CN106191836B - 一种镁合金增强化学转化膜的制备方法 - Google Patents

一种镁合金增强化学转化膜的制备方法 Download PDF

Info

Publication number
CN106191836B
CN106191836B CN201610630219.9A CN201610630219A CN106191836B CN 106191836 B CN106191836 B CN 106191836B CN 201610630219 A CN201610630219 A CN 201610630219A CN 106191836 B CN106191836 B CN 106191836B
Authority
CN
China
Prior art keywords
ndfeb
amorphous sio
magnesium alloy
preparation
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610630219.9A
Other languages
English (en)
Other versions
CN106191836A (zh
Inventor
赵明
王学良
陈睿
王宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihu County Market Supervision And Inspection Institute Taihu County Functional Membrane Testing Institute
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN201610630219.9A priority Critical patent/CN106191836B/zh
Publication of CN106191836A publication Critical patent/CN106191836A/zh
Application granted granted Critical
Publication of CN106191836B publication Critical patent/CN106191836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种镁合金增强化学转化膜的制备方法,该制备方法包括:Fe3O4@NdFeB核壳结构颗粒的制备;Fe3O4@NdFeB核壳结构表面非晶SiO2外壳的制备;镁合金的化学转化处理;Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜裂纹区可控生长。按本发明描述方法制备的镁合金Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜结构特征在于:Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜微裂纹区域生长不仅堵塞了转化膜裂纹区,而且形成转化膜的增强骨架,有效提高了镁合金转化膜的耐蚀性能和耐磨性能。

Description

一种镁合金增强化学转化膜的制备方法
技术领域
本发明涉及镁合金表面处理领域,特别是一种镁合金增强化学转化膜的制备方法。
背景技术
化学转化膜技术是提高镁合金耐蚀性能的有效方法,但是由于在化学反应过程中化学溶液与镁合金表面原子化学反应产物的多样性产生的应力以及化学转化膜的强韧性较低,导致化学转化膜存在大量微裂纹,难以满足工程要求。
为解决化学溶液与镁合金表面原子化学反应产物的多样性产生转化膜微裂纹的问题,可在镁合金化学转化处理过程中外加磁场使溶液反应离在Lorentz力作用下作螺旋定向运动,以达获得致密均一的镁合金转化膜的目的(如国家发明专利201010217144.4“一种制备镁合金表面转化耐蚀膜层的方法”和国家发明专利201010217151.4“一种制备镁合金表面转化耐蚀膜层的装置”),也可通过在化学转化液中加入一定量的纳米颗粒促进转化膜形核,同时通过对裂纹扩展的钉扎作用抑制大量裂纹的产生(如国家发明专利201210317304.1“一种纳米氧化铝颗粒增强转化膜制备方法”和国家发明专利201210316973.7“一种给纳米颗粒加电荷的装置”)。尽管上述方法能够有效地抑制镁合金化学转化膜微裂纹的产生,但制备出的镁合金化学转化膜的耐磨性能仍然较低,不适应制造机械运动构件的要求。
发明内容
为了克服现有技术的不足,本发明提供了一种镁合金增强化学转化膜的制备方法,该制备方法包括Fe3O4@NdFeB@非晶SiO2三层核壳结构磁性纳米颗粒的制备以及镁合金增强转化膜的制备,其Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜微裂纹区域生长不仅堵塞了转化膜裂纹区,而且形成转化膜的增强骨架,有效提高了镁合金转化膜的耐蚀性能和耐磨性能。
本发明解决其技术问题所采用的技术方案是:一种镁合金增强化学转化膜的制备方法,由以下制备步骤组成:
步骤一:Fe3O4@NdFeB核壳结构颗粒的制备;
步骤二:Fe3O4@NdFeB核壳结构表面非晶SiO2外壳的制备;
步骤三:镁合金的化学转化处理;
步骤四:Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜裂纹区可控生长。
优选的,所述步骤一具体为:
利用分子束外延设备(MBE)在Fe3O4纳米颗粒表面分子束外延生长NdFeB壳层:将纯度为99.99%的Nd、Fe和B作为蒸发源,其中Nd、Fe和B摩尔质量比为1-2:5-10:0.5-2,将Fe3O4纳米颗粒平铺于Si晶片上并用PTFE透气膜覆盖封闭作为外延生长衬底,对分子外延真空生长室抽真空至5×10-7-1×10-6Pa,将衬底加热至450-600℃,分别控制蒸发源Nd、Fe和B的温度为900-1200℃、700-1050℃和800-1300℃,Nd、Fe和B的蒸发束流分别为2×10-4-5×10- 4Pa、6×10-4-8×10-4Pa和8×10-5-1×10-4Pa,NdFeB壳层的生长速度控制在400nm/h-800nm/h,外延生长时间为0.5-1.5小时后形成Fe3O4@NdFeB核壳结构纳米颗粒。
优选的,所述步骤二具体为:
将无水乙醇与丙酮按体积比为1:1的比例充分混合成混合溶剂,将Fe3O4@NdFeB核壳结构纳米颗粒加入上述混合溶剂,Fe3O4@NdFeB核壳结构纳米颗粒的重量百分比为12%-45%,在室温下以超声波分散20-50分钟形成稳定的Fe3O4@NdFeB核壳结构纳米颗粒分散体系,加入硅酸四乙酯至其浓度达到180-320mL/L,加入4-甲氧基苯甲醇至其浓度达到2-12g/L,加入乙酰胺吡咯烷酮至其浓度达到15-22g/L形成准备溶液。用去离子水配制体积百分比为20-75%的碳酸氢铵溶液,将配制的200-600mL碳酸氢铵溶液与1L上述配制的准备溶液充分混合,使该混合体系操持2.5-4小时;过滤得该体系固态产物,在温度为140-160℃下保温0.5-1小时以在Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳,即获得Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
优选的,还包括后处理步骤:以去离子水配制浓度为5-18mL/L的氢氟酸,将上述负载了Fe3O4@NdFeB@非晶SiO2结构的纳米颗粒浸入配制的氢氟酸溶液中,浸蚀10-25分钟以达到Fe3O4@NdFeB核壳结构表面形成的非晶SiO2外壳的局部去除,从而获得非晶SiO2层具有更高表面积的Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
优选的,所述步骤三具体为:
将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵依次加入去离子水中,形成环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵浓度分别为120-260mL/L、45-130g/L、210-340g/L、16-35g/L和5-21g/L的转化液。
将镁合金浸入转化液1-8分钟进行化学转化处理,温度为35-75℃,转化处理过程进行充分的机械搅拌,待转化处理完成后,镁合金放入40℃烘箱中持续烘干40分钟。
优选的,所述步骤四具体为:
将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒加入去离子水中,形成环己六醇磷酸酯、柠檬酸、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒浓度分别为10-35mL/L、10-75g/L和135-160g/L的电沉积液。将化学转化处理完成的镁合金作为阴极,铂为阳极,以电压幅值为5-10V,频率为50-100Hz的正弦交流电进行电沉积3-10分钟,从而在镁合金表面获得Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜。
本发明的积极效果:首先本发明方法制备的Fe3O4@NdFeB@非晶SiO2结构纳米颗粒,充分发挥了NdFeB极高磁能积与Fe3O4的结合具有较高磁性的特点,且避免了NdFeB耐蚀性较差的弱点。以这种非晶SiO2外壳包覆的高磁性三层核壳结构纳米颗粒在电沉积液中对镁合金化学转化膜进行交流电沉积,镁合金转化膜微裂纹区在强烈的交流电流作用下,制备的Fe3O4@NdFeB@非晶SiO2结构磁性纳米颗粒在镁合金化学转化膜的微裂纹区域沉积生长,Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜微裂纹区域生长不仅堵塞了转化膜裂纹区,而且形成了转化膜的增强骨架,有效提高了镁合金转化膜的耐蚀性能和耐磨性能。
附图说明
图1是本发明所述Fe3O4@NdFeB@非晶SiO2结构纳米颗粒的制备流程示意图;
图2是本发明所述增强化学转化膜的制备流程示意图;
图3是本发明所述增强化学转化膜的结构示意图;
图4是本发明对比例、实施例1和实施例2的腐蚀电位、腐蚀电流及磨损量的实验结果图。
具体实施方式
下面结合附图对本发明的优选实施例进行详细说明。
参照图1至图3,本发明优选实施例提供一种镁合金增强化学转化膜的制备方法,按下列步骤顺序进行:
(1)Fe3O4@NdFeB核壳结构颗粒的制备:利用分子束外延设备(MBE)在Fe3O4纳米颗粒表面分子束外延长NdFeB壳层。具体为:将纯度为99.99%的Nd、Fe和B作为蒸发源,Nd、Fe和B摩尔质量比为1-2:5-10:0.5-2,将Fe3O4纳米颗粒平铺于Si晶片上并用PTFE透气膜覆盖封闭作为外延生长衬底,PTFE透气膜能够使分子束设备抽真空达到所要求的真空度,同时防止Fe3O4纳米颗粒冲出透气膜污染分子外延真空生长室,且能透过蒸发的Nd、Fe和B离子。对分子外延真空生长室抽真空至5×10-7-1×10-6Pa,将衬底加热至450-600℃,蒸发源Nd、Fe和B温度控制分别为控制在900-1200℃、700-1050℃和800-1300℃,Nd、Fe和B的蒸发束流分别为2×10-4-5×10-4Pa、6×10-4-8×10-4Pa和8×10-5-1×10-4Pa,NdFeB壳层的生长速度控制在400nm/h-800nm/h,外延生长时间为0.5-1.5小时后形成Fe3O4@NdFeB核壳结构。
(2)Fe3O4@NdFeB核壳结构表面非晶SiO2外壳的制备:无水乙醇与丙酮按体积比1:1充分混合成混合溶剂,将Fe3O4@NdFeB核壳结构纳米颗粒加入无水乙醇与丙酮的混合溶剂中,Fe3O4@NdFeB核壳结构纳米颗粒重量的百分比为12%-45%,在室温下以超声波分散20-50分钟形成稳定的Fe3O4@NdFeB核壳结构纳米颗粒分散体系,加入硅酸四乙酯使其浓度达到180-320mL/L,加入4-甲氧基苯甲醇使其浓度达到2-12g/L,加入乙酰胺吡咯烷酮使其浓度达到15-22g/L形成准备溶液。用去离子水配制体积百分比浓度为20%-75%的碳酸氢铵溶液,将配制的200-600mL碳酸氢铵溶液与1L配制的准备溶液充分混合,使该混合体系操持2.5-4小时;过滤后得该体系固态产物,在温度为140-160℃下保温0.5-1小时,以在Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳,即是Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
以去离子水配制浓度为5mL/L-18mL/L的氢氟酸,将负载了Fe3O4@NdFeB@非晶SiO2结构的纳米颗粒浸入上述配制的氢氟酸溶液,浸蚀10-25分钟以达到Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳的局部去除,从而获得非晶SiO2层具有更高表面积的Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
(3)镁合金的化学转化处理:将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵依次加入去离子水中,形成环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵浓度分别为120mL/L-260mL/L、45g/L-130g/L、210g/L-340g/L、16g/L-35g/L和5g/L-21g/L的转化液。
将镁合金浸入转化液1-8分钟进行化学转化处理,温度为35-75℃,转化处理过程进行充分的机械搅拌,待转化处理完成后,镁合金放入40℃烘箱中持续烘干40分钟。
(4)Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜裂纹区可控生长:将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒加入去离子水中,形成环己六醇磷酸酯、柠檬酸、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒浓度分别为10mL/L-35mL/L、10g/L-75g/L和135g/L-160g/L的电沉积液。将化学转化处理完成的镁合金作为阴极,铂为阳极,以电压幅值为5-10V,频率为50-100Hz的正弦交流电进行电沉积3-10分钟,从而在镁合金表面获得Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜。
下面给出具体对比例以及实施例:
对比例:
本发明对比例提供一种镁合金转化膜方法,其制备过程为:
将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵依次加入去离子水中,形成环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵浓度分别为130mL/L、55g/L、260g/L、20g/L和7g/L的转化液。
将镁合金浸入转化液4分钟进行化学转化处理,温度为40℃,转化处理过程进行充分的机械搅拌,待转化处理完成后,镁合金放入40℃烘箱中持续烘干40分钟。
实施例1:
本发明优选实施例1提供一种镁合金增强化学转化膜的制备方法,按下列步骤顺序进行:
(1)Fe3O4@NdFeB核壳结构颗粒的制备:利用分子束外延设备(MBE)在Fe3O4纳米颗粒表面分子束外延长NdFeB壳层,具体为:将纯度为99.99%的Nd、Fe和B作为蒸发源,Nd、Fe和B摩尔质量比为1:5:1;将Fe3O4纳米颗粒平铺于Si晶片上并用PTFE透气膜覆盖封闭作为外延生长衬底,PTFE透气膜能够使分子束设备抽真空达到所要求的真空度,同时防止Fe3O4纳米颗粒冲出透气膜污染分子外延真空生长室,且能透过蒸发的Nd、Fe和B离子。对分子外延真空生长室抽真空至6×10-7,将衬底加热450℃,蒸发源Nd、Fe和B温度控制分别为控制900℃、800℃和1300℃,Nd、Fe和B的蒸发束流分别为2×10-4Pa、7×10-4Pa和8×10-5Pa,NdFeB壳层的生长速度控制在500nm/h,外延生长时间为1小时后形成Fe3O4@NdFeB核壳结构。
(2)Fe3O4@NdFeB核壳结构表面非晶SiO2外壳的制备:无水乙醇与丙酮按体积比1:1充分混合成有机混合溶剂,将Fe3O4@NdFeB核壳结构纳米颗粒加入无水乙醇与丙酮有机混合溶剂中,Fe3O4@NdFeB核壳结构纳米颗粒重量的百分比为25%,在室温下以超声波分散20-50分钟形成稳定的Fe3O4@NdFeB核壳结构纳米颗粒分散体系,加入硅酸四乙酯使其浓度达到280mL/L,加入4-甲氧基苯甲醇使其浓度达到10g/L,加入乙酰胺吡咯烷酮使其浓度达到15g/L形成准备溶液。用去离子水配制体积百分比浓度为25%的碳酸氢铵溶液,将配制的300mL碳酸氢铵溶液与1L上述配制的准备溶液充分混合,使该混合体系操持3小时;过滤该体系固态产物,在温度为150℃保温1小时在Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳,即获得Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
以去离子水配制浓度为9mL/LmL/L的氢氟酸,将负载了Fe3O4@NdFeB@非晶SiO2结构的纳米颗粒浸入上述配制的氢氟酸溶液,浸蚀15分钟以达到Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳的局部去除,从而获得非晶SiO2层具有更高表面积的Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
(3)镁合金的化学转化处理:将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵依次加入去离子水中,形成环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵浓度分别为130mL/L、55g/L、260g/L、20g/L和7g/L的转化液。
将镁合金浸入转化液4分钟进行化学转化处理,温度为40℃,转化处理过程进行充分的机械搅拌,待转化处理完成后,镁合金放入40℃烘箱中持续烘干40分钟。
(4)Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜裂纹区可控生长:将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒加入去离子水中,形成环己六醇磷酸酯、柠檬酸、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒浓度分别为12mL/L、15g/L和155g/L的电沉积液。将化学转化处理完成的镁合金作为阴极,铂为阳极,以电压幅值为8V,频率为50Hz的正弦交流电进行电沉积7分钟,从而在镁合金表面获得Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜。
实施例2:
本发明优选实施例2提供一种镁合金增强化学转化膜的制备方法,按下列步骤顺序进行:
(1)Fe3O4@NdFeB核壳结构颗粒的制备:利用分子束外延设备(MBE)在Fe3O4纳米颗粒表面分子束外延长NdFeB壳层。具体为:将纯度为99.99%的Nd、Fe和B作为蒸发源,Nd、Fe和B摩尔质量比为1.5:7:2,将Fe3O4纳米颗粒平铺于Si晶片上并用PTFE透气膜覆盖封闭作为外延生长衬底,PTFE透气膜能够使分子束设备抽真空达到所要求的真空度,同时防止Fe3O4纳米颗粒冲出透气膜污染分子外延真空生长室,且能透过蒸发的Nd、Fe和B离子。对分子外延真空生长室抽真空至1×10-6Pa,将衬底加热至600℃,蒸发源Nd、Fe和B温度控制分别为控制在1000℃、1050℃和1200℃,Nd、Fe和B的蒸发束流分别为4×10-4Pa、8×10-4Pa和1×10- 4Pa,NdFeB壳层的生长速度控制在800nm/h,外延生长时间为1.5小时后形成Fe3O4@NdFeB核壳结构纳米颗粒。
(2)Fe3O4@NdFeB核壳结构表面非晶SiO2外壳的制备:无水乙醇与丙酮按体积比1:1充分混合成有机混合溶剂,将Fe3O4@NdFeB核壳结构纳米颗粒加入无水乙醇与丙酮有机混合溶剂,Fe3O4@NdFeB核壳结构纳米颗粒重量的百分比为40%,在室温下以超声波分散20-50分钟形成稳定的Fe3O4@NdFeB核壳结构纳米颗粒分散体系,加入硅酸四乙酯使其浓度达到300mL/L,加入4-甲氧基苯甲醇使其浓度达到8g/L,加入乙酰胺吡咯烷酮使其浓度达到20g/L形成准备溶液。用去离子水配制体积百分比浓度为30%的碳酸氢铵溶液,将配制的500mL碳酸氢铵溶液与1L上述配制的准备溶液充分混合,使该混合体系操持4小时;过滤后获得该体系固态产物,在温度为160℃下保温0.5小时,以在Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳,即获得Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
以去离子水配制浓度为12mL/L的氢氟酸,将负载了Fe3O4@NdFeB@非晶SiO2结构的纳米颗粒浸入上述配制的氢氟酸溶液,浸蚀10分钟以达到Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳的局部去除,从而获得非晶SiO2层具有更高表面积的Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
(3)镁合金的化学转化处理:将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵依次加入去离子水中,形成环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵浓度分别为160mL/L、80g/L、220g/L、30g/L和12g/L的转化液。
将镁合金浸入转化液5分钟进行化学转化处理,温度为55℃,转化处理过程进行充分的机械搅拌,待转化处理完成后,镁合金放入40℃烘箱中持续烘干40分钟。
(4)Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜裂纹区可控生长:将浓度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒加入去离子水中,形成环己六醇磷酸酯、柠檬酸、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒浓度分别为15mL/L、20g/L和140g/L的电沉积液。将化学转化处理完成的镁合金作为阴极,铂为阳极,以电压幅值为6V,频率为70Hz的正弦交流电进行电沉积10分钟,从而在镁合金表面获得Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜。
配制5%的NaCl溶液,将对比例、实施例1和实施例2分别浸入上述配制5%NaCl溶液静置10分钟,测量对比例、实施例1和实施例2的腐蚀极化曲线;此外,将对比例、实施例1和实施例2在磨损实验机上进行磨损实验,载荷为1kg,转速为100转/分钟,磨损时间为20分钟。
根据极化曲线得到对比例、实施例1和实施例2在5%NaCl溶液中的腐蚀电位和腐蚀电流如图4所示。从图4可知,实施例1和实施例2的腐蚀电位和腐蚀电流大体相同,实施例1和实施例2的腐蚀电位明显高于对比例,而腐蚀电流明显低于对比例。从磨损实验的结果可知,实施例1和实施例2在上述磨损实验的磨损量只有对比例的1%。实验结果表明,依据本发明制备的镁合金Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜有效提高了镁合金转化膜的耐蚀性能和耐磨性能。
以上所述的仅为本发明的优选实施例,所应理解的是,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,并不用于限定本发明的保护范围,凡在本发明的思想和原则之内所做的任何修改、等同替换等等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种镁合金增强化学转化膜的制备方法,其特征在于,由以下制备步骤组成:
步骤一:Fe3O4@NdFeB核壳结构颗粒的制备;
步骤二:Fe3O4@NdFeB核壳结构表面非晶SiO2外壳的制备;
步骤三:镁合金的化学转化处理;
步骤四:Fe3O4@NdFeB@非晶SiO2结构纳米颗粒在转化膜裂纹区可控生长;
所述步骤一具体为利用分子束外延设备MBE在Fe3O4纳米颗粒表面分子束外延生长NdFeB壳层,具体为:将纯度为99.99%的Nd、Fe和B作为蒸发源,其中Nd、Fe和B摩尔质量比为1-2:5-10:0.5-2,将Fe3O4纳米颗粒平铺于Si晶片上并用PTFE透气膜覆盖封闭作为外延生长衬底,对分子外延真空生长室抽真空至5×10-7-1×10-6Pa,将衬底加热至450-600℃,分别控制蒸发源Nd、Fe和B的温度为900-1200℃、700-1050℃和800-1300℃,Nd、Fe和B的蒸发束流分别为2×10-4-5×10-4Pa、6×10-4-8×10-4Pa和8×10-5-1×10-4Pa,NdFeB壳层的生长速度控制在400nm/h-800nm/h,外延生长时间为0.5-1.5小时后形成Fe3O4@NdFeB核壳结构纳米颗粒;
所述步骤二具体为:将无水乙醇与丙酮按体积比为1:1的比例充分混合成混合溶剂,将Fe3O4@NdFeB核壳结构纳米颗粒加入上述混合溶剂,Fe3O4@NdFeB核壳结构纳米颗粒的重量百分比为12%-45%,在室温下以超声波分散20-50分钟形成稳定的Fe3O4@NdFeB核壳结构纳米颗粒分散体系,加入硅酸四乙酯至其浓度达到180-320mL/L,加入4-甲氧基苯甲醇至其浓度达到2-12g/L,加入乙酰胺吡咯烷酮至其浓度达到15-22g/L形成准备溶液;用去离子水配制体积百分比为20-75%的碳酸氢铵溶液,将配制的200-600mL碳酸氢铵溶液与1L上述配制的准备溶液充分混合,使该混合体系操持2.5-4小时;过滤得该体系固态产物,在温度为140-160℃下保温0.5-1小时以在Fe3O4@NdFeB核壳结构表面形成非晶SiO2外壳,即获得Fe3O4@NdFeB@非晶SiO2结构纳米颗粒;
所述步骤三具体为:将纯度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵依次加入去离子水中,形成环己六醇磷酸酯、柠檬酸、氯化钙、磷酸钠和硼酸铵浓度分别为120-260mL/L、45-130g/L、210-340g/L、16-35g/L和5-21g/L的转化液;将镁合金浸入转化液1-8分钟进行化学转化处理,温度为35-75℃转化处理过程进行充分的机械搅拌,待转化处理完成后,镁合金放入40℃烘箱中持续烘干40分钟;
所述步骤四具体为:将纯度为分析纯的环己六醇磷酸酯、柠檬酸、氯化钙、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒加入去离子水中,形成环己六醇磷酸酯、柠檬酸、Fe3O4@NdFeB@非晶SiO2结构纳米颗粒浓度分别为10-35mL/L、10-75g/L和135-160g/L的电沉积液;将化学转化处理完成的镁合金作为阴极,铂为阳极,以电压幅值为5-10V,频率为50-100Hz的正弦交流电进行电沉积3-10分钟,从而在镁合金表面获得Fe3O4@NdFeB@非晶SiO2结构颗粒增强化学转化膜。
2.根据权利要求1所述的一种镁合金增强化学转化膜的制备方法,其特征在于:
所述步骤二还包括后处理步骤:以去离子水配制浓度为5-18mL/L的氢氟酸,将上述负载了Fe3O4@NdFeB@非晶SiO2结构的纳米颗粒浸入配制的氢氟酸溶液中,浸蚀10-25分钟以达到Fe3O4@NdFeB核壳结构表面形成的非晶SiO2外壳的局部去除,从而获得非晶SiO2层具有更高表面积的Fe3O4@NdFeB@非晶SiO2结构纳米颗粒。
CN201610630219.9A 2016-08-03 2016-08-03 一种镁合金增强化学转化膜的制备方法 Active CN106191836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610630219.9A CN106191836B (zh) 2016-08-03 2016-08-03 一种镁合金增强化学转化膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610630219.9A CN106191836B (zh) 2016-08-03 2016-08-03 一种镁合金增强化学转化膜的制备方法

Publications (2)

Publication Number Publication Date
CN106191836A CN106191836A (zh) 2016-12-07
CN106191836B true CN106191836B (zh) 2018-10-23

Family

ID=57498417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610630219.9A Active CN106191836B (zh) 2016-08-03 2016-08-03 一种镁合金增强化学转化膜的制备方法

Country Status (1)

Country Link
CN (1) CN106191836B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200169A (ja) * 1999-11-09 2001-07-24 Mate:Kk 強磁性金属粉末を配合した樹脂複合材料
JP2009224413A (ja) * 2008-03-13 2009-10-01 Inter Metallics Kk NdFeB焼結磁石の製造方法
CN105304254A (zh) * 2015-11-30 2016-02-03 宁波可可磁业有限公司 一种高矫顽力的钕铁硼磁性材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771882B (zh) * 2013-12-31 2015-11-25 重庆凌达磁材科技有限公司 永磁铁氧体及其制造方法和超薄永磁铁氧体磁瓦
CN104805413B (zh) * 2015-04-08 2018-06-01 无锡杰夫电声股份有限公司 钕铁硼永磁材料表面涂层的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200169A (ja) * 1999-11-09 2001-07-24 Mate:Kk 強磁性金属粉末を配合した樹脂複合材料
JP2009224413A (ja) * 2008-03-13 2009-10-01 Inter Metallics Kk NdFeB焼結磁石の製造方法
CN105304254A (zh) * 2015-11-30 2016-02-03 宁波可可磁业有限公司 一种高矫顽力的钕铁硼磁性材料及其制备方法

Also Published As

Publication number Publication date
CN106191836A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
Niu et al. Effect of electrodeposition parameters on the morphology of three-dimensional porous copper foams
Yang Fern-shaped bismuth dendrites electrodeposited at hydrogen evolution potentials
CN103046088A (zh) 一种微纳米复合多孔铜表面结构及其制备方法与装置
CN107190303B (zh) 一种具有复合涂层的铅蓄电池板栅及其制备方法
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN104711572B (zh) 镁合金磷酸盐/脂肪酸盐复合超疏水耐蚀膜的制备方法
CN104910656A (zh) 一种以复合硅源制备超疏水二氧化硅粉体及超疏水涂层的方法
CN104198560B (zh) 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN111676499A (zh) 基于阴极等离子体电解沉积的阻氢涂层及制备方法
CN109778249A (zh) 一种制备金属核壳纳米线的制备方法
CN106784698A (zh) Si/SiC/C复合材料和制备方法以及锂离子电池负极和电池
CN101866842B (zh) 硅基三维结构磁场辅助电化学腐蚀的方法
Cao et al. The effect of alumina-silica sols on electrodeposited zinc coatings for sintered NdFeB
CN106191836B (zh) 一种镁合金增强化学转化膜的制备方法
Ren et al. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol–gel electrophoresis
CN105355839B (zh) 一种石墨烯‑金复合电极及其制备方法和应用
Xue et al. Corrosion resistance of Ni-Y2O3 composite coating prepared by electrodeposition under ultrasonic condition
CN106283159B (zh) 一种钕铁硼磁体电泳膜的涂装方法及涂装钕铁硼磁体
Segawa et al. Fabrication of alumina films with laminated structures by ac anodization
CN102181890A (zh) 一种直流电沉积法制备Zn/ZnO纳米管的方法
CN105603495A (zh) 一种钛基合金抗高温氧化涂层的制备工艺
CN106283161B (zh) 海绵结构型铁/SiC颗粒基油水分离增强层材料的制备方法
CN104846411A (zh) 利用阳极氧化铝模板制备花状纳米金属钴的方法及其产物
CN113943003A (zh) 一种以Ti3SiC2为前驱体制备二维材料Ti3C2的方法
CN102181928B (zh) 一种直流电沉积法制备Ni-ZnO纳米管的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191121

Address after: 313000 1-B, building 1, No. 656, Qixing Road, high tech Zone, Wuxing District, Huzhou City, Zhejiang Province

Patentee after: Huzhou Qiqi Electromechanical Technology Co.,Ltd.

Address before: 100000 Beijing Haidian District Huayuan Road No. 2 peony building 4 floor 1424 room

Patentee before: Beijing Zhonglian Technology Service Co.,Ltd.

Effective date of registration: 20191121

Address after: 100000 Beijing Haidian District Huayuan Road No. 2 peony building 4 floor 1424 room

Patentee after: Beijing Zhonglian Technology Service Co.,Ltd.

Address before: 100144 Beijing City, Shijingshan District Jin Yuan Zhuang Road No. 5

Patentee before: NORTH CHINA University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201105

Address after: Taihu County, Anhui city of Anqing Province Jin Xi Zhen 246400

Patentee after: Taihu County market supervision and Inspection Institute (Taihu County functional membrane Testing Institute)

Address before: 313000 1-B, building 1, No. 656, Qixing Road, high tech Zone, Wuxing District, Huzhou City, Zhejiang Province

Patentee before: Huzhou Qiqi Electromechanical Technology Co.,Ltd.