CN106119807B - 一种掺硼金刚石粉末的制备方法 - Google Patents

一种掺硼金刚石粉末的制备方法 Download PDF

Info

Publication number
CN106119807B
CN106119807B CN201610536965.1A CN201610536965A CN106119807B CN 106119807 B CN106119807 B CN 106119807B CN 201610536965 A CN201610536965 A CN 201610536965A CN 106119807 B CN106119807 B CN 106119807B
Authority
CN
China
Prior art keywords
boron
preparation
diamond thin
activation process
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610536965.1A
Other languages
English (en)
Other versions
CN106119807A (zh
Inventor
张贵峰
索妮
王蕾
黄昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610536965.1A priority Critical patent/CN106119807B/zh
Publication of CN106119807A publication Critical patent/CN106119807A/zh
Application granted granted Critical
Publication of CN106119807B publication Critical patent/CN106119807B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明属于新材料合成领域,提供了一种掺硼金刚石粉末的制备方法。将硼源的乙醇溶液超声振荡形成分散液,滴到载体上,烘干即得衬底;采用HFCVD法制备金刚石薄膜,在100%氢气环境下,对衬底进行精细净化和活化处理,活化处理时间为20‑40min;活化处理与金刚石薄膜沉积过程中,温度维持2000‑2200℃,控制衬底温度为650‑950℃,反应室内总压强20‑70Torr;金刚石薄膜沉积时,甲烷浓度为0.5%‑2%,沉积时间1‑6h;将金刚石薄膜放入管式炉中,抽真空后通入保护气体,扩散退火处理。此方法具有简单、方便、安全、掺硼量可控等优点。特别适用于作燃料电池阴极催化剂的BDD电极制备。

Description

一种掺硼金刚石粉末的制备方法
技术领域
本发明属于新材料合成领域,涉及电化学催化或活化电极材料的合成,特别涉及纳米、亚微米或微米金刚石掺硼,获得具有导电特性的掺硼金刚石(Boron doped diamond,BDD),以有效地应用于各电化学领域范围内。
背景技术
BDD是被广泛研究的电极催化材料,具有良好的物理与化学特性,如机械强度高、较高的硬度,电阻率和热导率、光透性好、生物相容性、化学惰性以及良好的导电性;在电化学上,具有电势窗口宽、较低的双层电容,吸附性及背景电流,在不同溶液中,具有极高的抗腐蚀性。作为催化剂材料,在电分析、电合成、污水处理、燃料电池、超级电容器以及生物化学传感器等领域都有广泛应用。
对燃料电池的阴极催化剂而言,主要以商用Pt/C为主。为了实现商业化应用,需要一定的Pt负载量,因Pt基催化剂价格昂贵,提高了催化剂的成本。此外,在直接甲醇燃料电池中,还易受甲醇渗透的影响,产生“混合电位”,大大降低燃料电池的效率和电池的输出功率,导致非Pt基催化剂成为了研究重点。在非Pt基催化剂中,BDD因可以改变碳材料的结构,进而影响其亲水性、导电性和催化活性等特性,电化学上,具有电势窗口宽、背景电流低、极高的化学稳定性、低吸附性及活性表面积大,能够有效提高电化学反应效率等优点,使BDD获得了广泛的关注与研究。
目前常用掺硼的方法是气相法,即在气相沉积金刚石薄膜的过程将硼烷通入反应室内,虽然掺硼量可精确控制,但由于硼烷毒性大,使用时需要十分小心谨慎。也有将B2O3溶于有机溶剂后,再用载气将含硼有机溶剂通入到反应室中,但此方法掺硼量不好控制。
本发明是将气相沉积与高温扩散结合起来,利用热丝化学气相沉积法(HFCVD)在硼粉或含硼纳米粉(如氮化硼、二硼化钛)上沉积金刚石,获得金刚石包覆的硼或含硼纳米颗粒,再通过高温真空扩散退火处理,致使硼原子以置换的形式替换金刚石晶格中的C原子从而获得BDD。粉末尺寸由硼或含硼纳米粉的颗粒尺寸确定,金刚石包覆厚度由气相沉积时间确定,掺硼量由扩散退火温度和时间确定。因此,本方法具有简单、方便、安全、掺硼量可控等优点。本发明特别适用于作燃料电池阴极催化剂的BDD电极制备。
发明内容
本发明的目的是提供了一种利用HFCVD在硼源(单质硼、氮化硼、二硼化钛)上沉积金刚石薄膜,通过控制退火温度与时间,制备BDD粉末的工艺方法。目的是通过掺硼的方式,使金刚石具有金属特性,并有效得应用于各电化学领域范围内。
本发明的技术方案:
一种掺硼金刚石粉末的制备方法,步骤如下:
(1)依次用丙酮、乙醇和去离子水超声清洗载体15min,烘干;
(2)将浓度为2.5-12.5mg/mL硼源的乙醇溶液超声振荡30min形成分散液,滴到载体上,烘干即得衬底;
(3)采用HFCVD法制备金刚石薄膜,在100%氢气环境下,对步骤(2)烘干后的衬底进行精细净化和活化处理,活化处理时间为20-40min;活化处理与金刚石薄膜沉积过程中,温度维持2000-2200℃,控制衬底温度为650-950℃,反应室内总压强20-70Torr;金刚石薄膜沉积时,甲烷浓度为0.5%-2%,沉积时间1-6h;
(4)将金刚石薄膜放入管式炉中,抽真空后通入保护气体,扩散退火处理,退火温度1100-1600℃,退火时间为3-6h。
所述的载体为硅片、不锈钢片、石墨片或钛片。
所述的硼源包括单质硼、氮化硼和二硼化钛。
在活化处理与金刚石薄膜沉积过程,灯丝材料选自钨、铼、钽和钼。
所述的保护气体选自氮气、氩气和氦气。
本发明的有益效果:将气相沉积与高温扩散结合起来,粉末尺寸由硼或含硼纳米粉的颗粒尺寸确定,金刚石包覆厚度由气相沉积时间确定,掺硼量由扩散退火温度和时间确定。此方法具有简单、方便、安全、掺硼量可控等优点。特别适用于作燃料电池阴极催化剂的BDD电极制备。
附图说明
图1是实施例1掺硼金刚石粉末的拉曼光谱图。
图2是实施例2掺硼金刚石粉末的拉曼光谱图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1:
(1)依次用丙酮、乙醇和去离子水超声清洗钛片载体15min,并吹干;
(2)将浓度为5mg/mL硼粉的乙醇溶液装入烧杯中,超声振荡30min形成分散液,滴在钛片上,烘干即得衬底;
(3)将烘干后的衬底放入反应室内的样品台上,本底真空抽至1×10-3Pa以上。通入氢气,并调节真空泵的抽速,使反应室内气压维持在30Torr;
(4)灯丝材料选为钽丝,加热至2000-2200℃,衬底温度为650-950℃,氢气刻蚀衬底表面40min;
(5)之后保持灯丝温度和衬底温度不变,通入甲烷,与氢气的百分比为1%,流量分别为1.5/100sccm,沉积时间4h;
(6)将金刚石包覆颗粒样品置于瓷舟中,放入管式炉石英管中的恒温区,缓慢抽真空后,通氩气将残余空气排出,并在石英管内存留部分氩气,作为保护气体;
(7)设定退火温度1400℃,退火时间3h,制备BDD粉末。
实施例2:
(1)依次用丙酮、酒精和去离子水超声清洗钛片载体15min,并吹干;
(2)将浓度为12mg/mL二硼化钛的乙醇溶液装入烧杯内,超声振荡30min形成分散液,滴在钛片上,烘干即得衬底;
(3)将烘干后的衬底放入反应室中的样品台上,本底真空抽至1×10-3Pa以上。通入氢气,并调节真空泵的抽速,使反应室内气压维持在50Torr;
(4)灯丝材料为钨丝,加热至2000-2200℃,衬底温度650-950℃,氢气刻蚀衬底表面30min;
(5)之后保持灯丝温度和衬底温度不变,通入甲烷,与氢气的百分比为1.5%,流量分别为1.5/100sccm,沉积时间2h;
(6)将金刚石包覆颗粒样品置于瓷舟中,放到管式炉石英管中的恒温区,缓慢抽真空后,通入氮气排出残余空气,并在石英管中存留部分氮气,作为保护气体;
(7)设定退火温度1100℃,退火时间4h,制备BDD粉末。

Claims (8)

1.一种掺硼金刚石粉末的制备方法,其特征在于,步骤如下:
(1)依次用丙酮、乙醇和去离子水超声清洗载体15min,烘干;
(2)将浓度为2.5-12.5mg/mL硼源的乙醇溶液超声振荡30min形成分散液,滴到载体上,烘干即得衬底;
(3)采用HFCVD法制备金刚石薄膜,在100%氢气环境下,对步骤(2)烘干后的衬底进行精细净化和活化处理,活化处理时间为20-40min;活化处理与金刚石薄膜沉积过程中,温度维持2000-2200℃,控制衬底温度为650-950℃,反应室内总压强20-70Torr;金刚石薄膜沉积时,甲烷浓度为0.5%-2%,沉积时间1-6h;
(4)将金刚石薄膜放入管式炉中,抽真空后通入保护气体,扩散退火处理,退火温度1100-1600℃,退火时间为3-6h。
2.根据权利要求1所述的制备方法,其特征在于,所述的载体为硅片、不锈钢片、石墨片或钛片。
3.根据权利要求1或2所述的制备方法,其特征在于,所述的硼源包括单质硼、氮化硼和二硼化钛。
4.根据权利要求1或2所述的制备方法,其特征在于,在活化处理与金刚石薄膜沉积过程,灯丝材料选自钨、铼、钽和钼。
5.根据权利要求3所述的制备方法,其特征在于,在活化处理与金刚石薄膜沉积过程,灯丝材料选自钨、铼、钽和钼。
6.根据权利要求1、2或5所述的制备方法,其特征在于,所述的保护气体选自氮气、氩气和氦气。
7.根据权利要求3所述的制备方法,其特征在于,所述的保护气体选自氮气、氩气和氦气。
8.根据权利要求4所述的制备方法,其特征在于,所述的保护气体选自氮气、氩气和氦气。
CN201610536965.1A 2016-07-09 2016-07-09 一种掺硼金刚石粉末的制备方法 Expired - Fee Related CN106119807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610536965.1A CN106119807B (zh) 2016-07-09 2016-07-09 一种掺硼金刚石粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610536965.1A CN106119807B (zh) 2016-07-09 2016-07-09 一种掺硼金刚石粉末的制备方法

Publications (2)

Publication Number Publication Date
CN106119807A CN106119807A (zh) 2016-11-16
CN106119807B true CN106119807B (zh) 2018-04-10

Family

ID=57283001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610536965.1A Expired - Fee Related CN106119807B (zh) 2016-07-09 2016-07-09 一种掺硼金刚石粉末的制备方法

Country Status (1)

Country Link
CN (1) CN106119807B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830205B (zh) * 2016-12-16 2020-08-21 大连理工大学 一种自支撑掺硼金刚石催化材料的制备方法
CN106835133A (zh) * 2016-12-21 2017-06-13 中国科学院深圳先进技术研究院 一种具有二硼化钛‑金刚石复合涂层的工件及其制备方法
CN111115625A (zh) * 2018-11-01 2020-05-08 深圳先进技术研究院 掺杂型金刚石粉的制备方法
WO2020087429A1 (zh) * 2018-11-01 2020-05-07 深圳先进技术研究院 掺杂型金刚石粉的制备方法
CN109853003B (zh) * 2019-03-06 2021-07-23 江西科技师范大学 一种微孔通道型耐熔盐腐蚀硼化物/金刚石复合材料及其制备方法
CN112768711B (zh) * 2021-01-09 2022-04-29 广州德百顺蓝钻科技有限公司 燃料电池的表面改性蓝钻催化剂及制备方法和燃料电池
CN114751408B (zh) * 2022-03-25 2023-09-05 浙江工业大学 一种低压下基于石墨制备金刚石的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956178A (zh) * 2010-09-28 2011-01-26 浙江工业大学 一种硼掺杂纳米金刚石薄膜及制备方法
CN102102220A (zh) * 2009-12-22 2011-06-22 中国科学院物理研究所 金刚石(111)面上的石墨烯制备方法
CN104164702A (zh) * 2014-08-08 2014-11-26 上海交通大学 一种硼掺杂超/精细金刚石单晶微粉的制备方法
CN105624642A (zh) * 2016-03-16 2016-06-01 大连理工大学 一种石墨衬底上直接沉积金刚石薄膜的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290656B2 (ja) * 2008-07-22 2013-09-18 東海旅客鉄道株式会社 ホウ素ドープダイヤモンドの製造方法
KR101427710B1 (ko) * 2012-11-30 2014-08-13 한국과학기술연구원 기체로부터의 입자 합성을 이용한 다이아몬드 파우더의 제조 방법 및 이에 의하여 제조된 다이아몬드 파우더

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102220A (zh) * 2009-12-22 2011-06-22 中国科学院物理研究所 金刚石(111)面上的石墨烯制备方法
CN101956178A (zh) * 2010-09-28 2011-01-26 浙江工业大学 一种硼掺杂纳米金刚石薄膜及制备方法
CN104164702A (zh) * 2014-08-08 2014-11-26 上海交通大学 一种硼掺杂超/精细金刚石单晶微粉的制备方法
CN105624642A (zh) * 2016-03-16 2016-06-01 大连理工大学 一种石墨衬底上直接沉积金刚石薄膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Deposition of boron doped diamond and carbon nanomaterials on graphite foam electrodes;Marian Marton, et al.,;《Applied Surface Science》;20140901;第312卷;第139-144页 *
Effect of B/C ratio on the physical properties of highly boron-doped diamond films;Fuchao Jia, et al.,;《Vacuum》;20100304;第84卷(第7期);第930-934页 *

Also Published As

Publication number Publication date
CN106119807A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106119807B (zh) 一种掺硼金刚石粉末的制备方法
Merkulov et al. Control mechanisms for the growth of isolated vertically aligned carbon nanofibers
Hsueh et al. Deposition of platinum on oxygen plasma treated carbon nanotubes by atomic layer deposition
JP2021528346A (ja) カーボンナノ構造化材料及びカーボンナノ構造化材料の形成方法
CN104498894A (zh) 一种多孔金刚石薄膜的制备方法
TW201347282A (zh) 使用於液體中之碳電極裝置及相關方法
Zhang et al. Effect of the boron content on the steam activation of boron-doped diamond electrodes
JPH05891A (ja) ダイヤモンド−金属接合体
Wang et al. Formation and electron field emission of graphene films grown by hot filament chemical vapor deposition
CN110527973A (zh) 一种利用固态掺杂源制备掺硼金刚石的方法
Robinson et al. Thermionic emission from surface-terminated nanocrystalline diamond
Yamamoto et al. Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma
CN110496616B (zh) 光电催化的负载金属的硼掺杂金刚石及制备方法和应用
CN109136842A (zh) 石墨烯薄膜及其制备方法
Hayami et al. Reduction in work functions of transition-metal carbides and oxycarbides upon oxidation
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
Wan et al. Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films
CN109930133A (zh) 一种用于气敏传感的石墨烯氧化锆复合材料的制备方法
CN105862131A (zh) 一种利用mpcvd制备碳化钼晶体时钼的引入方法
Lian et al. Ru-doped nanostructured carbon films
Lee et al. Generation of negative-charge carriers in the gas phase and their contribution to the growth of carbon nanotubes during hot-filament chemical vapor deposition
Zheng et al. Vertically Aligned Boron-Doped Diamond Hollow Nanoneedle Arrays for Enhanced Field Emission
Yan et al. Catalytic growth mechanism and catalyst effects on electron field emission of nitrogenated carbon nanorods formed by plasma-enhanced hot filament chemical vapor deposition
US20140044874A1 (en) Graphene manufacturing system and the method thereof
Chiu et al. Atmospheric-pressure-plasma-jet sintered nanoporous AlN/CNT composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

Termination date: 20210709