CN106180254B - 一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法 - Google Patents

一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法 Download PDF

Info

Publication number
CN106180254B
CN106180254B CN201610850839.3A CN201610850839A CN106180254B CN 106180254 B CN106180254 B CN 106180254B CN 201610850839 A CN201610850839 A CN 201610850839A CN 106180254 B CN106180254 B CN 106180254B
Authority
CN
China
Prior art keywords
nickel
resistance
fused salt
salt corrosion
tubing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610850839.3A
Other languages
English (en)
Other versions
CN106180254A (zh
Inventor
梁建平
王宝顺
李志军
苏诚
李肖科
王曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Applied Physics of CAS
Zhejiang Jiuli Hi Tech Metals Co Ltd
Original Assignee
Shanghai Institute of Applied Physics of CAS
Zhejiang Jiuli Hi Tech Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Applied Physics of CAS, Zhejiang Jiuli Hi Tech Metals Co Ltd filed Critical Shanghai Institute of Applied Physics of CAS
Priority to CN201610850839.3A priority Critical patent/CN106180254B/zh
Publication of CN106180254A publication Critical patent/CN106180254A/zh
Application granted granted Critical
Publication of CN106180254B publication Critical patent/CN106180254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Extraction Processes (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法。该方法包括:步骤1、对具有通心孔的耐熔盐腐蚀镍钼铬合金管坯进行热挤压处理,得到冷轧用的荒管;热挤压处理的挤压温度在1220~1250℃,挤压比为5~12;步骤2、将步骤1所得到的荒管冷轧为所要求规格的管材;冷轧过程中每一道次的单次压下量为20~70%,且在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,中间热处理的温度为1180~1220℃;步骤3、在1180~1220℃的温度范围内对所要求规格的管材进行最终热处理。本发明还公开了一种耐熔盐腐蚀镍钼铬合金无缝管、熔盐堆用结构件。本发明能高效率地制备出满足熔盐堆使用要求的各种规格的耐熔盐腐蚀镍钼铬合金无缝管。

Description

一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法
技术领域
本发明涉及一种无缝管制备方法,尤其涉及一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法。
背景技术
第四代核反应堆-熔盐堆因其具有固有安全性及高效等优点,成为了未来核电领域的重要发展方向。该反应堆运行温度为600℃~700℃,采用腐蚀性强的熔盐作为冷却剂,因此要求堆结构材料必须具有优异的抗高温熔盐腐蚀特性。要满足熔盐堆苛刻的工况使用要求,目前只能采用一类特殊的镍基高温合金—耐熔盐腐蚀镍钼铬合金,例如美国橡树岭实验室开发的Hastelloy N合金或我国科研单位开发的GH3535合金。耐熔盐腐蚀镍钼铬合金主要为熔盐堆研发,具有非常好的抗熔盐腐蚀性能(在700℃高温氟盐中的平均腐蚀速率≤25μm/year),可作为熔盐堆主要的结构材料。
在熔盐堆中大量使用的主管道、支管道、换热器换热管等部件需要使用耐熔盐腐蚀镍钼铬合金无缝管来制造。然而,由于耐熔盐腐蚀镍钼铬合金具有Mo含量高的特点,从而导致该类合金具有加工抗力大、加工硬化严重、易加工开裂等问题,这为无缝管材的制造带来了巨大的挑战。经大量实验发现,对于耐熔盐腐蚀镍钼铬合金而言,现有镍基高温合金无缝管制备工艺完全无法适用,一方面是成品率极低,另一方面是加工过程会对耐熔盐腐蚀镍钼铬合金的高温、室温性能(抗拉强度、耐熔盐腐蚀性、延展性、组织稳定性等)产生破坏性的影响,导致最终的无缝管材不能满足熔盐堆的使用要求。
综上可知,亟需对耐熔盐腐蚀镍钼铬合金无缝管的制备工艺进行优化,以便能高效率地制备出满足熔盐堆使用要求的各种规格的耐熔盐腐蚀镍钼铬合金无缝管。
发明内容
本发明所要解决的技术问题在于克服现有技术不足,提供一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法,能高效率地制备出满足熔盐堆使用要求的各种规格的耐熔盐腐蚀镍钼铬合金无缝管。
本发明具体采用以下技术方案解决上述技术问题:
一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法,包括以下步骤:
步骤1、对具有通心孔的耐熔盐腐蚀镍钼铬合金管坯进行热挤压处理,得到冷轧用的荒管;所述热挤压处理的挤压温度在1220~1250℃,挤压比为5~12;
步骤2、将步骤1所得到的荒管冷轧为所要求规格的管材;冷轧过程中每一道次的单次压下量为20~70%,且在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,所述中间热处理的温度为1180~1220℃;
步骤3、在1180~1220℃的温度范围内对所要求规格的管材进行最终热处理。
优选地,所述步骤1还包括:对热挤压处理后所得到的荒管进行退火处理和表面打磨处理。
优选地,在进行热挤压处理时,首先利用环形加热炉将管坯预加热至800℃,然后利用感应加热的方法加热至挤压温度。
进一步地,所述步骤3还包括:对最终热处理后的管材进行酸洗和抛光处理。
所述耐熔盐腐蚀镍钼铬合金可以为现有的材料,例如Hastelloy N合金或GH3535合金,也可采用其它的耐熔盐腐蚀镍钼铬合金材料,优选地,所述耐熔盐腐蚀镍钼铬合金各组分的重量比为:钼为13.0~22.0%,铬为4.0~10.0%,碳为0.01~1.00%;铁为最高6.0%,硅为最高1.00%,铝+钛为最高0.55%,硫为最高0.04%,磷为最高0.03%,其余为基体元素镍。
根据相同的发明思路还可以得到以下技术方案:
一种耐熔盐腐蚀镍钼铬合金无缝管,使用如上任一技术方案所述方法制备得到。
一种熔盐堆用结构件,使用如上所述耐熔盐腐蚀镍钼铬合金无缝管加工得到。
相比现有技术,本发明具有以下有益效果:
本发明通过对工艺参数进行优化,克服了耐熔盐腐蚀镍钼铬合金加工抗力大、加工硬化严重、易加工开裂等导致的无缝管制备成品率低的问题,可高效率、大批量地制备无缝管,制备的管材规格可达:外径5-219mm,壁厚1-13mm,长度6m。
本发明制备方法不会对耐熔盐腐蚀镍钼铬合金的性能产生不良影响,所制备的无缝管材具备优良的室温和高温力学性能及组织稳定性,其工作温度可达700℃,完全可用于制造熔盐堆中的各种管道结构件。
具体实施方式
针对耐熔盐腐蚀镍钼铬合金的材料特点,本发明通过对工艺进行优化,提出了一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法,以高效率地制备出满足熔盐堆使用要求的各种规格的耐熔盐腐蚀镍钼铬合金无缝管。本发明制备方法具体包括以下步骤:
步骤1、对具有通心孔的耐熔盐腐蚀镍钼铬合金管坯进行热挤压处理,得到冷轧用的荒管;所述热挤压处理的挤压温度在1220~1250℃,挤压比为5~12;为了进一步提高产品性能,最好对热挤压处理后所得到的荒管进行退火处理和表面打磨处理;
步骤2、将步骤1所得到的荒管冷轧为所要求规格的管材;冷轧过程中每一道次的单次压下量为20~70%,且在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,所述中间热处理的温度为1180~1220℃;
步骤3、在1180~1220℃的温度范围内对所要求规格的管材进行最终热处理;可以进一步对最终热处理后的管材进行酸洗以去除表面杂质,然后通过抛光处理使无缝管材表面平整光洁。
本发明方法对于现有Hastelloy N合金或GH3535合金等耐熔盐腐蚀镍钼铬合金的无缝管材制备具有良好的效果,为了便于公众理解,下面以一种用于熔盐堆的耐熔盐腐蚀镍钼铬合金材料为例,来对本发明技术方案进行详细说明。所述耐熔盐腐蚀镍钼铬合金各组分的重量比为:钼为13.0~22.0%,铬为4.0~10.0%,碳为0.01~1.00%;铁为最高6.0%,硅为最高1.00%,铝+钛为最高0.55%,硫为最高0.04%,磷为最高0.03%,其余为基体元素镍。
实施例1
采用直径210mm,长度1000mm的合金管坯(通过对煅制合金棒材钻孔得到),在环形加热炉中进行预热至800℃,采用机械手将其转移至热挤压前的感应加热工位,将合金管坯加热至1220℃的挤压温度。在3500t热挤压机上,以1220℃的热挤压温度、1:5的热挤压比对镍钼铬合金管坯进行热挤压,成功获得了合格的荒管,该荒管表面质量良好,表面均匀无明显影响冷轧的缺陷。对热挤压处理后所得到的荒管进行退火处理和表面打磨处理。(此外,在其他条件相同的情况下,本实施例还以1200℃和低于1200℃的挤压温度对合金管坯进行热挤压处理,发现不能挤压成功,发生闷车。)
在三辊轧机上对荒管进行轧制,经过三道次轧制,得到Φ141.3*6.55mm规格支管。三个道次的单次压下比依次分别为:16%、18%、58%。在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,本实施例的中间热处理温度为1180℃。
对到规格的管材进行最终热处理,本实施例的最终热处理温度为1180℃。然后对最终热处理后的管材进行酸洗和抛光处理。
对所得到的无缝管材进行力学性能测试。表1列出了上述方法制备的Φ141.3*6.55mm的管材的力学性能。
表1.实施例1中Φ141.3*6.55mm的管材的力学性能
温度(℃) 抗拉强度(MPa) 屈服强度(MPa) 延伸率(%)
25 742 297 55
538 659 238 56
595 620 237 49
705 520 228 37
760 503 220 46
815 421 220 67
925 235 188 78
实施例2
采用直径210mm,长度1000mm的合金管坯((通过对煅制合金棒材钻孔得到),在环形加热炉中进行预热至800℃,采用机械手将其转移至热挤压前的感应加热工位,将合金管坯加热至1250℃的挤压温度。在3500t热挤压机上,以1250℃的热挤压温度、1:12的热挤压比对镍钼铬合金管坯进行热挤压,成功获得了合格的荒管,该荒管表面质量良好,表面均匀无明显影响冷轧的缺陷。对热挤压处理后所得到的荒管进行退火处理和表面打磨处理。
在三辊轧机上进行轧制,经过五道次轧制,得到Φ141.3*6.55mm规格支管。五个道次的单次压下比依次分别为:34%、19%、38%、18%、43%。在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,本实施例的中间热处理温度为1220℃。
对到规格的管材进行最终热处理,本实施例的最终热处理温度为1180℃。然后对最终热处理后的管材进行酸洗和抛光处理。
对所得到的无缝管材进行力学性能测试。表2列出了利用上述方法制造的Φ141.3*6.55mm的管材的力学性能。
表2.实施例2中Φ141.3*6.55mm的管材的力学性能
温度(℃) 抗拉强度(MPa) 屈服强度(MPa) 延伸率(%)
25 781 337 55
538 655 268 46
595 575 261 30
705 488 241 32
760 485 236 38
815 383 229 58
925 204 173 56
实施例3
采用直径210mm,长度1000mm的合金管坯(通过对煅制合金棒材钻孔得到),在环形加热炉中进行预热至800℃,采用机械手将其转移至热挤压前的感应加热工位,将合金管坯加热至1240℃的挤压温度。在3500t热挤压机上,以1240℃的热挤压温度、1:10的热挤压比对镍钼铬合金管坯进行热挤压,成功获得了合格的荒管,该荒管表面质量良好,表面均匀无明显影响冷轧的缺陷。对热挤压处理后所得到的荒管进行退火处理和表面打磨处理。
在三辊轧机上进行轧制,经过六道次轧制,得到Φ13.72*1.65mm规格换热管。六个道次的单次压下比依次分别为:36%、51%、41%、57%、53%、65%。在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,本实施例的中间热处理温度为1190℃。
对到规格的管材进行最终热处理,本实施例的最终热处理温度为1190℃。然后对最终热处理后的管材进行酸洗和抛光处理。
对所得到的无缝管材进行力学性能测试。表3列出了利用上述方法制造的Φ13.72*1.65mm的管材的力学性能。
表3.实施例3中Φ13.72*1.65mm的管材的力学性能
实施例4
采用直径210mm,长度1000mm的合金管坯(通过对煅制合金棒材钻孔得到),在环形加热炉中进行预热至800℃,采用机械手将其转移至热挤压前的感应加热工位,将合金管坯加热至1220℃的挤压温度。在3500t热挤压机上,以1220℃的热挤压温度、1:8的热挤压比对镍钼铬合金管坯进行热挤压,成功获得了合格的荒管,该荒管表面质量良好,表面均匀无明显影响冷轧的缺陷。对热挤压处理后所得到的荒管进行退火处理和表面打磨处理。
在三辊轧机上进行轧制,经过三道次轧制,得到Φ168.28*7.11mm规格主管道。三个道次的单次压下比依次分别为:30%、50%、45%。在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,本实施例的中间热处理温度为1220℃。
对到规格的管材进行最终热处理,本实施例的最终热处理温度为1220℃。然后对最终热处理后的管材进行酸洗和抛光处理。
对所得到的无缝管材进行力学性能测试。表4列出了利用上述方法制造的Φ168.28*7.11mm的管材的力学性能。
表4.实施例4中Φ168.28*7.11mm的管材的力学性能
温度(℃) 抗拉强度(MPa) 屈服强度(MPa) 延伸率(%)
室温 790 309 56
450 630 246 52
600 630 246 52
650 560 222 37
700 535 309 39
以上各实施例所制备的不同规格管材长度均达到了6m以上。经全面检测发现均符合熔盐堆工况使用条件。利用本发明方法制备的耐熔盐腐蚀镍钼铬合金无缝管可应用于熔盐堆的主管道、支管道、换热管等结构件的制造,从而有效保证熔盐堆的安全可靠运行。

Claims (6)

1.一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法,所述耐熔盐腐蚀镍钼铬合金各组分的重量比为:钼为13.0~22.0%,铬为4.0~10.0%,碳为0.01~1.00%;铁为最高6.0%,硅为最高1.00%,铝+钛为最高0.55%,硫为最高0.04%,磷为最高0.03%,其余为基体元素镍;或者,所述耐熔盐腐蚀镍钼铬合金为Hastelloy N合金或GH3535合金;其特征在于,包括以下步骤:
步骤1、对具有通心孔的耐熔盐腐蚀镍钼铬合金管坯进行热挤压处理,得到冷轧用的荒管;所述热挤压处理的挤压温度在1220~1250℃,挤压比为5~12;
步骤2、将步骤1所得到的荒管冷轧为所要求规格的管材;冷轧过程中每一道次的单次压下量为20~70%,且在每一道次完成后,先对管材进行中间热处理和酸洗,然后再进行下一道次的轧制,所述中间热处理的温度为1180~1220℃;
步骤3、在1180~1220℃的温度范围内对所要求规格的管材进行最终热处理。
2.如权利要求1所述制备方法,其特征在于,所述步骤1还包括:对热挤压处理后所得到的荒管进行退火处理和表面打磨处理。
3.如权利要求1所述制备方法,其特征在于,在进行热挤压处理时,首先利用环形加热炉将管坯预加热至800℃,然后利用感应加热的方法加热至挤压温度。
4.如权利要求1所述制备方法,其特征在于,所述步骤3还包括:对最终热处理后的管材进行酸洗和抛光处理。
5.一种耐熔盐腐蚀镍钼铬合金无缝管,其特征在于,使用如权利要求1~4任一项所述方法制备得到。
6.一种熔盐堆用结构件,其特征在于,使用权利要求5所述耐熔盐腐蚀镍钼铬合金无缝管加工得到。
CN201610850839.3A 2016-09-26 2016-09-26 一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法 Active CN106180254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610850839.3A CN106180254B (zh) 2016-09-26 2016-09-26 一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610850839.3A CN106180254B (zh) 2016-09-26 2016-09-26 一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法

Publications (2)

Publication Number Publication Date
CN106180254A CN106180254A (zh) 2016-12-07
CN106180254B true CN106180254B (zh) 2018-06-29

Family

ID=57520871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610850839.3A Active CN106180254B (zh) 2016-09-26 2016-09-26 一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法

Country Status (1)

Country Link
CN (1) CN106180254B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018779B2 (en) 2021-09-21 2024-06-25 Abilene Christian University Stabilizing face ring joint flange and assembly thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442598A (zh) * 2017-07-26 2017-12-08 繁昌县华特机械制造有限公司 一种不锈钢管的加工工艺
CN108458182A (zh) * 2018-04-23 2018-08-28 上海冀晟能源科技有限公司 耐高温熔盐腐蚀的密封件及其制造方法
CN110355230B (zh) * 2019-07-24 2020-06-12 浙江久立特材科技股份有限公司 一种耐高温熔盐腐蚀u型换热管
CN110453109B (zh) * 2019-08-12 2021-04-02 浙江久立特材科技股份有限公司 一种ns3306高温合金小口径精密无缝管及其制造方法
CN110695091B (zh) * 2019-10-14 2021-06-15 中国科学院上海应用物理研究所 一种耐熔盐腐蚀镍钼铬合金型材的加工方法
AU2020378420A1 (en) 2019-11-08 2022-06-02 Abilene Christian University Identifying and quantifying components in a high-melting-point liquid
CN110900131A (zh) * 2019-12-09 2020-03-24 中国科学院上海应用物理研究所 基于碳化物组织改性的耐熔盐腐蚀镍钼铬合金加工方法
CN112058938B (zh) * 2020-08-11 2022-05-06 浙江久立特材科技股份有限公司 一种耐熔盐腐蚀镍钼铬合金管件的制备方法
CN115161515B (zh) * 2022-07-14 2023-03-28 江苏银环精密钢管有限公司 一种耐腐蚀装置用Ni-Mo耐蚀合金无缝管及制造方法
CN115679155B (zh) * 2022-08-18 2024-06-18 上海大学 一种耐高温氯离子熔盐腐蚀的镍钼基合金材料、其制备方法及其应用
US12012827B1 (en) 2023-09-11 2024-06-18 Natura Resources LLC Nuclear reactor integrated oil and gas production systems and methods of operation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463272A (zh) * 2010-11-08 2012-05-23 北京有色金属研究总院 一种小口径镍基合金薄壁管材的短流程制备方法
CN103882266A (zh) * 2014-03-26 2014-06-25 中国科学院上海应用物理研究所 用于熔盐反应堆的镍基合金及其制备方法
CN103966476A (zh) * 2013-02-01 2014-08-06 中国科学院金属研究所 一种性能优异的抗熔盐腐蚀的镍基高温合金
CN104099545A (zh) * 2014-07-19 2014-10-15 太原钢铁(集团)有限公司 一种镍基耐热合金无缝管的制造方法
CN104475480A (zh) * 2014-11-05 2015-04-01 攀钢集团江油长城特殊钢有限公司 一种哈氏合金c276荒管和管材及其热挤压制作方法
CN104789816A (zh) * 2015-04-10 2015-07-22 太原钢铁(集团)有限公司 一种高酸性油气田用镍基耐蚀合金及其油套管的制造方法
CN105420638A (zh) * 2015-11-20 2016-03-23 钢铁研究总院 700℃超超临界锅炉水冷壁用耐热合金及管材制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210961A (en) * 1981-06-19 1982-12-24 Toshiba Corp Manufacture of fuel cladding pipe for nuclear reactor
JP2793462B2 (ja) * 1993-02-23 1998-09-03 山陽特殊製鋼株式会社 超耐食Ni基合金
CN103128129A (zh) * 2011-11-24 2013-06-05 北京有色金属研究总院 一种Ni-Cr-Mo耐蚀合金管材的短流程制备方法
CN103212603A (zh) * 2013-04-12 2013-07-24 苏州贝思特金属制品有限公司 一种哈氏合金不锈钢无缝钢管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463272A (zh) * 2010-11-08 2012-05-23 北京有色金属研究总院 一种小口径镍基合金薄壁管材的短流程制备方法
CN103966476A (zh) * 2013-02-01 2014-08-06 中国科学院金属研究所 一种性能优异的抗熔盐腐蚀的镍基高温合金
CN103882266A (zh) * 2014-03-26 2014-06-25 中国科学院上海应用物理研究所 用于熔盐反应堆的镍基合金及其制备方法
CN104099545A (zh) * 2014-07-19 2014-10-15 太原钢铁(集团)有限公司 一种镍基耐热合金无缝管的制造方法
CN104475480A (zh) * 2014-11-05 2015-04-01 攀钢集团江油长城特殊钢有限公司 一种哈氏合金c276荒管和管材及其热挤压制作方法
CN104789816A (zh) * 2015-04-10 2015-07-22 太原钢铁(集团)有限公司 一种高酸性油气田用镍基耐蚀合金及其油套管的制造方法
CN105420638A (zh) * 2015-11-20 2016-03-23 钢铁研究总院 700℃超超临界锅炉水冷壁用耐热合金及管材制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018779B2 (en) 2021-09-21 2024-06-25 Abilene Christian University Stabilizing face ring joint flange and assembly thereof

Also Published As

Publication number Publication date
CN106180254A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106180254B (zh) 一种耐熔盐腐蚀镍钼铬合金无缝管的制备方法
CN107116339B (zh) 一种锆合金包壳管材制备工艺
CN106583491A (zh) 一种Cr‑Ni‑Mo‑Nb镍基合金无缝管的制造方法
CN110695091B (zh) 一种耐熔盐腐蚀镍钼铬合金型材的加工方法
CN107553074A (zh) 高温加热炉用unsn08810铁镍基合金大口径无缝管材的制造方法
CN104894485A (zh) 耐高温抗脆断Φ508mm以上核电站用无缝钢管的生产方法
CN107552698B (zh) 一种hr-2抗氢钢棒材的锻制方法
CN114749508B (zh) 一种大口径奥氏体不锈钢无缝管及其制造方法和用途
CN107557616A (zh) 一种高温气冷堆蒸汽发生器用镍基耐蚀合金管材及其制造方法
CN110453109A (zh) 一种ns3306高温合金小口径精密无缝管及其制造方法
CN113234899B (zh) 厚壁p92钢管的热处理方法
CN105363823A (zh) 铝合金板形锻件的轧制方法
CN110538890B (zh) 一种uns s32906无缝管的制造方法
CN103464507A (zh) 一种生产高精度奥氏体无缝钢管的方法
CN105441713A (zh) 一种钛合金无缝管及其制备方法
CN111826549A (zh) 一种高韧性钛合金及利用此钛合金制备棒材的方法
CN107012363B (zh) 一种tc4钛合金油井管的制造工艺
CN103981422B (zh) 825合金管材大变形加工工艺
CN113802041A (zh) 一种可应用于先进超超临界机组的铁镍基合金无缝管材的制造方法
CN108950148A (zh) 提高g115钢大口径厚壁管径向组织和性能均匀性方法
CN104894432B (zh) 一种110ksi级钛合金油管及其制备方法
CN104475480B (zh) 一种哈氏合金c276荒管和管材及其热挤压制作方法
CN114888219A (zh) 一种Ti6Al4V钛合金大规格棒材制备方法
CN105755414B (zh) 一种提高α+β型钛合金强度的形变热处理方法
CN110303067B (zh) 一种高强韧性钛合金油井管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant