CN106178100A - 碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法 - Google Patents
碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法 Download PDFInfo
- Publication number
- CN106178100A CN106178100A CN201610570460.7A CN201610570460A CN106178100A CN 106178100 A CN106178100 A CN 106178100A CN 201610570460 A CN201610570460 A CN 201610570460A CN 106178100 A CN106178100 A CN 106178100A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotubes
- complex microsphere
- apatite
- nano
- chitosan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/08—Carbon ; Graphite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/20—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/23—Carbohydrates
- A61L2300/232—Monosaccharides, disaccharides, polysaccharides, lipopolysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Carbon And Carbon Compounds (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,属于生物医学工程领域,其步骤:(1)将原始碳纳米管进行酸化处理,用去离子水洗涤至中性后;(2)加入钙盐,超声处理;(3)将钙盐处理后的碳纳米管分散液加入壳聚糖溶液中,搅拌均匀后加入液体石蜡中,加入乳化剂,充分乳化后加入交联剂,反应结束后,洗涤,干燥,得到碳纳米管/壳聚糖复合微球;(4)将碳纳米管/壳聚糖复合微球粉末置于磷酸盐溶液中反应后,静置沉淀,洗涤,烘干,得到在复合微球表面原位形成的取向性纳米磷灰石晶体。本发明在药物装载、缓释和骨修复材料等生物医学领域具有一定的应用价值。
Description
技术领域
本发明涉及一种碳纳米管/壳聚糖复合微球表面原位形成取向纳米羟基磷灰石的制备方法,属于生物医学工程领域,在有效控制药物装载和缓释的医药技术领域和骨修复材料方面具有广泛的应用价值。
背景技术
富勒烯是一种碳的同素异形体,具有异常的稳定性、完美的对称性和独特的生物效应,因此引起了生物医学界的广泛关注。碳纳米管是典型的富勒烯,是一种管状结构的一维纳米材料,具有尺寸小、长径比大、电导率高、密度小等优异的理化性能和良好的生物相容性、高载药率等独特的生物性能。研究已证实酸化的碳纳米管会产生大量的羟基、羧基等含氧基团,这些含氧基团能够为人体骨无机质纳米磷灰石提供特定的成核位点,促进纳米磷灰石的大量成核生长。因此,碳纳米管应用于骨组织缺损修复和药物控释的研究备受关注。
酸化碳纳米管能够与钙离子发生络合,可为纳米磷灰石的形成提供成核位点,因此复合材料的稳定性和力学性能较好,但是碳纳米管单一成分诱导骨形成能力不足,生成的纳米羟基磷灰石颗粒尺寸不均一,颗粒或发育不完整、较小或团聚成较大的晶片,并且生成的纳米磷灰石可能含有其他的物质相。研究发现,将碳纳米管与高分子复合,可望发挥纳米协同效应,进一步提高碳纳米管的分散性,增加与无机矿物作用的比表面积,诱导生成均一致密的纳米磷灰石颗粒。
壳聚糖资源丰富,结构上类似于动物体内的糖胺聚糖,对人体及组织无毒无害,具有抗菌性,生物可降解性,生物相容性,具有促进骨形成和药物吸收等作用,在骨修复方面应用广泛。
发明内容
为了解决有机物与无机矿物之间结合力差的问题,从而有效提高与矿物纳米羟基磷灰石晶体的结合效率和复合材料的稳定性;本发明首先将碳纳米管进行酸化处理,使其表面富含羧基和羟基等活性基团,这些活性基团能够与钙离子发生络合,可为纳米磷灰石的形成提供成核位点,其次利用仿生矿化机制,有利于精确调控碳纳米管/壳聚糖微球表面纳米磷灰石晶体的成分、结构和含量,从而得到与天然骨极其相似结构和性能的无机矿物。
本发明所述的碳纳米管/壳聚糖复合微球表面原位生成性纳米羟基磷灰石的制备方法包括下述步骤:
(1)将原始碳纳米管置于混酸(浓硝酸与浓硫酸按体积比1:3混合)中,60~80℃温度下超声浴反应5~8 h,形成均匀的黑色溶液,用去离子水洗涤溶液至中性,得到高浓度的碳纳米管分散液。所用的原始碳纳米管为单壁碳纳米管、多壁碳纳米管或其任何组合的混合物。
(2)在碳纳米管分散液中加入浓度为0.1~5.0 mol/L的钙盐,30~100°C温度下超声处理1~5 h;所用的钙盐为氢氧化钙、氯化钙、硝酸钙、氟化钙、乙酸钙中的一种;。
(3)将经过第(2)步骤处理后的碳纳米管分散液加入壳聚糖乙酸溶液中,搅拌均匀后加入液体石蜡中,加入0.01~0.2 mol/L的乳化剂,30~60℃搅拌乳化3~6 h后加入0.001~0.1 mol/L的交联剂,反应结束后,洗涤,干燥,得到碳纳米管/壳聚糖复合微球;所述的碳纳米管用量是壳聚糖重量的0.1%~2.5%;所用的乳化剂为Tween、Span或十二烷基磺酸钠中的一种或几种;所用的交联剂为戊二醛、香草醛、京尼平中的一种。
(4)将碳纳米管/壳聚糖复合微球粉末置于浓度为0.001~0.2 mol/L的磷酸盐溶液中(pH范围为5~10),30~60℃下水浴搅拌反应3~6 h,静置沉淀,依次用去离子水、异丙醇洗涤,烘干,得到复合微球表面原位形成的取向性纳米磷灰石颗粒。
本发明制备出的碳纳米管/壳聚糖复合微球表面原位诱导生成了具有一定取向度的针状或棒状纳米磷灰石晶体,复合材料极大地提高了纳米磷灰石的含量和复合材料的稳定性,本发明在有效控制药物装载、缓释和骨修复材料的生物医学领域具有广泛的应用价值。
本发明将钙处理后的碳纳米管与壳聚糖形成复合微球,利用仿生矿化技术,在复合微球表面原位诱导生成尺寸狭小、粒径均匀的具有一定取向度的纳米磷灰石晶体。采用这种方法制备的复合材料中,碳纳米管/壳聚糖基质的表面和内部为药物提供了特定的存储和释放渠道,并且表面矿化的类骨磷灰石晶体具有优异的骨传导性、引导和促进骨形成的能力。碳纳米管的加入能有效改善高分子与无机矿物的化学结合问题,最终构建具有良好成骨活性的纳米复合材料。
以下结合由附图所示实施例的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包括在本发明的范围内。
附图说明
图1碳纳米管/壳聚糖复合微球SEM图片;
图2碳纳米管/壳聚糖复合微球表面形成的取向纳米磷灰石晶体SEM图片。
具体实施方式
实施例1
用混酸处理碳纳米管,80℃下超声反应5 h,形成均匀的黑色溶液,用去离子水洗涤溶液至中性,得到碳纳米管分散液。将硝酸钙加入碳纳米管分散液中,80℃超声处理3 h。制备壳聚糖乙酸溶液,将钙处理碳纳米管分散液缓慢加入到壳聚糖乙酸溶液中(碳纳米管占壳聚糖重量的0.2%),超声分散处理数分钟。将120 g的液体石蜡与3.650 g span-80混合,搅拌一定时间后缓慢加入碳纳米管/壳聚糖乙酸溶液,30℃搅拌乳化3 h,逐滴加入0.0428 g的50%戊二醛,30℃进行交联3 h。静置沉淀,依次去离子水、异丙醇洗涤沉淀,干燥,即得碳纳米管/壳聚糖复合微球(见图1)。将0.3 g所制备的复合微球粉末充分分散于200 mL磷酸二氢钠溶液中(0.02 mol/L,pH为5),37℃连续搅拌反应3 h。静置沉淀,依次用去离子水、异丙醇洗涤沉淀,干燥,即制得一定取向性纳米磷灰石涂层的碳纳米管/壳聚糖复合微球,纳米磷灰石直径约为80 nm(见图2)。
实施例2
用混酸处理碳纳米管,90℃下超声反应3 h,形成均匀的黑色溶液,用去离子水洗涤溶液至中性,得到碳纳米管分散液。将氯化钙加入碳纳米管分散液中,40℃超声处理6 h。制备壳聚糖乙酸溶液,将钙处理碳纳米管分散液缓慢加入到壳聚糖乙酸溶液中(钙处理碳纳米管占壳聚糖重量的0.4%),超声分散处理数分钟。将100 g的液体石蜡与3.5 g span-60混合,搅拌一定时间后缓慢加入碳纳米管/壳聚糖乙酸溶液,30℃搅拌乳化3 h,逐滴加入0.5mL的50%戊二醛,交联3 h。静置沉淀,依次去离子水、异丙醇洗涤沉淀,干燥,即得碳纳米管/壳聚糖复合微球。将0.5 g所制备的复合微球粉末充分分散于200 mL磷酸钠溶液中(0.03mol/L,pH为8),37℃连续搅拌反应2 h。静置沉淀,依次用去离子水、异丙醇洗涤沉淀,干燥,即制得纳米磷灰石涂层的碳纳米管/壳聚糖复合微球。
实施例3
将浓度为0.1 mol/L的氟化钙溶液加入到混酸处理后的碳纳米管分散液中,50℃下超声处理2 h。然后加入到3wt%的壳聚糖乙酸溶液中(碳纳米管占壳聚糖重量的0.5%),超声分散处理数分钟。将液体石蜡与一定量Span 80混合,搅拌一定时间后缓慢加入碳纳米管/壳聚糖乙酸溶液,40℃搅拌乳化4 h,逐滴加入0.24 g的香草醛进行交联3 h。静置沉淀,依次用石油醚、异丙醇洗涤沉淀,置电热鼓风干燥箱中干燥,即得碳纳米管/壳聚糖复合微球粉末。将0.4 g所制备的微球粉末充分分散于300mL,0.03 mol/L,pH为6的磷酸氢二钠溶液中,60℃连续搅拌反应2 h。静置沉淀,洗涤沉淀,干燥 ,即得矿化后的碳纳米管/壳聚糖复合微球。
实施例4
将浓度为0.2 mol/L的乙酸钙溶液加入到混酸处理后的碳纳米管分散液中,40℃下超声处理3 h。然后加入到2wt%的壳聚糖乙酸溶液中(碳纳米管占壳聚糖重量的0.1%),超声分散处理数分钟。将液体石蜡与一定量十二烷基磺酸钠混合,搅拌一定时间后缓慢加入碳纳米管/壳聚糖乙酸溶液,搅拌乳化4 h,逐滴加入0.05 g的京尼平进行交联。反应完毕后静置沉淀,洗涤,干燥,即得碳纳米管/壳聚糖复合微球粉末。将0.2 g所制备的复合微球粉末充分分散于200mL,0.04 mol/L,pH为6.5的磷酸铵溶液中,37℃连续搅拌反应2 h。静置沉淀,洗涤,干燥 ,即得矿化后的碳纳米管/壳聚糖复合微球。
Claims (7)
1.碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是包括下述步骤:
(1)将原始碳纳米管置于混酸中,所述混酸是由浓硝酸与浓硫酸按体积比1:3混合而成,60~90℃温度下超声浴反应5~8 h,形成均匀的黑色溶液,用去离子水洗涤溶液至中性,得到高浓度的碳纳米管分散液;
(2)在碳纳米管分散液中加入钙盐,浓度为0.1~5.0 mol/L,30~100°C的温度下超声处理1~5 h;
(3)将步骤(2)获得的钙处理后的碳纳米管分散液加入壳聚糖溶液中,搅拌均匀后加入液体石蜡中,加入0.01~0.2 mol/L的乳化剂,在30~60℃的温度下搅拌乳化3~6 h,加入0.001~0.1 mol/L的交联剂,反应结束后,洗涤,干燥,得到碳纳米管/壳聚糖复合微球;所用的钙处理碳纳米管占壳聚糖重量比为0.01~5%;
(4)将所制备的碳纳米管/壳聚糖复合微球置于浓度是0.001~0.2 mol/L的磷酸盐溶液中,在30~60℃的温度下水浴搅拌反应3~6 h,静置沉淀,依次用去离子水、异丙醇洗涤,烘干,得到复合微球表面原位形成的取向性纳米磷灰石颗粒。
2.根据权利要求1所述的碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是所述的碳纳米管/壳聚糖复合微球表面形成针状或棒状纳米磷灰石,纳米磷灰石尺寸范围10~200 nm。
3.根据权利要求1所述的碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是所述的原始碳纳米管为单壁碳纳米管、多壁碳纳米管或其任何组合的混合。
4.根据权利要求1所述的碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是所述的钙盐为氢氧化钙、氯化钙、硝酸钙、氟化钙及乙酸钙中的一种。
5.根据权利要求1所述的碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是所述的乳化剂为Tween、Span或十二烷基磺酸钠中的一种或几种。
6.根据权利要求1所述的碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是所述的交联剂为戊二醛、香草醛、京尼平中的一种。
7.根据权利要求1所述的碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法,其特征是所述磷酸盐为碱金属或氨的磷酸盐类化合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610570460.7A CN106178100B (zh) | 2016-07-20 | 2016-07-20 | 碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610570460.7A CN106178100B (zh) | 2016-07-20 | 2016-07-20 | 碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106178100A true CN106178100A (zh) | 2016-12-07 |
CN106178100B CN106178100B (zh) | 2021-06-08 |
Family
ID=57493333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610570460.7A Active CN106178100B (zh) | 2016-07-20 | 2016-07-20 | 碳纳米管/壳聚糖复合微球表面形成取向性纳米磷灰石的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106178100B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115006589A (zh) * | 2022-06-28 | 2022-09-06 | 奥精医疗科技股份有限公司 | 一种碳纳米管改性矿化胶原材料及其制备方法和应用 |
CN116370700A (zh) * | 2023-04-27 | 2023-07-04 | 湖南省天香生物科技有限责任公司 | 一种基于大蒜素的液体创可贴及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1958517A (zh) * | 2006-10-17 | 2007-05-09 | 山东大学 | 一种以羟基磷灰石包覆碳纳米管的方法 |
WO2010024549A2 (ko) * | 2008-08-29 | 2010-03-04 | 한스바이오메드 주식회사 | 서방형 골다공증치료제를 담지한 골충진재 |
KR20120052116A (ko) * | 2010-11-15 | 2012-05-23 | 부경대학교 산학협력단 | 골조직 공학용 탄소 나노튜브-접합된 키토산-하이드록시아파타이트 복합물 및 그의 제조방법 |
CN103272282A (zh) * | 2013-05-15 | 2013-09-04 | 福州大学 | 一种纳米羟基磷灰石/壳聚糖/鱼皮胶原复合支架 |
CN103467756A (zh) * | 2013-09-18 | 2013-12-25 | 中国矿业大学 | 一种制备壳聚糖/羟基磷灰石复合微球的方法 |
CN104689375A (zh) * | 2015-03-26 | 2015-06-10 | 福州大学 | 一种双重原位杂化制备的具有磁响应性多重梯度载药微球 |
-
2016
- 2016-07-20 CN CN201610570460.7A patent/CN106178100B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1958517A (zh) * | 2006-10-17 | 2007-05-09 | 山东大学 | 一种以羟基磷灰石包覆碳纳米管的方法 |
WO2010024549A2 (ko) * | 2008-08-29 | 2010-03-04 | 한스바이오메드 주식회사 | 서방형 골다공증치료제를 담지한 골충진재 |
KR20120052116A (ko) * | 2010-11-15 | 2012-05-23 | 부경대학교 산학협력단 | 골조직 공학용 탄소 나노튜브-접합된 키토산-하이드록시아파타이트 복합물 및 그의 제조방법 |
CN103272282A (zh) * | 2013-05-15 | 2013-09-04 | 福州大学 | 一种纳米羟基磷灰石/壳聚糖/鱼皮胶原复合支架 |
CN103467756A (zh) * | 2013-09-18 | 2013-12-25 | 中国矿业大学 | 一种制备壳聚糖/羟基磷灰石复合微球的方法 |
CN104689375A (zh) * | 2015-03-26 | 2015-06-10 | 福州大学 | 一种双重原位杂化制备的具有磁响应性多重梯度载药微球 |
Non-Patent Citations (2)
Title |
---|
李健等: "纳米羟基磷灰石/壳聚糖复合微球的原位仿生制备及表征", 《无机材料学报》 * |
牛璐璐等: "碳纳米管/壳聚糖复合微球的原位仿生矿化及表征", 《高等学校化学学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115006589A (zh) * | 2022-06-28 | 2022-09-06 | 奥精医疗科技股份有限公司 | 一种碳纳米管改性矿化胶原材料及其制备方法和应用 |
CN116370700A (zh) * | 2023-04-27 | 2023-07-04 | 湖南省天香生物科技有限责任公司 | 一种基于大蒜素的液体创可贴及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106178100B (zh) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite | |
Raucci et al. | Comparative facile methods for preparing graphene oxide–hydroxyapatite for bone tissue engineering | |
Kaviya et al. | Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications | |
Tao et al. | Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles | |
Fu et al. | Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their application in protein adsorption | |
US8153255B2 (en) | Ceramic particle group comprising sintered particles of hydroxyapatite | |
Wang et al. | Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores | |
Boudemagh et al. | Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status | |
Zuo et al. | Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template | |
CN103407979B (zh) | 水热法制备羟基磷灰石纳米棒和纳米线的方法 | |
CN102795610B (zh) | 无定形磷酸钙纳米球及其制备方法 | |
Iyyappan et al. | Synthesis of nanoscale hydroxyapatite particles using triton X-100 as an organic modifier | |
Apalangya et al. | Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles | |
Barabás et al. | Preparation and characterization of carboxyl functionalized multiwall carbon nanotubes–hydroxyapatite composites | |
CN107161969A (zh) | 一种纳米羟基磷灰石/氧化石墨烯复合材料的制备方法 | |
Anwar et al. | Low-temperature synthesis and surface modification of high surface area calcium hydroxyapatite nanorods incorporating organofunctionalized surfaces | |
CN101297978A (zh) | 一种羟基磷灰石纳米杆的制备方法 | |
Xiao et al. | Fabrication of hollow hydroxyapatite particles assisted by small organic molecule and effect of microstructure on protein adsorption | |
Barabás et al. | Graphene oxides/carbon nanotubes–hydroxyapatite nanocomposites for biomedical applications | |
CN100384782C (zh) | 一种以羟基磷灰石包覆碳纳米管的方法 | |
Lopes et al. | Nanocomposite powders of hydroxyapatite-graphene oxide for biological applications | |
Nosrati et al. | Characterization of the precipitated Dicalcium Phosphate Dehydrate on the Graphene Oxide surface as a bone cement reinforcement | |
Baradaran et al. | Synthesis and characterization of monetite prepared using a sonochemical method in a mixed solvent system of water/ethylene glycol/N, N-dimethylformamide | |
CN108379589B (zh) | 一种羟基磷灰石/氧化石墨烯复合材料的制备方法 | |
Xu et al. | A facile strategy for one-step hydrothermal preparation of porous hydroxyapatite microspheres with core–shell structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |