CN106117560A - 一种聚合羟基乙酸锆的水溶液的制备方法 - Google Patents

一种聚合羟基乙酸锆的水溶液的制备方法 Download PDF

Info

Publication number
CN106117560A
CN106117560A CN201610571446.9A CN201610571446A CN106117560A CN 106117560 A CN106117560 A CN 106117560A CN 201610571446 A CN201610571446 A CN 201610571446A CN 106117560 A CN106117560 A CN 106117560A
Authority
CN
China
Prior art keywords
zirconium
nitrate
polymerization
hydroxyacetic acid
zirconia ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610571446.9A
Other languages
English (en)
Other versions
CN106117560B (zh
Inventor
任克诚
赵显�
许元虎
任鑫佳
周小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANHUI TONGHE CRYSTAL NEW MATERIALS CO LTD
Original Assignee
ANHUI TONGHE CRYSTAL NEW MATERIALS CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI TONGHE CRYSTAL NEW MATERIALS CO LTD filed Critical ANHUI TONGHE CRYSTAL NEW MATERIALS CO LTD
Priority to CN201610571446.9A priority Critical patent/CN106117560B/zh
Publication of CN106117560A publication Critical patent/CN106117560A/zh
Application granted granted Critical
Publication of CN106117560B publication Critical patent/CN106117560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种聚合羟基乙酸锆水溶液及其制备方法和用途。本发明的聚合羟基乙酸锆水溶液单独地或者与相稳定剂混匀,制备氧化锆陶瓷材料或者作为氧化锆陶瓷的结合剂,相对于传统方法制得的氧化锆陶瓷材料,提升材料的致密程度和粘接力。

Description

一种聚合羟基乙酸锆的水溶液的制备方法
技术领域
本发明涉及一种聚合羟基乙酸锆的水溶液及其制备方法和用途。属于无机非金属材料领域。
背景技术
二氧化锆(ZrO2)具有熔点(2715℃)和沸点(5000℃)高、硬度大、热导系数小、常温下为绝缘体,而高温下则具有导电性等优良性质。ZrO2有三种晶型,属多晶相转化的氧化物,低温下以单斜相(m)存在,密度5.65g/cm3,高温时为四方相(t),密度为6.10g/cm3,更高温度下转变为立方相(c),密度6.27g/cm3,在不同温度范围内可以相互转化,其晶型转化如下所示。
二氧化锆在不同温度范围内的晶型变化.
ZrO2在低温时为单斜晶结构(m-ZrO2),高于1170℃时四方晶相(t-ZrO2)逐渐形成,直至2370℃时只存在四方晶相,高于2370℃至熔点温度则为立方晶相(c-ZrO2)。在加热升温过程中伴随着体积收缩,而在冷却过程中则体积膨胀。t→m和m→t的相变属于马氏体相变,并伴有3-5%的体积变化和一定的剪切形变,因此在使用时为使其不发生体积变化,必须进行晶相稳定化处理。
相稳定化处理常用的稳定剂有Y2O3、CaO、MgO、CeO2和其它稀土氧化物。这些氧化物的阳离子半径与Zr4+相近(相差12%以内),它们在ZrO2中的溶解度很大,可和ZrO2形成单斜、四方和立方等晶型的置换型固溶体。这种固溶体可以通过快冷避免共析分解,以亚稳态保持到室温。通过控制加入稳定剂的含量可以获得相组成不同的氧化锆,若使部分t-ZrO2亚稳到室温,就得到部分稳定ZrO2(PSZ);若使t-ZrO2全部亚稳到室温则获得只含t-ZrO2的单相多晶四方ZrO2(TZP);若使c-ZrO2稳到室温,可获得c-ZrO2单相材料即全稳定ZrO2(FSZ)。
由于氧化锆材料在不同温度下具有晶相的相互转变并伴随体积收缩的特性,要使氧化锆材料能够在特定环境下稳定使用,则必须要添加合适的相稳定剂。而氧化锆的高熔点和熔体的低粘度特性,导致无法通过常规熔融法制备相关性能的材料。
常规氧化锆陶瓷材料生产过程中,通常将氧化锆粉体和相稳定剂充分混合,制备成型,再经过高温烧结获得具有稳定的四方或立方相氧化锆陶瓷材料,由于氧化锆粉体和相稳定剂粉体混合法无法使得相稳定剂与氧化锆形成充分一致的固溶体,导致获得的材料晶相稳定性和一致性相对较差,严重影响了材料的使用性能。而粉体法制备工艺又大大限制了特殊形态氧化锆系列新材料的开发。
乙酸锆、硝酸氧锆、氧氯化锆等锆盐水溶液作为氧化锆陶瓷的粘接剂或直接制备氧化锆陶瓷材料,存在材料疏松、难以烧结,不利于提升材料的致密程度和粘接力。
发明内容
为克服现有技术缺陷,本发明提供一种新型的聚合羟基乙酸锆的水溶液,用于制备系列氧化锆陶瓷材料。
本发明采用的技术方案如下:
本发明提供了一种聚合羟基乙酸锆水溶液,其特征在于:按照ZrO2:H2O摩尔比为1:10~15的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)和水,混合搅拌并加热至45℃~75℃,反应体系pH在2.0~4.5之间,逐步蒸发出反应体系中乙酸和水,控制反应进程到反应体系中ZrO2:乙酸根的摩尔比在0.5~3.5:1,即制得所述的聚合羟基乙酸锆水溶液。
作为本发明又一发明目的,还提供了一种制备上述所述的聚合羟基乙酸锆水溶液的方法,其包括将适量乙酸锆和适量水混合后控制反应条件反应生成所述的聚合羟基乙酸锆的步骤;优选地,其中所述步骤中,按照ZrO2:H2O摩尔比为1:10~15的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)和水,混合搅拌并加热至45℃~75℃,反应体系pH在2.0~4.5之间,逐步蒸发出反应体系中乙酸和水,控制反应进程到反应体系中ZrO2:乙酸根的摩尔比在0.5~3.5:1。
本发明还提供了上述所述的聚合羟基乙酸锆水溶液的应用,用于制备氧化锆陶瓷材料;优选地,所述的氧化锆陶瓷材料为氧化锆陶瓷(如烤瓷牙、氧化锆功能陶瓷等)或耐火材料,或者氧化锆陶瓷纤维,或者作为氧化锆陶瓷或耐火材料的结合剂。其中,作为氧化锆陶瓷或耐火材料的结合剂,其加入量可以为1%-10%。
上述所述的用途,其中所述的聚合羟基乙酸锆水溶液可以单独地或者可以和相稳定剂混合;优选地,所述的相稳定剂是Y2O3、CaO、MgO等氧化物;更优选地,作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐加入聚合羟基乙酸锆水溶液的形式。所述的聚合羟基乙酸锆水溶液可以和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15。
本发明还提供一种氧化锆陶瓷材料,其中:
所述的氧化锆陶瓷材料为氧化锆陶瓷或耐火材料的结合剂,其为上述所述的聚合羟基乙酸锆水溶液,或者上述所述方法制得的聚合羟基乙酸锆水溶液,单独地或者和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,即得;或者
所述的氧化锆陶瓷材料为氧化锆陶瓷或者耐火材料,其为上述所述的聚合羟基乙酸锆水溶液,或者上述所述方法制得的聚合羟基乙酸锆水溶液,单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,经干燥后得到凝胶,再将凝胶成型后经1500-1800℃高温烧结,即得;或者
所述的氧化锆陶瓷材料为氧化锆陶瓷纤维,其为上述所述的聚合羟基乙酸锆水溶液,或者上述所述方法制得的聚合羟基乙酸锆水溶液,单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,通过蒸发水分浓缩,获得黏度为0.3-10Pa.s的溶胶,将溶胶经过高速离心设备成凝胶纤维,将凝胶纤维以0.3~5℃/min的速度升温至1000℃-1800℃,恒温0.5-5h,即得。
作为本发明另一目的,还提供了上述氧化锆陶瓷材料的制备方法,其特征在于包括制备上述所述的聚合羟基乙酸锆水溶液的步骤,将适量乙酸锆和适量水混合后控制反应条件反应生成所述的聚合羟基乙酸锆的步骤;优选地,其中所述步骤中,按照ZrO2:H2O摩尔比为1:10~15的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)和水,混合搅拌并加热至45℃~75℃,反应体系pH在2.0~4.5之间,逐步蒸发出反应体系中乙酸和水,控制反应进程到反应体系中ZrO2:乙酸根的摩尔比在0.5~3.5:1。
将上述制得的聚合羟基乙酸锆水溶液,单独地或者和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,即得氧化锆陶瓷或耐火材料的结合剂;
或者,将上述制得的聚合羟基乙酸锆水溶液,单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,经干燥后得到凝胶,再将凝胶成型后经1500-1800℃高温烧结,即得氧化锆陶瓷或者耐火材料;
或者,将上述制得的聚合羟基乙酸锆水溶液,单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,通过蒸发水分浓缩,获得黏度为0.3-10Pa.s的溶胶,将溶胶经过高速离心设备成凝胶纤维,将凝胶纤维以0.3~5℃/min的速度升温至1000℃-1800℃,恒温0.5-5h,即得氧化锆陶瓷纤维。
本发明取得的有益效果是:
一、本发明的聚合羟基乙酸锆水溶液中,作为相稳定剂来源的硝酸盐与聚合羟基乙酸锆充分均匀的混合,再经过制备成型,烘干和高温烧结处理即可获得具有充分一致性并且性能稳定的四方相或立方相氧化锆陶瓷材料。
二、本发明的聚合羟基乙酸锆的水溶液,相较于常规氧化锆粉体制备工艺具有更加广泛的应用效果和更加好的产品性能:
(1)制备的聚合羟基乙酸锆的水溶液可以单独,也可以和作为相稳定剂(Y2O3、CaO、MgO等)来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,将上述溶液作为氧化锆陶瓷及耐火材料的结合剂,结合剂加入量为1%-10%。与已有的氧化锆陶瓷材料的粘结剂或结合剂相比,材料的致密程度和粘接力更好。
(2)制备的聚合羟基乙酸锆的水溶液不加或可以和作为相稳定剂(Y2O3、CaO、MgO等)来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,经干燥后得到凝胶,将凝胶成型后,经1500-1800℃高温烧结,可制备获得氧化锆陶瓷,比如烤瓷牙和氧化锆功能陶瓷等,具有内部组分均匀性好、易于烧结、抗折和耐压强度大等优点。
(3)制备的聚合羟基乙酸锆的水溶液不加或可以和作为相稳定剂(Y2O3、CaO、MgO等)来源的硝酸钇、硝酸钙、硝酸镁等硝酸盐混合,混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15,通过蒸发水分浓缩反应,获得黏度为0.3-10Pa.s的溶胶(聚合羟基乙酸锆高浓度溶液),将溶胶经过高速离心设备成纤,将凝胶纤维以0.3~5℃/min的速度升温至1000℃-1800℃,恒温0.5-5h,可获得氧化锆陶瓷纤维。浓缩后的聚合羟基乙酸锆具有较好的聚合度,因而拥有较好的成纤性,得到的纤维具有直径较细的优点。
具体实施方式
实施例1:
按照反应体系中ZrO2:H2O摩尔比为1:15的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)100g和水82.5g,将称取的乙酸锆和水混合搅拌并加热至75℃条件下,控制物料PH在2.0,通过逐步蒸发出物料中的乙酸和水,使得物料内反应平衡向聚合羟基乙酸锆的方向进行,通过精确控制及测量反应进程,当物料内ZrO2和乙酸根的含量达到37.6g和36.1g,此时ZrO2:乙酸根的摩尔比为0.5:1,即可获得所需的聚合羟基乙酸锆的水溶液。
将平均粒径4-5mm(占氧化锆粉总量的20%)的氧化锆微粉92克、平均粒径1-2mm(占氧化锆粉总量的40%)的氧化锆微粉184克和平均粒径5-6μm(占氧化锆粉总量的40%)的氧化锆微粉184克与40克平均粒径2-3μm氧化钇微粉(氧化锆:氧化钇摩尔比为92:8)在震动式混料机中混合均匀,然后加入10克糊精水溶液(糊精的质量分数为15%)和25克上述制备的聚合羟基乙酸锆水溶液,在湿碾机中混合均后使用压力试验机以160Mpa的压力成型为150*150毫米的方形样块。样块干燥24小时后,于1600℃保温3小时烧成。
制备的氧化锆陶瓷耐火材料的体积密度为4.8g/cm3,根据GB/T 5072-2008测试其耐压强度为107MPa,比不加入该结合剂(仅使用糊精作为结合剂)的同条件制备的材料耐压强度提高了15%,比采用相同比例乙酸锆作为结合剂的同条件制备的材料耐压强度提升了10%。
实施例2:
按照反应体系中ZrO2:H2O摩尔比为1:14的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)100g和水77g,将称取的乙酸锆和水混合搅拌并加热至65℃条件下,控制物料PH在2.5,通过逐步蒸发出物料中的乙酸和水,使得物料内反应平衡向聚合羟基乙酸锆的方向进行,通过精确控制及测量反应进程,当物料内ZrO2和乙酸根的含量达到37.6g和18.05g,此时ZrO2:乙酸根的摩尔比为1:1,即可获得聚合羟基乙酸锆的水溶液。在该水溶液加入7.04g硝酸镁,混合均匀后溶液内ZrO2:MgO的摩尔比为1:0.09,所得溶液备用。
将平均粒径3-4μm(占氧化锆粉总量的40%)的氧化锆微粉184克、平均粒径1-2μm(占氧化锆粉总量的40%)184克和平均粒径,0.5-1μm(占氧化锆粉总量的20%)96克的氧化锆微粉,以及平均粒径0.5-1μm氧化钇微粉(氧化锆:氧化钇摩尔比为92:8)在震动式混料机中混合均匀,加入100毫升水、1克分散剂FS-60(德国巴斯夫公司)、10克糊精水溶液(糊精的质量分数为15%)和15克上述制备的溶液,在球磨机中混料30分钟后,以注浆成型的方式成型为120*120毫米的方形样块。样块干燥48小时后,于1550℃保温3小时烧成。
依据GB/T 5072-2008中的测试方法测出材料的常温耐压强度为111.6MPa,比不加入上述制备的溶液(仅加入糊精为结合剂)的同条件制备的材料耐压强度提高了17%,比采用相同比例氧氯化锆作为结合剂的同条件制备的材料耐压强度提升了10%。
实施例3:
按照反应体系中ZrO2:H2O摩尔比为1:12.5的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)100g和水68.8g,将称取的乙酸锆和水混合搅拌并加热至60℃条件下,控制物料PH在3.0,通过逐步蒸发出物料中的乙酸和水,使得物料内反应平衡向聚合羟基乙酸锆的方向进行,通过精确控制及测量反应进程,当物料内ZrO2和乙酸根的含量达到37.6g和9.01g,此时ZrO2:乙酸根的摩尔比为2:1,即可获得聚合羟基乙酸锆的水溶液。在该水溶液加入4.32g硝酸钙,混合均匀后溶液内ZrO2:CaO的摩尔比为1:0.06,所得溶液备用。
将上述制备的溶液通过蒸发水分浓缩,获得黏度为6Pa.s的溶胶(聚合羟基乙酸锆高浓度溶液),将该溶胶经过高速离心甩丝设备,以每秒7000转的速度甩丝成纤,获得凝胶纤维,再将凝胶纤维以1℃/min的速度升温至1300℃,恒温1h,可获得氧化锆陶瓷纤维。使用SEM扫描电镜测试其平均直径为3.5μm,较ZL200410024264.7制备的单丝直径4-15μm的氧化锆纤维更细,依据ISO11566-1996的测试其平均单丝拉伸强度,其平均单丝拉伸强度可达1000Mpa。
实施例4:
按照反应体系中ZrO2:H2O摩尔比为1:10的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)100g和水55g,将称取的乙酸锆和水混合搅拌并加热至45℃条件下,控制物料PH在4.5,通过逐步蒸发出物料中的乙酸和水,使得物料内反应平衡向聚合羟基乙酸锆的方向进行,通过精确控制及测量反应进程,当物料内ZrO2和乙酸根的含量达到37.6g和5.15g,此时ZrO2:乙酸根的摩尔比为3.5:1,即可获得聚合羟基乙酸锆的水溶液。在该水溶液加入7.25g硝酸钇,混合均匀后溶液内ZrO2:Y203的摩尔比为1:0.031,所制备的溶液备用。
将上述制备的溶液经干燥24小时得到聚合羟基乙酸锆-硝酸钇凝胶。将该凝胶破碎至平均粒度0.10mm以下。按照该凝胶微粉:水:减水剂(FS-10,德国巴斯夫公司):聚乙烯醇水溶液(聚乙烯醇质量分数5%)=10:1:0.03:0.2的比例搅拌20分钟以上混合均匀后,注入蜡型模具中。烘干后在1400℃保温3小时烧成得到烤瓷牙毛坯。依据JIS R1606-1995标准,测试其三点扰曲强度为1750Mpa。与采用平均粒径35nm的氧化锆纳米粉体替换上述凝胶微粉,其他的化学组成相同,按照相同制备工艺制作的氧化锆烤瓷牙毛坯相比,三点扰曲强度提高了15%。

Claims (10)

1.一种聚合羟基乙酸锆水溶液,其特征在于:按照ZrO2:H2O摩尔比为1:10~15的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)和水,混合搅拌并加热至45℃~75℃,反应体系pH在2.0~4.5之间,逐步蒸发出反应体系中乙酸和水,控制反应进程到反应体系中ZrO2:乙酸根的摩尔比在0.5~3.5:1,即制得所述的聚合羟基乙酸锆水溶液。
2.一种制备权利要求1所述的聚合羟基乙酸锆水溶液的方法,其包括将适量乙酸锆和适量水混合后控制反应条件反应生成聚合羟基乙酸锆的步骤。
3.根据权利要求2所述的方法,其中所述步骤中,按照ZrO2:H2O摩尔比为1:10~15的比例,称取相应质量的乙酸锆(Zr(CH3CO2)4)和水,混合搅拌并加热至45℃~75℃,反应体系pH在2.0~4.5之间,逐步蒸发出反应体系中乙酸和水,控制反应进程到反应体系中ZrO2:乙酸根的摩尔比在0.5~3.5:1。
4.权利要求1所述的聚合羟基乙酸锆水溶液在制备氧化锆陶瓷材料中的应用。
5.根据权利要求4所述的应用,其中,所述的氧化锆陶瓷材料为氧化锆陶瓷(如烤瓷牙、氧化锆功能陶瓷等)或耐火材料,或者氧化锆陶瓷纤维,或者作为氧化锆陶瓷或耐火材料的结合剂。
6.根据权利要求5所述的用途,其中所述的聚合羟基乙酸锆水溶液单独地或者和相稳定剂混合使用。
7.根据权利要求6所述的用途,其中所述的相稳定剂为氧化钇(Y2O3)、氧化钙(CaO)或氧化镁(MgO)中的一种或两种以上。
8.根据权利要求7所述的用途,其中所述的相稳定剂以硝酸盐形式加入聚合羟基乙酸锆水溶液中;优选地,所述的硝酸盐为硝酸钇、硝酸钙或者硝酸镁。
9.根据权利要求6-8所述的用途,其中聚合羟基乙酸锆水溶液和相稳定剂来源的硝酸钇、硝酸钙或硝酸镁等硝酸盐混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15。
10.一种氧化锆陶瓷材料,其特征在于:
所述的氧化锆陶瓷材料为氧化锆陶瓷或耐火材料的结合剂,其为权利要求1所述的聚合羟基乙酸锆水溶液,单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙或硝酸镁等硝酸盐混合均匀后即得;或者
所述的氧化锆陶瓷材料为氧化锆陶瓷或者耐火材料,其为权利要求1所述的聚合羟基乙酸锆水溶液单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙或硝酸镁等硝酸盐混合均匀后,经干燥后得到凝胶,再将凝胶成型后经1500-1800℃高温烧结,即得;或者
所述的氧化锆陶瓷材料为氧化锆陶瓷纤维,其为权利要求1所述的聚合羟基乙酸锆水溶液单独地或者可以和作为相稳定剂来源的硝酸钇、硝酸钙或硝酸镁等硝酸盐混合均匀后,通过蒸发水分浓缩,获得黏度为0.3-10Pa.s的溶胶,将溶胶经过高速离心设备成凝胶纤维,将凝胶纤维以0.3~5℃/min的速度升温至1000℃-1800℃,恒温0.5-5h,即得;
优选地,上述所述的氧化锆陶瓷材料,其中所述的聚合羟基乙酸锆水溶液和作为相稳定剂来源的硝酸钇、硝酸钙或硝酸镁等硝酸盐混合均匀,聚合羟基乙酸锆水溶液和相稳定剂来源的硝酸钇、硝酸钙或硝酸镁等硝酸盐混合均匀后溶液内ZrO2:相稳定剂摩尔比为1:0.01~0.15。
CN201610571446.9A 2016-07-19 2016-07-19 一种聚合羟基乙酸锆的水溶液的制备方法 Active CN106117560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610571446.9A CN106117560B (zh) 2016-07-19 2016-07-19 一种聚合羟基乙酸锆的水溶液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610571446.9A CN106117560B (zh) 2016-07-19 2016-07-19 一种聚合羟基乙酸锆的水溶液的制备方法

Publications (2)

Publication Number Publication Date
CN106117560A true CN106117560A (zh) 2016-11-16
CN106117560B CN106117560B (zh) 2017-05-17

Family

ID=57289157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610571446.9A Active CN106117560B (zh) 2016-07-19 2016-07-19 一种聚合羟基乙酸锆的水溶液的制备方法

Country Status (1)

Country Link
CN (1) CN106117560B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534779A (zh) * 2018-12-27 2019-03-29 中国建筑材料科学研究总院有限公司 一种高强度陶瓷纤维隔热材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132989A (zh) * 2004-12-30 2008-02-27 3M创新有限公司 氧化锆粒子
CN101870475A (zh) * 2010-06-09 2010-10-27 景德镇陶瓷学院 以醋酸锆为锆源非水解溶胶-凝胶反应低温合成硅酸锆粉体的方法
CN103757749A (zh) * 2013-12-17 2014-04-30 安徽同和晶体新材料股份有限公司 一种氧化锆晶体纤维的制备方法
CN104987124A (zh) * 2015-07-22 2015-10-21 南京理工宇龙新材料科技有限公司 一种立方相氧化锆纤维增强的氧化锆泡沫陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132989A (zh) * 2004-12-30 2008-02-27 3M创新有限公司 氧化锆粒子
CN101870475A (zh) * 2010-06-09 2010-10-27 景德镇陶瓷学院 以醋酸锆为锆源非水解溶胶-凝胶反应低温合成硅酸锆粉体的方法
CN103757749A (zh) * 2013-12-17 2014-04-30 安徽同和晶体新材料股份有限公司 一种氧化锆晶体纤维的制备方法
CN104987124A (zh) * 2015-07-22 2015-10-21 南京理工宇龙新材料科技有限公司 一种立方相氧化锆纤维增强的氧化锆泡沫陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534779A (zh) * 2018-12-27 2019-03-29 中国建筑材料科学研究总院有限公司 一种高强度陶瓷纤维隔热材料及其制备方法

Also Published As

Publication number Publication date
CN106117560B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN103708831B (zh) 一种氧化钇稳定氧化锆粉体及其制备方法
Song et al. Two‐stage master sintering curve approach to sintering kinetics of undoped and Al2O3‐doped 8 mol% yttria‐stabilized cubic zirconia
CN103803974A (zh) 一种注塑成型氧化锆及其制备方法
Huang et al. Sintering kinetics of YAG ceramics
JP3997365B2 (ja) 酸化物イオン導電性単結晶及びその製造方法
CN106117560B (zh) 一种聚合羟基乙酸锆的水溶液的制备方法
Pérez et al. Densification and microstructure of spark plasma sintered 7YSZ–Gd2O3 ceramic nano-composites
Dong et al. Combustion synthesis and characterization of Cu–Sm co-doped CeO2 electrolytes
CN104973624B (zh) 一种网状四方相氧化锆纳米粉体的制备方法
Bucevac et al. Effect of preparation route on the microstructure and electrical conductivity of co-doped ceria
Li et al. Reactive Ce0. 8RE0. 2O1. 9 (RE= La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 2. Sintering
Yin et al. Dispersion and gelcasting of zirconium diboride through aqueous route
CN110506034A (zh) 氧化锆烧结体及其制造方法
Khabas et al. Influence of nanopowders and pore–forming additives on sintering of alumma–zircorna ceramics
CN110600778B (zh) 一种MgO、Y2O3双掺杂ZrO2-碱金属盐复合物及其制备方法
Kış et al. Structural and Temperature Dependent Electrical Conductivity Properties of Dy 2 O 3–Sm 2 O 3 CO-Doped Bi 2 O 3
Yu et al. Effect of dispersant content and drying method on ZrO2@ Al2O3 multiphase ceramic powders
CN110391455A (zh) 一种钇稳定二氧化锆-低熔点玻璃粉复合物及其制备方法
JP2000095564A (ja) ジルコニア質焼結体及びその製造方法ならびに粉砕部材用材料
Tripathi et al. Effect of La2O3 as sintering aid on the structural, mechanical & electrical properties of Y2O3
JPS62191426A (ja) ジルコニア多結晶マイクロバル−ン及びその製造方法
CN110395983A (zh) 球形、立方相纳米结构氧化钙稳定氧化锆粉体的制备方法
Abou el Ezz et al. Ceramic injection moulding of alumina–10 vol.-% YAG composites
JPS647030B2 (zh)
JP2002121070A (ja) 耐低温熱劣化性ジルコニア質焼結体及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant