CN106115659A - 一种化学气相沉积合成碳纳米管花的方法 - Google Patents

一种化学气相沉积合成碳纳米管花的方法 Download PDF

Info

Publication number
CN106115659A
CN106115659A CN201610486841.7A CN201610486841A CN106115659A CN 106115659 A CN106115659 A CN 106115659A CN 201610486841 A CN201610486841 A CN 201610486841A CN 106115659 A CN106115659 A CN 106115659A
Authority
CN
China
Prior art keywords
base material
passed
protective atmosphere
nickel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610486841.7A
Other languages
English (en)
Other versions
CN106115659B (zh
Inventor
黄有国
顾慈兵
范海林
陈肇开
孙铭雪
施清清
王红强
李庆余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juyuan Material Technology Zunyi Co ltd
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201610486841.7A priority Critical patent/CN106115659B/zh
Publication of CN106115659A publication Critical patent/CN106115659A/zh
Application granted granted Critical
Publication of CN106115659B publication Critical patent/CN106115659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种化学气相沉积合成碳纳米管花的方法,包括以下步骤:1)选定基材,对基材进行预处理;2)将预处理后的基材置于镀镍液中进行化学沉积,取出,干燥,得到负载镍催化剂的基材;3)将负载镍催化剂的基材置于管式炉中,通入保护气氛并于保护气氛下升温至350~400℃,关闭保护气氛;向管式炉中通入氢气并于氢气条件下升温至500~550℃,然后向管式炉内通入碳源气体,并以氢气作为载气,在500~550℃条件下进行化学气相沉积80~110min,所得反应物于保护气氛下冷却,即得。本发明所述方法对设备要求低,能耗低,对镍催化剂及碳纳米管花的尺寸可控。

Description

一种化学气相沉积合成碳纳米管花的方法
技术领域
本发明涉及碳纳米管的制备,具体涉及一种化学气相沉积合成碳纳米管花的方法。
背景技术
碳纳米管(CNTs)具有极高的强度和良好的韧性、导电性,比表面积大,比表面能高等特点。可用在大规模集成电路、超导线材、半导体器件、场发射、微电等众多领域。金属基体中引入CNTs,制备碳纳米管增强金属基复合材料,是获得高性能金属材料的方法之一。
钛及钛合金具有密度小、强度高、耐腐蚀、耐高温、热膨胀系数小等多种优点,尤其是其高比强度,被广泛应用于国防和国民经济领域。同时,钛材料在航海、石油、化工、生物、医药等领域也十分受欢迎。钛作为一种轻质,耐腐蚀金属,但它的机械性能和化学稳定性很差;钛合金虽然强度很高,但耐磨性不好,利用CNTs改善钛及合金的强度和耐磨性,具有很高的实用价值。梁昊等人利用二茂铁做催化剂在900℃下合成碳纳米管(化学气相沉积法制备碳纳米管,材料科技与设备,技术与研究,2014年第4期,p4~6),但该方法需要在900℃下合成碳纳米管,能耗较高。
发明内容
本发明要解决的技术问题是提供一种化学气相沉积合成碳纳米管花的方法,该方法对设备要求低,能耗低,对镍催化剂及碳纳米管花的尺寸可控。
本发明所述的化学气相沉积合成碳纳米管花的方法,包括以下步骤:
1)选定基材,对基材进行预处理;
2)将预处理后的基材置于镀镍液中进行化学沉积,取出,干燥,得到负载镍催化剂的基材;所述的镀镍液为乙二醇、氯化镍和氟化铵的水溶液,其组成为:乙二醇600~700ml/L、氯化镍10~20g/L、氟化铵10~30g/L,pH=5.0~5.5;
3)将负载镍催化剂的基材置于管式炉中,通入保护气氛并于保护气氛下升温至350~400℃,关闭保护气氛;向管式炉中通入氢气并于氢气条件下升温至500~550℃,然后向管式炉内通入碳源气体,并以氢气作为载气,在500~550℃条件下进行化学气相沉积80~110min,所得反应物于保护气氛下冷却,即得。
上述方法的步骤1)中,所述的基材可以是钛箔、铜箔或泡沫铜。对基材的预处理为现有技术中常规的预处理操作,包括清洗、除油和浸蚀等处理。其中,清洗通常是在丙酮、乙醇和水中超声清洗;除油操作时使用的除油液组成为:氢氧化钠10~15g/L、碳酸钠20~30g/L、OP乳化剂2~5mL/L、余量为水;浸蚀操作时使用的浸蚀液组成按体积百分比计为:浓盐酸20~30%、氢氟酸2~5%和余量的水。
上述方法的步骤2)中,化学沉积的时间可以决定镍催化剂粒子尺寸和形貌结构,本申请中,优选控制化学沉积的时间为5~10min,这样可以使碳纳米管花能以镍原子为催化剂,在镍的基础上垂直生长,并使合成得到的碳纳米管间距均匀,比表面积大。该步骤中,干燥通常在60~80℃条件下进行。
上述方法的步骤3)中,所述保护气氛的选择与现有技术相同,通常为氩气和/或氮气。保护气氛的通入速率通常为350~500mL/min,在通入保护气氛时的升温速率通常控制在5~10℃/min。
上述方法的步骤3)中,所述碳源气体的选择与现有技术相同,具体可以是甲烷、乙烯或乙炔等碳氢化合物。在该步骤中,所述氢气和碳源气体的通入速率相同,均优选为100~200mL/min。
上述方法的步骤3)中,为了完全置换之前的通入的保护气氛,优选是在通入氢气使管式炉中的温度升至500~550℃后,再通入氢气10~20min。
与现有技术相比,本发明的特点在于:
1、本发明所述方法在化学气相沉积中首次采用化学镀的方法沉积镍作为催化剂,通过化学沉积时间来控制镍催化剂粒子尺寸和形貌结构,操作方便、可控。
2、本发明所述方法的反应温度在500~550℃,相对现有技术,反应温度低,能耗更低,对设备材质要求低。
附图说明
图1为本发明实施例1中进行化学气相沉积前、后的材料的实物图,其中(a)为化学气相沉积前钛箔基材的实物图,(b)为化学气相沉积后钛基碳纳米管花的实物图;
图2和图3为本发明实施例1合成得到的钛基碳纳米管花的SEM图,其中图2为20000倍率的SEM图,图3为50000倍率的SEM图;
图4为本发明实施例1合成得到的钛基碳纳米管花的拉曼光谱图;
图5为本发明实施例1合成得到的钛基碳纳米管花的TEM图。
具体实施方式
下面结合具体实施例对本发明作进一步的详述,以更好地理解本发明的内容,但本发明并不限于以下实施例。
实施例1
1)以钛箔(如图1(a)所示)为基材,对基体进行预处理,具体为:分别用丙酮、乙醇和水分别超声清洗10min→化学除油→清水清洗→浸蚀→清水清洗→干燥;其中:
化学除油操作中:化学除油液的组成为:氢氧化钠15g/L、碳酸钠25g/L、OP乳化剂5mL/L和余量的水;将超声清洗后的基材置于60℃的除油液中除油15min;
浸蚀操作中:浸蚀液的组成按体积百分比计为:盐酸30%、氢氟酸5%和余量的水;将除油处理后的基材置于浸蚀液中浸蚀2min,用清水清洗干净;
2)将进行预处理后的基材置于镀镍液中化学化学沉积8min,取出后置于60℃条件下真空干燥10min;所述的镀镍液组成为:乙二醇700ml/L、氯化镍20g/L、氟化铵15g/L和余量的水,pH=5.0;
3)将负载镍催化剂的基材置于管式炉中部的恒温区中,通入氩气以400mL/min的速率进行保护,反应器以10℃/min的升温速率升温至350℃,然后关闭氩气;再以100ml/min的流速向管式炉内通入氢气至温度达到500℃,在管式炉温度达到500℃的条件下继续通氢气(通入速率为100mL/min)还原20min;然后向管式炉内以150mL/min速率通入乙烯,在500℃条件下化学气相沉积100min;之后反应物在氩气氛围内冷却至室温,得到钛基碳纳米管花(如图1(b)所示)。
对制得的产品进行表征:
1、取规格为5×7cm大小钛基碳纳米管花试样用SEM和TEM表征碳纳米管花表面形貌结构和直径的均匀性和大小,分别如图2、图3以及图5所示。
2、RAMAN表征钛基碳纳米管花的结晶性和石墨化程度,如图4所示。
实施例2
1)以钛箔为基材,对基体进行预处理,具体为:分别用丙酮、乙醇和水分别超声清洗10min→化学除油→清水清洗→浸蚀→清水清洗→干燥;其中:
化学除油操作中:化学除油液的组成为:氢氧化钠10g/L、碳酸钠30g/L、OP乳化剂3mL/L和余量的水;将超声清洗后的基材置于50℃的除油液中除油10min;
浸蚀操作中:浸蚀液的组成按体积百分比计为:盐酸20%、氢氟酸3%和余量的水;将除油处理后的基材置于浸蚀液中浸蚀2min,用清水清洗干净;
2)将进行预处理后的基材置于镀镍液中化学化学沉积10min,取出后置于80℃条件下真空干燥10min;所述的镀镍液组成为:乙二醇600ml/L、氯化镍15g/L、氟化铵30g/L和余量的水,pH=5.5;
3)将负载镍催化剂的基材置于管式炉中部的恒温区中,通入氩气以500mL/min的速率进行保护,反应器以8℃/min的升温速率升温至400℃,然后关闭氩气;再以100ml/min的流速向管式炉内通入氢气至温度达到550℃,在管式炉温度达到550℃的条件下继续通氢气(通入速率为150mL/min)还原10min;然后向管式炉内以150mL/min速率通入乙烯,在550℃条件下化学气相沉积80min;之后反应物在氩气氛围内冷却至室温,得到钛基碳纳米管花。
实施例3
1)以铜箔为基材,对基体进行预处理,具体为:分别用丙酮、乙醇和水分别超声清洗10min→化学除油→清水清洗→浸蚀→清水清洗→干燥;其中:
化学除油操作中:化学除油液的组成为:氢氧化钠12g/L、碳酸钠20g/L、OP乳化剂2mL/L和余量的水;将超声清洗后的基材置于50℃的除油液中除油10min;
浸蚀操作中:浸蚀液的组成按体积百分比计为:盐酸25%、氢氟酸2%和余量的水;将除油处理后的基材置于浸蚀液中浸蚀1min,用清水清洗干净;
2)将进行预处理后的基材置于镀镍液中化学化学沉积5min,取出后置于70℃条件下真空干燥150min;所述的镀镍液组成为:乙二醇650ml/L、氯化镍10g/L、氟化铵20g/L和余量的水,pH=5.25;
3)将负载镍催化剂的基材置于管式炉中部的恒温区中,通入氩气以350mL/min的速率进行保护,反应器以8℃/min的升温速率升温至400℃,然后关闭氩气;再以200ml/min的流速向管式炉内通入氢气至温度达到520℃,在管式炉温度达到520℃的条件下继续通氢气(通入速率为200mL/min)还原15min;然后向管式炉内以100mL/min速率通入乙烯,在520℃条件下化学气相沉积110min;之后反应物在氩气氛围内冷却至室温,得到铜基碳纳米管花。

Claims (6)

1.一种化学气相沉积合成碳纳米管花的方法,包括以下步骤:
1)选定基材,对基材进行预处理;
2)将预处理后的基材置于镀镍液中进行化学沉积,取出,干燥,得到负载镍催化剂的基材;所述的镀镍液为乙二醇、氯化镍和氟化铵的水溶液,其组成为:乙二醇600~700ml/L、氯化镍10~20g/L、氟化铵10~30g/L,pH=5.0~5.5;
3)将负载镍催化剂的基材置于管式炉中,通入保护气氛并于保护气氛下升温至350~400℃,关闭保护气氛;向管式炉中通入氢气并于氢气条件下升温至500~550℃,然后向管式炉内通入碳源气体,并以氢气作为载气,在500~550℃条件下进行化学气相沉积80~110min,所得反应物于保护气氛下冷却,即得。
2.根据权利要求1所述的方法,其特征在于:步骤1)中,所述的基材为钛箔、铜箔或泡沫铜。
3.根据权利要求1所述的方法,其特征在于:步骤2)中,化学沉积的时间为5~10min。
4.根据权利要求1所述的方法,其特征在于:步骤3)中,所述的保护气氛为氩气和/或氮气。
5.根据权利要求1所述的方法,其特征在于:步骤3)中,所述的碳源气体为甲烷、乙烯或乙炔。
6.根据权利要求1所述的方法,其特征在于:步骤3)中,所述氢气和碳源气体的通入速率为100~200mL/min。
CN201610486841.7A 2016-06-24 2016-06-24 一种化学气相沉积合成碳纳米管花的方法 Active CN106115659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610486841.7A CN106115659B (zh) 2016-06-24 2016-06-24 一种化学气相沉积合成碳纳米管花的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610486841.7A CN106115659B (zh) 2016-06-24 2016-06-24 一种化学气相沉积合成碳纳米管花的方法

Publications (2)

Publication Number Publication Date
CN106115659A true CN106115659A (zh) 2016-11-16
CN106115659B CN106115659B (zh) 2018-08-21

Family

ID=57265927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610486841.7A Active CN106115659B (zh) 2016-06-24 2016-06-24 一种化学气相沉积合成碳纳米管花的方法

Country Status (1)

Country Link
CN (1) CN106115659B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314007A (zh) * 2017-01-18 2018-07-24 中国石油化工股份有限公司 一种镍-碳纳米管复合材料及其制备方法
CN109680257A (zh) * 2019-02-19 2019-04-26 中国铝业股份有限公司 一种纳米材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448335A (zh) * 2002-04-01 2003-10-15 财团法人工业技术研究院 适用于低温热化学气相沉积合成纳米碳管的负载金属触媒及使用此触媒的纳米碳管合成方法
JP2008195599A (ja) * 2007-02-15 2008-08-28 Korea Inst Of Energy Research 白金ナノ触媒担持炭素ナノチューブ電極及びその製造方法
CN104868134A (zh) * 2015-04-17 2015-08-26 华南理工大学 一种泡沫金属-碳纳米管复合材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448335A (zh) * 2002-04-01 2003-10-15 财团法人工业技术研究院 适用于低温热化学气相沉积合成纳米碳管的负载金属触媒及使用此触媒的纳米碳管合成方法
JP2008195599A (ja) * 2007-02-15 2008-08-28 Korea Inst Of Energy Research 白金ナノ触媒担持炭素ナノチューブ電極及びその製造方法
CN104868134A (zh) * 2015-04-17 2015-08-26 华南理工大学 一种泡沫金属-碳纳米管复合材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NILAY KUMAR DEY ET AL.: "Growth of Carbon Nanotubes on Carbon Fiber by Thermal CVD Using Ni Nanoparticles as Catalysts", 《PROCEDIA ENGINEERING》 *
王玲等: "《高级电镀工技术与实例》", 31 October 2005, 江苏科学技术出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314007A (zh) * 2017-01-18 2018-07-24 中国石油化工股份有限公司 一种镍-碳纳米管复合材料及其制备方法
CN108314007B (zh) * 2017-01-18 2021-08-06 中国石油化工股份有限公司 一种镍-碳纳米管复合材料及其制备方法
CN109680257A (zh) * 2019-02-19 2019-04-26 中国铝业股份有限公司 一种纳米材料的制备方法

Also Published As

Publication number Publication date
CN106115659B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
Lin et al. Microplasma: a new generation of technology for functional nanomaterial synthesis
Journet et al. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth
Guo et al. Molybdenum-based materials for electrocatalytic nitrogen reduction reaction
US20180123137A1 (en) A composite material of metal foam-carbon nanotube, the preparation method thereof and the use thereof
US20090186214A1 (en) Method of growing carbon nanomaterials on various substrates
CN106185896B (zh) 三维石墨烯及其复合材料的制备方法
CN105523546A (zh) 一种三维石墨烯的制备方法
CN105645375A (zh) 一种在纳米多孔铜上直接生长多孔碳纳米管的方法
JP5692876B2 (ja) カーボンナノチューブを基板上に合成する方法
Liu et al. Bimetallic MnMoO 4 with dual-active-centers for highly efficient electrochemical N 2 fixation
Ahn et al. Amorphous MoS2 nanosheets grown on copper@ nickel-phosphorous dendritic structures for hydrogen evolution reaction
CN107176601A (zh) 金属掺杂石墨烯及其成长方法
CN106115659B (zh) 一种化学气相沉积合成碳纳米管花的方法
CN105439126B (zh) 一种毫米级单晶石墨烯制备方法
CN110368969A (zh) 一种在碳纸或碳布上负载杂原子掺杂碳化钼析氢催化剂的制备方法及其应用
CN107032331B (zh) 一种基于绝缘基底的石墨烯制备方法
Lin et al. Plasma-assisted nitrogen fixation in nanomaterials: fabrication, characterization, and application
Gonzalez-Reyna et al. One-step synthesis of carbon nanospheres with an encapsulated iron-nickel nanoalloy and its potential use as an electrocatalyst
CN107502886A (zh) 原位合成片状金属氢氧化物/氧化物复合材料的制备方法
CN105645376A (zh) 一种在纳米多孔铜上直接生长多孔碳纳米管-石墨烯杂化体的方法
Ryu et al. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite
Narayanan et al. Fabrication of highly efficient FeNi-based electrodes using thermal plasma spray for electrocatalytic oxygen evolution reaction
Chen et al. Efficient and green synthesis of SiOC nanoparticles at near-ambient conditions by liquid-phase plasma
Xie et al. Hydrogen arc plasma promotes the purification and nanoparticle preparation of tungsten
Dong et al. Enhanced thermo cell properties from N-doped carbon nanotube-Pd composite electrode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220614

Address after: 563000 Pingqiao Industrial Park, Shenxi Town, Honghuagang District, Zunyi City, Guizhou Province

Patentee after: Juyuan material technology (Zunyi) Co.,Ltd.

Address before: 541004 No. 15 Yucai Road, Guilin, the Guangxi Zhuang Autonomous Region

Patentee before: Guangxi Normal University