速度控制结束后,需要将飞行器快速平稳调整到弹道程序角,采用传统欧拉角解算模式,由于长时间失控影响,欧拉角大小不确定,可能会出现欧拉角解算奇异现象。为此,在姿态角调姿过程中采用基于四元数的在线规划方式实时产生程序四元数,并根据导航不断更新的实时四元数,从而依据程序四元数和实时四元数,利用角速度匀速转动模式,计算箭体系下的姿态角偏差,用于姿态控制。
依据上述思路,本发明的具体步骤如图1所示,内容如下:
(1)在起控后的每个控制计算周期T内,根据飞行器惯组给出的姿态角增量信息,计算飞行器箭体系三通道的角速度
箭体系是以Ox1、0y1、0z1轴表示的直角坐标系,原点0为箭体质心,0x1沿箭体纵轴指向前,0y1轴与0x1垂直并在箭体纵向对称平面内向上,0z1轴由右手法则确定。
其中,Δθx1、Δθy1、Δθz1分别为T时间内飞行器箭体系x1、y1、z1通道的角增量,ωx1GZ、ωy1GZ、ωz1GZ分别为飞行器绕箭体系x1、y1、z1轴的角速度。
(2)根据运载器理论计算的转动惯量Jα、喷管推力Pα、喷管到旋转轴距离Lα,计算其中,α=x1,y1,z1。
(3)将中的最大值记为mxx
(4)如果Δθα≤-mxx,则开启α通道使负向角速度减小的喷管;
(5)如果Δθα≥mxx,则开启α通道使正向角速度减小的喷管;
(6)如果|Δθα|<mxx或ΔθαΔθα,-1<0(Δθα,-1为前一控制计算周期的角速度),则关闭相应α通道的喷管,该通道角速度控制结束,不再根据角速度大小Δθα控制喷管开启或关闭;
(7)在三组通道的喷管全部关闭的时刻tq,进入基于姿态角偏差的控制模式,角偏差计算需要根据程序四元数和四元数来计算;
其中,四元数根据(1)中角增量,不断递推计算得到,递推初值为起飞时刻四元数,由初始对准测量得到;相应递推公式为
其中,t表示当前时刻,t-T表示前一计算时刻。为t时刻的实际四元数,由t-T时刻实际四元数确定。
程序四元数根据基于四元数固定目标的调姿方法,在线实时计算生成,该方法是该领域成熟技术,只需要配置初值、终值,以及调姿起始、结束时刻即可,这里初值为全部喷管关闭时刻tq对应的实际四元数终值为调姿结束时刻te对应的程序四元数
其中,为调姿结束时刻te对应弹道程序角(转序为)。
根据程序四元数和四元数按照如下公式计算姿态角偏差:
ΔQ=[Δq0 Δq1 Δq2 Δq3]T=Q-1οQcx
其中,Q-1=[q0 -q1 -q2 -q3]T
在上式中,如果Δq0<0,则令ΔQ=-ΔQ,否则ΔQ不变,然后按照如下方式计算姿态角偏差:
首先,计算δθ,有
δθ=2arccos(Δq0)
如果δθ=2arccos(Δq0)<0.001°/57.3,则取
否则,
这里,Δψ1,Δγ1为姿态角偏差。
利用本发明方法对某飞行器进行长时间失控后的姿态控制仿真,得到飞行器绕箭体系x1、y1、z1轴的角速度曲线如图2所示,飞行器箭体系x1、y1、z1通道的姿态角偏差曲线如图3所示。从图2中角速度ωx1GZ、ωy1GZ、ωz1GZ曲线,可以看出,本发明方法能够快速实现角速度减小,从而有效抑制姿态漂离;从图3中姿态角偏差曲线Δγ1,Δψ1,可以看出沿着向弹道姿态规划的路径,姿态角偏差较小,即姿态角平缓过渡到弹道姿态上,控制稳定。说明本发明方法有效可行,可保证飞行器平稳可靠飞行。
实际上,该方法已成功应用于某飞行器实际飞行中长时间失控情形下的姿态控制,并取得圆满成功。
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (3)

1.一种适应长时间失控的姿态控制方法,其特征在于包括如下步骤:
(1)在开始控制后的每个控制计算周期T内,根据飞行器惯组给出的姿态角增量信息,计算飞行器箭体系三通道的角速度
ω z 1 G Z = Δθ z 1 T
ω y 1 G Z = Δθ y 1 T
ω x 1 G Z = Δθ x 1 T
其中,Δθx1、Δθy1、Δθz1分别为T时间内飞行器箭体系x1、y1、z1通道的角增量,ωx1GZ、ωy1GZ、ωz1GZ分别为T时间内飞行器绕箭体系x1、y1、z1通道的角速度;
(2)根据飞行器转动惯量理论值Jα、喷管推力理论值Pα、喷管到旋转轴距离理论值Lα,计算其中,α=x1,y1或z1。
(3)将中的最大值记为mxx,如果Δθα≤-mxx,则开启α通道使负向角速度减小的喷管;如果Δθα≥mxx,则开启α通道使正向角速度减小的喷管;如果|Δθα|<mxx或ΔθαΔθα,-1<0,则关闭α通道的喷管,该通道角速度控制结束,不再根据角增量大小Δθα控制喷管开启或关闭,其中Δθα,-1为前一控制计算周期的角速度;
(4)在x1、y1、z1通道的喷管全部关闭的时刻tq,根据程序四元数和实际四元数实时计算飞行器箭体系x1、y1、z1通道的姿态角偏差,利用姿态角偏差对飞行器进行控制,使飞行器运行到标准弹道姿态上;
其中,所述步骤(4)中计算姿态角偏差的方法为:
(2.1)利用公式计算程序四元数和实际四元数的偏差,其中,Q-1=[q0 -q1 -q2 -q3]T
(2.2)如果Δq0<0,则令ΔQ=-ΔQ,否则ΔQ不变;
(2.3)利用公式δθ=2arccos(Δq0)计算δθ,如果δθ<10-4弧度,则飞行器箭体系x1通道的姿态角偏差Δγ1、y1通道的姿态角偏差Δψ1、z1通道的姿态角偏差分别为:
如果δθ≥10-4弧度,则
2.根据权利要求1所述的一种适应长时间失控的姿态控制方法,其特征在于:所述步骤(4)中,利用公式
q 0 q 1 q 2 q 3 t = q 0 - q 1 - q 2 - q 3 q 1 q 0 - q 3 q 2 q 2 q 3 q 0 - q 1 q 3 - q 2 q 1 q 0 t - T &CenterDot; cos &Delta; &theta; 2 &Delta;&theta; x 1 &Delta; &theta; &CenterDot; sin &Delta; &theta; 2 &Delta;&theta; y 1 &Delta; &theta; &CenterDot; sin &Delta; &theta; 2 &Delta;&theta; z 1 &Delta; &theta; &CenterDot; sin &Delta; &theta; 2
计算t时刻的实际四元数其中 由t-T时刻实际四元数确定,起飞时刻的实际四元数由初始对准测量得到。
3.根据权利要求1所述的一种适应长时间失控的姿态控制方法,其特征在于:所述步骤(4)中利用四元数固定目标的调姿方法,在线实时计算生成程序四元数其中程序四元数初值设置为全部喷管关闭时刻tq对应的实际四元数终值为调姿结束时刻te对应的程序四元数
其中,为调姿结束时刻te对应的弹道程序角,为已知量。
CN201610695170.5A 2016-08-19 2016-08-19 一种适应长时间失控的姿态控制方法 Expired - Fee Related CN106200664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610695170.5A CN106200664B (zh) 2016-08-19 2016-08-19 一种适应长时间失控的姿态控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610695170.5A CN106200664B (zh) 2016-08-19 2016-08-19 一种适应长时间失控的姿态控制方法

Publications (2)

Publication Number Publication Date
CN106200664A CN106200664A (zh) 2016-12-07
CN106200664B true CN106200664B (zh) 2017-04-19

Family

ID=57523236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610695170.5A Expired - Fee Related CN106200664B (zh) 2016-08-19 2016-08-19 一种适应长时间失控的姿态控制方法

Country Status (1)

Country Link
CN (1) CN106200664B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997053B (zh) * 2017-02-24 2019-11-12 北京航天自动控制研究所 一种共支架基座三捷联惯组导航一致性试验方法
CN111538345B (zh) * 2020-05-07 2023-08-25 上海宇航系统工程研究所 运载火箭星箭分离段的程序角生成方法
CN112649884B (zh) * 2021-01-13 2024-02-09 中国自然资源航空物探遥感中心 应用于航空电磁测量系统的吊舱姿态实时调整方法
CN114415703B (zh) * 2021-12-10 2024-03-19 航天科工火箭技术有限公司 大角加速度喷管的角速率精确控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282195A (ja) * 2007-05-10 2008-11-20 Toshiba Corp 飛しょう体の制御装置
CN100575878C (zh) * 2008-11-18 2009-12-30 航天东方红卫星有限公司 一种卫星姿态快速挽救方法
CN101462598B (zh) * 2009-01-12 2010-10-13 徐国栋 一种卫星姿态定向系统及方法
US8306674B2 (en) * 2009-10-01 2012-11-06 Raytheon Company System and method for divert and attitude control in flight vehicles
CN103121514B (zh) * 2011-11-18 2015-09-02 上海宇航系统工程研究所 一种适用于质心横移空间飞行器的姿态控制方法
CN104155988B (zh) * 2014-08-12 2015-05-20 北京航天自动控制研究所 飞行器的多通道姿态控制器
CN105197261B (zh) * 2015-08-24 2017-11-03 哈尔滨工业大学 面向在轨服务的快速翻滚目标消旋细胞帆的工作方法
CN105620792B (zh) * 2016-02-05 2017-12-05 上海微小卫星工程中心 一种采用斜装推力器进行卫星姿态和轨道控制的方法
CN105619394A (zh) * 2016-02-29 2016-06-01 青岛海山海洋装备有限公司 一种基于误差四元数反馈的rov姿态控制方法
CN105955283A (zh) * 2016-05-30 2016-09-21 上海航天控制技术研究所 多轴快速姿态机动喷气控制方法

Also Published As

Publication number Publication date
CN106200664A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN110471450B (zh) 在高度速度剖面内直接规划再入轨迹的方法
CN111306989B (zh) 一种基于平稳滑翔弹道解析解的高超声速再入制导方法
CN106200664B (zh) 一种适应长时间失控的姿态控制方法
US11286065B2 (en) Method for designing reentry trajectory based on flight path angle planning
CN111591470B (zh) 一种适应推力可调模式的飞行器精确软着陆闭环制导方法
CN104657559B (zh) 基于圆柱型速度参数截面的地月自由返回轨道设计方法
CN112947573B (zh) 终端时间约束下的高超声速飞行器再入制导方法
CN108845588A (zh) 一种基于非线性制导的四旋翼飞行器轨迹跟踪控制方法
CN111580547B (zh) 一种高超声速飞行器编队控制方法
CN105116914B (zh) 一种平流层飞艇解析模型预测路径跟踪控制方法
CN109269504B (zh) 一种具有末端约束的姿态机动路径规划方法
CN106371312A (zh) 基于模糊控制器的升力式再入预测‑校正制导方法
CN112013726B (zh) 一种基于三阶模型的全捷联制导控制一体化设计方法
CN106444822A (zh) 一种基于空间矢量场制导的平流层飞艇路径跟踪控制方法
CN109703768A (zh) 一种基于姿态/轨迹复合控制的软式空中加油对接方法
CN109857130A (zh) 一种基于误差四元数的导弹双回路姿态控制方法
CN109343551A (zh) 一种旋翼机协调转弯控制方法及系统
CN109582039A (zh) 一种采用相对导航信息的j2摄动下最优队形重构方法
CN114509946A (zh) 一种基于预设时间滑模的飞行器制导控制一体化设计方法
CN109703769A (zh) 一种基于预瞄策略的空中加油对接控制方法
CN112000127A (zh) 一种基于反步法的飞行器横侧向联合控制方法
CN107796401B (zh) 跳跃式再入飞行器线性伪谱参数修正横向制导方法
CN117471952A (zh) 一种飞行器反步超螺旋滑模制导控制一体化方法
CN117008626A (zh) 无动力伞翼无人机在风场中的精准航线跟踪引导控制方法
CN109445283B (zh) 一种用于欠驱动浮空器在平面上定点跟踪的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170419

Termination date: 20200819

CF01 Termination of patent right due to non-payment of annual fee