CN106186625A - 一种中空@双层污泥碳的制备方法 - Google Patents

一种中空@双层污泥碳的制备方法 Download PDF

Info

Publication number
CN106186625A
CN106186625A CN201610572215.XA CN201610572215A CN106186625A CN 106186625 A CN106186625 A CN 106186625A CN 201610572215 A CN201610572215 A CN 201610572215A CN 106186625 A CN106186625 A CN 106186625A
Authority
CN
China
Prior art keywords
mud
carbon
hollow
preparation
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610572215.XA
Other languages
English (en)
Other versions
CN106186625B (zh
Inventor
熊亚
武志趼
田双红
孔令军
冯锦茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201610572215.XA priority Critical patent/CN106186625B/zh
Publication of CN106186625A publication Critical patent/CN106186625A/zh
Application granted granted Critical
Publication of CN106186625B publication Critical patent/CN106186625B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种中空@双层污泥碳的制备方法,以低密度且易热分解的球形泡沫材料为牺牲性硬模板,在其表面包裹含有强化剂的污泥,烘干预制成前体物球形泡沫@污泥,再在其表面包裹含有不同造孔剂的污泥,烘干后在无氧条件下高温热解,硬模板被分解留下空心,内层污泥被热解碳化并形成坚固的复合支撑材料,外层污泥在热解碳化同时被活化,形成多级孔的中空@双层结构污泥碳。本发明利用污泥等废弃物,通过两步预成型和热解制得中空@双层结构污泥碳,不仅解决了污泥的环境污染问题,所制得的成型污泥碳材料具有密度低、结构结实、比表面积大等特点,可用作吸附剂、生物填料和催化剂载体等,可实现以废治废,是一种高附件值的多功能环境材料。

Description

一种中空@双层污泥碳的制备方法
技术领域
本发明涉及污泥资源化技术领域,具体地,涉及一种中空@双层污泥碳的制备方法。
背景技术
随着污水处理能力的提高,污泥量也大幅增加。2015年我国污泥年产量将达到约1.98亿吨,成为全球最大污泥产生国。污泥是一种富碳废弃物,可作为制备碳材料的原料,而且碳化工艺简单,可实施性强。因此,目前污泥炭材料的开发和应用倍受青睐,已成污泥资源化利用的研究热点。
近年来,具有比表面积大的污泥碳功能材料不断被发现,如:吸附剂、CWAO和Fenton-like催化剂等,大大提高了污泥碳的附加值。这些污泥碳主要以粉末或颗粒形式使用,但由于粉末污泥碳使用后难以从水中分离出来;颗粒污泥碳虽然容易从水溶液中分离,但由于受到内部传质的较慢,不能发挥所有污泥碳的功能,限制了它们实际应用。因此,开发一种传质效率高的成型污泥碳材料是一项很有意义的工作。
核壳结构复合材料是近年来热门的研究对象,所谓核壳式(Core@shell)复合材料就是由不同组分的核相与壳相的有机或无机物质进行叠加或耦合,产生具有核壳式复合结构和功能应用材料,核壳结构材料具有中心核和外壳,展现出许多其它单组分或者简单复合材料不具有的突出优点。另外,核@壳结构中空材料由中空核和多孔薄壳构成使其具有低密度、高比表面积及透气性好等优点,在药物传输、光电效应、传感器、催化及吸附污染物等方面显示出了独特优点,引起了越来越多的关注。因此,利用污泥制备核壳式污泥碳,从而提升其功能,具有很大的潜力。但是由于薄壳污泥碳本身机械强度不大,加之造孔过程会引起其机械强度的进一步降低,造成其易破损,限制了其应用。
发明内容
本发明所要解决的技术问题是克服上述现有技术的缺陷和不足,提供一种中空@双层污泥碳的制备方法,所得污泥碳具有密度低、结构结实、比表面积大等优点,可用作吸附剂、生物填料和催化剂载体等,是一种高附件值的多功能环境材料。
本发明的目的是提供一种中空@双层污泥碳的制备方法。
本发明的另一目的是提供由上述方法制备得到的中空@双层污泥碳。
本发明的再一目的是提供上述中空@双层污泥碳在作为吸附剂、生物填料或催化剂载体方面的应用。
本发明的上述目的是通过以下技术方案予以实现的。
一种中空@双层污泥碳的制备方法,以低密度且易热分解的球形泡沫材料为牺牲性硬模板,采用浸渍-涂覆方法在其表面包裹含有强化剂的污泥,烘干预制成前体物球形泡沫@污泥,再采用浸渍-涂覆方法在其表面包裹含有不同造孔剂的污泥,烘干后在无氧条件下500~900℃热解,硬模板被分解留下空心,内层污泥被热解碳化并形成坚固的复合支撑材料,外层污泥在热解碳化同时被活化,形成多级孔的中空@双层结构污泥碳。
具体地,上述制备方法包括如下步骤:
S1.一次预成型:按照强化剂:干泥:水的质量比为0.1~0.5:1:1~1.8的比例,将污泥、强化剂和水进行混合,并充分搅拌后,烘干至含水90~110%后,采用浸渍-涂覆方法将其包覆在硬模板上,烘干,预制成泡沫@复合污泥材料(厚度约2mm);
S2.二次预成型:按照有机造孔剂:无机造孔剂:干泥:水的质量比为0.3~0.5:0.6~1:1:2~4的比例,将污泥、有机造孔剂、无机造孔剂和水进行混合,并充分搅拌后,烘干至含水90~110%后,再采用浸渍-涂覆方法将其包裹在S1所得泡沫@复合污泥材料上,然后烘干,使泡沫@复合污泥材料上增加一层含造孔剂的污泥层(此层厚度约1.5mm),得到泡沫@双层结构污泥材料;
S3.热解炭化-成型:在氮气保护下,将S2所得泡沫@双层结构污泥材料于500~900℃下热解1~3小时,硬模板被热分解留下空心,内层污泥被热解碳化并MgO等形成坚固的复合支撑材料,外层污泥在热解碳化同时被不同造孔剂活化,形成多级孔污泥碳层,最后冷却、水洗、烘干,即得到中空@双层结构污泥碳。
其中,优选地,步骤S1和S2所述污泥为市政污泥、印染污泥、食品污泥或河道底泥中的一种或多种。
更优选地,所述污泥在使用前需将其置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛。
优选地,步骤S1所述硬模板为低密度且易热分解的球形泡沫材料。
更优选地,所述泡沫材料为闭孔聚乙烯泡沫、聚氨酯泡沫、聚氯乙烯泡沫或聚苯乙烯泡沫。
更优选地,所述泡沫材料为聚苯乙烯球形泡沫(优选直径为4.5mm)。
优选地,步骤S1所述强化剂为玻璃纤维、Mg(NO3)2、MgSO4、MgCl2或Mg(OH)2中的一种或两种。
在制备工艺的过程中,是以玻璃纤维和/或镁盐的热分解产物MgO和MgC2作为中空@双层污泥碳内层的结构强化剂。
优选地,步骤S2所述有机造孔剂为木质素、丙烯酸、柠檬酸或草酸中的一种或多种。
优选地,步骤S2所述无机造孔剂为ZnCl2或KOH中一种或两种。
在制备过程中,有机造孔剂和无机造孔剂配合使用,前者主要为大孔造孔剂,主要用于造大孔;后者主要为微孔造孔剂,主要用于造微孔。
另外,优选地,步骤S1和S2所述烘干的温度是100~110℃。
更优选地,步骤S1和S2所述烘干的温度是105℃。
另外,由上述方法制备得到的中空@双层污泥碳也在本发明的保护范围之内。
上述中空@双层污泥碳的应用,尤其是在作为吸附剂、生物填料或催化剂载体方面的应用,也在本发明的保护范围之内。
与现有技术相比,本发明具有以下有益效果:
本发明利用污泥等废弃物,以易热全分解的低密度材料为牺牲性模板剂,以玻璃纤维和含镁化合物的热解产物MgO和MgC2 为中空@双层污泥碳内层污泥碳的结构强化剂,同时使用有机和无机造孔剂协同造孔技术,通过两步预成型和热解制得中空@双层结构污泥碳,不仅解决了污泥的环境污染问题,所制得的成型中空@双层结构污泥碳材料具有密度低、结构结实、比表面积大等特点,可用作吸附剂、生物填料和催化剂载体等,可实现以废治废,是一种高附件值的多功能环境材料,具有良好的应用前景。
具体实施方式
下面结合具体实施例对本发明作出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。
实施例1 制备中空@双层污泥碳
1、一次预成型
(1)将市政污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、Mg(NO3)2和水进行混合(镁/干泥/水比为0.1:1:1.3),并充分搅拌后,置于烘箱中干燥至含水90%~110%左右后,以4.5 mm直径的聚苯乙烯球形泡沫为硬模板,采用浸渍-涂覆方法在其表面包裹上述含镁污泥后,置于烘箱中于105℃下烘干,制得预成型聚苯乙烯@含镁污泥。此含镁污泥层厚度为2 mm。
2、二次预成型
(1)将市政污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、木质素、ZnCl2、和水进行混合 (木质素/锌/干泥/水比为0.3:1:1:2.5),充分搅拌,置于烘箱中干燥至含水90%~110%左右后,将其涂覆在上述预成型聚苯乙烯@含镁污泥上,置于烘箱中于105℃下烘干,使聚苯乙烯@含镁污泥上增加一层含造孔剂的污泥层(此层厚度约为1.5 mm),预制成聚苯乙烯@双层结构含镁污泥材料。
3、热解炭化-成型
然后将上述聚苯乙烯@双层结构含镁污泥材料置于定碳炉中,在氮气200 ml/min保护下,20℃/min的速度升温至大约500℃。在此温度下热解2小时后,硬模板被分解,污泥被碳化,最终形成中空@双层结构污泥碳。最后经过冷却、水洗、烘干,得成品。
在此制备过程中,Mg(NO3)2的热分解产物MgO和MgC2主要起到粘结污泥碳,增加其机械强度的作用。
上述所得中空@双层结构污泥碳的抗冲击指数为0.01,比表面积351.3 m2/g;对亚甲兰的吸附量达到149.1 mg/g,是同样大小的实心污泥碳吸附量的2.1倍。
实施例2 制备中空@双层污泥碳
1、一次预成型
(1)将市政污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、玻璃纤维、Mg(NO3)2和水进行混合(玻璃纤维/镁/干泥/水比为0.1:0.1:1:1.5),并充分搅拌后,置于烘箱中干燥至含水90%~110%左右。以4.5 mm直径的聚苯乙烯球形泡沫为硬模板,采用浸渍-涂覆方法在其表面包裹上述含镁污泥后,置于烘箱中于105℃下烘干,制得具有预成型聚苯乙烯@含镁污泥。此含镁污泥层厚度为2 mm。
2、二次预成型
(1)将市政污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、ZnCl2、柠檬酸和水进行混合(柠檬酸/锌/干泥/水的比为0.3:1:1:3),充分搅拌,置于烘箱中干燥至含水90%~110%左右后,将其涂覆在上述预成型聚苯乙烯@含镁污泥上,置于烘箱中于105℃下烘干,使聚苯乙烯@含镁污泥上增加一层含造孔剂的污泥层(此层厚度约为1.5 mm)。
3、热解炭化-成型
然后将上述聚苯乙烯@双层结构含镁污泥材料置于定碳炉中,在氮气200 ml/min保护下,20℃/min的速度升温至大约500℃。在此温度下热解2小时后,硬模板被分解,污泥被碳化,最终形成中空@双层结构污泥碳。最后经过冷却、水洗、烘干,得成品。
在此制备过程中,玻璃纤维和Mg(NO3)2 的热分解产物MgO和MgC2主要起到粘结污泥碳,增加其机械强度的作用。
上述所得中空@双层结构污泥碳的抗冲击指数为0.015,比表面积442.5 m2/g,对亚甲兰的吸附量达到135.2 mg/g,是同样大小的实心污泥碳吸附量的1.9倍。
实施例3 制备中空@双层污泥碳
1、一次预成型
(1)将市政污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、MgCl2和水进行混合(镁/干泥/水的比为0.1:1:1.8),并充分搅拌后,置于烘箱中干燥至含水90%~110%左右。以4.5 mm直径的聚苯乙烯球形泡沫为硬模板,采用浸渍-涂覆方法在其表面包裹上述含镁污泥后,置于烘箱中于105℃下烘干,制得具有预成型聚苯乙烯@含镁污泥。此含镁污泥层厚度为2 mm。
2、二次预成型
(1)将市政污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、ZnCl2、丙烯酸和水进行混合(丙烯酸/锌/干泥比为0.3:1:1:3.5),并充分搅拌,置于烘箱中干燥至含水90%~110%左右后,将其涂覆在上述预成型聚苯乙烯@含镁污泥上,置于烘箱中于105℃下烘干,使聚苯乙烯@含镁污泥上增加一层含造孔剂的污泥层(此层厚度约为1.5 mm)。
3、热解炭化-成型
然后将上述聚苯乙烯@双层结构含镁污泥材料置于定碳炉中,在氮气200 ml/min保护下,20℃/min的速度升温至大约500~900℃。在此温度下热解2小时后,硬模板被分解,污泥被碳化,最终形成中空@双层结构污泥碳。最后经过冷却、水洗、烘干,得成品。
在此制备过程中,MgCl2的分解产物MgO和MgC2主要起到粘结污泥碳,增加其机械强度的作用。
上述所得中空@双层结构污泥碳的抗冲击指数为0.012,比表面积488.5 m2/g,对亚甲兰的吸附量达到152.1 mg/g,是同样大小的实心污泥碳吸附量的2.2倍。
实施例4制备中空@双层污泥碳
1、一次预成型
(1)将印染污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、MgSO4和水进行混合(镁/干泥/水的比为0.2:1:1.6),并充分搅拌后,置于烘箱中干燥至含水90%~110%左右。以4.5 mm直径的聚苯乙烯球形泡沫为硬模板,采用浸渍-涂覆方法在其表面包裹上述含镁污泥后,置于烘箱中于105℃下烘干,制得具有预成型聚苯乙烯@含镁污泥。此含镁污泥层厚度为2 mm。
2、二次预成型
(1)将印染污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、ZnCl2、草酸和水进行混合(草酸/锌/干泥比为0.4:0.6:1:2),并充分搅拌,置于烘箱中干燥至含水90%~110%左右后,将其涂覆在上述预成型聚苯乙烯@含镁污泥上,置于烘箱中于105℃下烘干,使聚苯乙烯@含镁污泥上增加一层含造孔剂的污泥层(此层厚度约为1.5 mm)。
3、热解炭化-成型
然后将上述聚苯乙烯@双层结构含镁污泥材料置于定碳炉中,在氮气200 ml/min保护下,20℃/min的速度升温至大约500℃。在此温度下热解1小时后,硬模板被分解,污泥被碳化,最终形成中空@双层结构污泥碳。最后经过冷却、水洗、烘干,得成品。
在此制备过程中,MgSO4的分解产物MgO和MgC2主要起到粘结污泥碳,增加其机械强度的作用。
上述所得中空@双层结构污泥碳的抗冲击指数为0.012,比表面积478.1 m2/g,对亚甲兰的吸附量达到148.1 mg/g,是同样大小的实心污泥碳吸附量的2.2倍
实施例5制备中空@双层污泥碳
1、一次预成型
(1)将食品污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、Mg(OH)2和水进行混合(镁/干泥/水的比为0.3:1:1.2),并充分搅拌后,置于烘箱中干燥至含水90%~110%左右。以4.5 mm直径的聚苯乙烯球形泡沫为硬模板,采用浸渍-涂覆方法在其表面包裹上述含镁污泥后,置于烘箱中于105℃下烘干,制得具有预成型聚苯乙烯@含镁污泥。此含镁污泥层厚度为2 mm。
2、二次预成型
(1)将食品污泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、KOH、柠檬酸和水进行混合(柠檬酸/K/干泥比为0.5:0.8:1:3),并充分搅拌,置于烘箱中干燥至含水90%~110%左右后,将其涂覆在上述预成型聚苯乙烯@含镁污泥上,置于烘箱中于105℃下烘干,使聚苯乙烯@含镁污泥上增加一层含造孔剂的污泥层(此层厚度约为1.5 mm)。
3、热解炭化-成型
然后将上述聚苯乙烯@双层结构含镁污泥材料置于定碳炉中,在氮气200 ml/min保护下,20℃/min的速度升温至大约800℃。在此温度下热解2.5小时后,硬模板被分解,污泥被碳化,最终形成中空@双层结构污泥碳。最后经过冷却、水洗、烘干,得成品。
在此制备过程中,Mg(OH)2的分解产物MgO和MgC2主要起到粘结污泥碳,增加其机械强度的作用。
上述所得中空@双层结构污泥碳的抗冲击指数为0.011,比表面积583.2 m2/g,对亚甲兰的吸附量达到168.3 mg/g,是同样大小的实心污泥碳吸附量的2.4倍
实施例6制备中空@双层污泥碳
1、一次预成型
(1)将河道底泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、Mg(OH)2和水进行混合(镁/干泥/水的比为0.5:1:1),并充分搅拌后,置于烘箱中干燥至含水90%~110%左右。以4.5 mm直径的聚苯乙烯球形泡沫为硬模板,采用浸渍-涂覆方法在其表面包裹上述含镁污泥后,置于烘箱中于105℃下烘干,制得具有预成型聚苯乙烯@含镁污泥。此含镁污泥层厚度为2 mm。
2、二次预成型
(1)将河道底泥置于100~110℃(优选为105℃)干燥后粉碎,过90~120(优选100目)筛,得到干泥;
(2)将干泥、KOH、柠檬酸和水进行混合(柠檬酸/K/干泥比为0.5:1:1:4),并充分搅拌,置于烘箱中干燥至含水90%~110%左右后,将其涂覆在上述预成型聚苯乙烯@含镁污泥上,置于烘箱中于105℃下烘干,使聚苯乙烯@含镁污泥上增加一层含造孔剂的污泥层(此层厚度约为1.5 mm)。
3、热解炭化-成型
然后将上述聚苯乙烯@双层结构含镁污泥材料置于定碳炉中,在氮气200 ml/min保护下,20℃/min的速度升温至大约900℃。在此温度下热解3小时后,硬模板被分解,污泥被碳化,最终形成中空@双层结构污泥碳。最后经过冷却、水洗、烘干,得成品。
在此制备过程中,Mg(OH)2的分解产物MgO和MgC2主要起到粘结污泥碳,增加其机械强度的作用。
上述所得中空@双层结构污泥碳的抗冲击指数为0.013,比表面积610.6 m2/g,对亚甲兰的吸附量达到170.5 mg/g,是同样大小的实心污泥碳吸附量的2.5倍。

Claims (10)

1.一种中空@双层污泥碳的制备方法,其特征在于,在硬模板表面包裹含有强化剂的污泥,烘干预制成球形泡沫@污泥,再在其表面包裹含有造孔剂的污泥,烘干后在无氧条件下500~900℃热解,形成多级孔的中空@双层结构污泥碳。
2.根据权利要求1所述的制备方法,其特征在于,包括如下步骤:
S1.一次预成型:按照强化剂:干泥:水的质量比为0.1~0.5:1:1~1.8的比例,将污泥、强化剂和水进行混合,并充分搅拌后,烘干至含水90~110%后,采用浸渍-涂覆方法将其包覆在硬模板上,烘干,预制成泡沫@复合污泥材料;
S2.二次预成型:按照有机造孔剂:无机造孔剂:干泥:水的质量比为0.3~0.5:0.6~1:1:2~4的比例,将污泥、有机造孔剂、无机造孔剂和水进行混合,并充分搅拌后,烘干至含水90~110%后,再采用浸渍-涂覆方法将其包裹在S1所得泡沫@复合污泥材料上,然后烘干,得到泡沫@双层结构污泥材料;
S3.热解炭化-成型:在氮气保护下,将S2所得泡沫@双层结构污泥材料于500~900℃下热解1~3小时,冷却、水洗、烘干,即得到中空@双层结构污泥碳。
3.根据权利要求2所述的制备方法,其特征在于,步骤S1和S2所述污泥为市政污泥、印染污泥、食品污泥或河道底泥中的一种或多种。
4.根据权利要求3所述的制备方法,其特征在于,所述污泥使用前需将其置于100~110℃干燥后粉碎,过90~120筛。
5.根据权利要求2所述的制备方法,其特征在于,步骤S1所述强化剂为玻璃纤维、Mg(NO3)2、MgSO4、MgCl2或Mg(OH)2中一种或两种。
6.根据权利要求2所述的制备方法,其特征在于,步骤S1所述硬模板为低密度且易热分解的球形泡沫材料。
7.根据权利要求2所述的制备方法,其特征在于,步骤S2所述有机造孔剂为木质素、丙烯酸、柠檬酸或草酸中的一种或多种。
8.根据权利要求2所述的制备方法,其特征在于,步骤S2所述无机造孔剂为ZnCl2或KOH中的一种或多种。
9.根据权利要求1~8任一所述方法制备得到的中空@双层污泥碳。
10.权利要求9所述中空@双层污泥碳在作为吸附剂、生物填料或催化剂载体方面的应用。
CN201610572215.XA 2016-07-20 2016-07-20 一种中空@双层污泥碳的制备方法 Expired - Fee Related CN106186625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610572215.XA CN106186625B (zh) 2016-07-20 2016-07-20 一种中空@双层污泥碳的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610572215.XA CN106186625B (zh) 2016-07-20 2016-07-20 一种中空@双层污泥碳的制备方法

Publications (2)

Publication Number Publication Date
CN106186625A true CN106186625A (zh) 2016-12-07
CN106186625B CN106186625B (zh) 2019-04-12

Family

ID=57493570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610572215.XA Expired - Fee Related CN106186625B (zh) 2016-07-20 2016-07-20 一种中空@双层污泥碳的制备方法

Country Status (1)

Country Link
CN (1) CN106186625B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355635A (zh) * 2018-03-05 2018-08-03 中山大学 一种表面多孔的氧化镁-污泥碳空心球臭氧催化剂及其制备方法与应用
CN109305664A (zh) * 2018-11-08 2019-02-05 郑州大学 一种空腔尺寸及壁厚可调节的双壳层异组分中空碳微球
CN109694234A (zh) * 2019-02-26 2019-04-30 北京建筑大学 利用给水厂污泥制备透水砖的方法
US11124461B2 (en) 2019-07-04 2021-09-21 Incitec Pivot Limited Fertilizer
CN114950365A (zh) * 2022-05-27 2022-08-30 徐州工程学院 一种核壳式生物质吸附剂及其制备方法
CN115121224A (zh) * 2022-08-05 2022-09-30 广东省建工设计院有限公司 一种核壳结构的污泥碳生物填料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085877A (zh) * 2014-06-30 2014-10-08 湖北工程学院 一种基于壳聚糖及其衍生物多孔碳电极材料及其制备方法和用途
CN204022563U (zh) * 2014-08-22 2014-12-17 河南众英环保工程有限责任公司 一种组合式双层聚氨酯泡沫载体
CN104556031A (zh) * 2015-01-13 2015-04-29 华南理工大学 一种泥基球状活性炭及其制备方法与应用
CN105481221A (zh) * 2016-01-14 2016-04-13 上海交通大学 一种污泥干化抗收缩增碳方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085877A (zh) * 2014-06-30 2014-10-08 湖北工程学院 一种基于壳聚糖及其衍生物多孔碳电极材料及其制备方法和用途
CN204022563U (zh) * 2014-08-22 2014-12-17 河南众英环保工程有限责任公司 一种组合式双层聚氨酯泡沫载体
CN104556031A (zh) * 2015-01-13 2015-04-29 华南理工大学 一种泥基球状活性炭及其制备方法与应用
CN105481221A (zh) * 2016-01-14 2016-04-13 上海交通大学 一种污泥干化抗收缩增碳方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355635A (zh) * 2018-03-05 2018-08-03 中山大学 一种表面多孔的氧化镁-污泥碳空心球臭氧催化剂及其制备方法与应用
CN109305664A (zh) * 2018-11-08 2019-02-05 郑州大学 一种空腔尺寸及壁厚可调节的双壳层异组分中空碳微球
CN109694234A (zh) * 2019-02-26 2019-04-30 北京建筑大学 利用给水厂污泥制备透水砖的方法
US11124461B2 (en) 2019-07-04 2021-09-21 Incitec Pivot Limited Fertilizer
US11691929B2 (en) 2019-07-04 2023-07-04 Incitec Fertilizers Pty Limited Fertiliser
CN114950365A (zh) * 2022-05-27 2022-08-30 徐州工程学院 一种核壳式生物质吸附剂及其制备方法
CN114950365B (zh) * 2022-05-27 2024-05-10 徐州工程学院 一种核壳式生物质吸附剂及其制备方法
CN115121224A (zh) * 2022-08-05 2022-09-30 广东省建工设计院有限公司 一种核壳结构的污泥碳生物填料及其制备方法和应用
CN115121224B (zh) * 2022-08-05 2023-03-10 广东省建工设计院有限公司 一种核壳结构的污泥碳生物填料及其制备方法和应用

Also Published As

Publication number Publication date
CN106186625B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN106186625A (zh) 一种中空@双层污泥碳的制备方法
CN105854805B (zh) 一种改性生物炭微球及其制备方法和应用
Wang et al. Preparation of sludge-based activated carbon and its application in dye wastewater treatment
CN101993068B (zh) 一种多级孔结构活性碳的制备方法
CN103521179B (zh) 一步法制备污泥基成型磁性活性炭的方法
CN104261802B (zh) 一种污泥粉煤灰高强陶粒及其制备方法
CN102491731B (zh) 一种生物陶粒的制备方法
CN104163617A (zh) 一种陶粒生产方法及陶粒和陶粒的应用
CN108863432A (zh) 一种固废空心陶粒及其制备方法
CN107963902A (zh) 一种高吸水性陶粒的制备方法
CN101844071B (zh) 一种利用造纸污泥制备的吸附材料
CN102247800A (zh) 一种以膨润土、珍珠岩和沸石为主要原料的复合陶粒及其制备方法
CN104556031B (zh) 一种泥基球状活性炭及其制备方法与应用
CN101628807A (zh) 一种简便的活性炭陶瓷及其制备方法
CN102351306A (zh) 一种磁致改性陶粒填料及制备方法和在废水处理中应用
CN103962097A (zh) 浒苔基制备co2炭基吸附剂的方法
CN105195092A (zh) 一种污泥基生物炭及其制备方法
CN106512929A (zh) 一种嵌布式零价铁多孔吸附反应材料
CN105712739A (zh) 一种由垃圾焚烧飞灰制备的磁性生物陶粒及其制备方法
CN106119533A (zh) 赤泥含碳球团的制备方法和制备系统
CN106045565A (zh) 轻质高强陶粒及其制备方法
CN102701777A (zh) 一种制备高强度建筑用砖的方法
CN103553587B (zh) 一种分级孔TiO2陶瓷光催化剂的制备方法
CN103272561B (zh) 吸附材料及其制备方法
CN106311129A (zh) 一种沉积物间隙水磷酸盐高效去除材料的制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190412

Termination date: 20190720

CF01 Termination of patent right due to non-payment of annual fee