CN107176601A - 金属掺杂石墨烯及其成长方法 - Google Patents

金属掺杂石墨烯及其成长方法 Download PDF

Info

Publication number
CN107176601A
CN107176601A CN201610268853.2A CN201610268853A CN107176601A CN 107176601 A CN107176601 A CN 107176601A CN 201610268853 A CN201610268853 A CN 201610268853A CN 107176601 A CN107176601 A CN 107176601A
Authority
CN
China
Prior art keywords
metal
doped graphene
growing method
graphene
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610268853.2A
Other languages
English (en)
Other versions
CN107176601B (zh
Inventor
黄昆平
季宇文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN107176601A publication Critical patent/CN107176601A/zh
Application granted granted Critical
Publication of CN107176601B publication Critical patent/CN107176601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种金属掺杂石墨烯及其成长方法。所述金属掺杂石墨烯包括石墨烯与金属元素,其中金属元素占金属掺杂石墨烯总含量的1at%到30at%。所述成长方法包括以碳前驱物、金属前驱物以及VI族前驱物,经等离子体化学气相沉积法(PECVD)成长金属掺杂石墨烯。

Description

金属掺杂石墨烯及其成长方法
技术领域
本发明是有关于一种掺杂石墨烯的技术,且特别是有关于一种金属掺杂石墨烯及其成长方法。
背景技术
近年超级电容与燃料电池等储能元件因应电动车的兴起而需求增加,其相关的储能材料需求也备受瞩目。其中,石墨烯具有高导电性与高比表面积,因此非常适合作为上述储能元件的电极材料。
然而,为了增加导电度等需求,传统的电极涂布法,需加入粘着剂与导电剂,但此举会让元件的储能表现下降,且处理耗时又不环保。因此如何提升材料的导电性,减少副原料的添加以及增加材料的电容量与催化能力是一重要的挑战。
目前的制造技术中,如欲在石墨烯中掺杂异质元素,往往需要额外的热处理法或选用特定基材,且制造出来掺杂浓度并不理想。
发明内容
本发明提供一种金属掺杂石墨烯的成长方法,能以等离子体化学气相沉积法成长出金属掺杂石墨烯,适用于电容、催化剂或是储氢材料。
本发明提供一种金属掺杂石墨烯,其中金属含量高,适用于电容、催化剂或是储氢材料。
本发明的金属掺杂石墨烯的成长方法,包括以碳前驱物、金属前驱物以及VI族前驱物,经等离子体化学气相沉积法(PECVD)成长金属掺杂石墨烯。
在本发明的一实施例中,上述碳前驱物包括碳氢气体。
在本发明的一实施例中,上述碳前驱物的流量约为1sccm~100sccm。
在本发明的一实施例中,上述金属前驱物包括铝前驱物、钯前驱物或铁前驱物。
在本发明的一实施例中,上述金属前驱物包括三氯化铝、二氯化钯或三氯化铁。
在本发明的一实施例中,上述VI族前驱物包括硫、氧或硒。
在本发明的一实施例中,上述金属前驱物与VI族前驱物的使用量各自独立为10mg~1000mg。
在本发明的一实施例中,上述等离子体化学气相沉积法包括微波等离子体火焰(Microwave Plasma Torch,MPT)化学气相沉积法或感应耦合等离子体化学气相沉积法。
在本发明的一实施例中,上述MPT化学气相沉积法的微波等离子体火焰温度小于500度。
在本发明的一实施例中,上述MPT化学气相沉积法的微波源功率约为100W到2000W。
在本发明的一实施例中,上述等离子体化学气相沉积法的处理时间约为0.5分钟至10分钟。
在本发明的一实施例中,上述等离子体化学气相沉积法的工作压力约为0.001torr到300torr。
在本发明的一实施例中,成长上述金属掺杂石墨烯的过程包括同时成长石墨烯与掺杂金属。
在本发明的一实施例中,成长上述金属掺杂石墨烯时,还可通入惰性气体。
在本发明的一实施例中,成长上述金属掺杂石墨烯时,还可掺杂氮。
本发明的金属掺杂石墨烯,包括石墨烯与金属元素,其中金属元素占金属掺杂石墨烯总含量的1at%到30at%。
在本发明的另一实施例中,上述金属掺杂石墨烯还可包含VI族元素。
在本发明的另一实施例中,上述VI族元素包括硫、氧或硒。
在本发明的另一实施例中,上述金属元素包括铝、钯或铁。
在本发明的另一实施例中,上述金属掺杂石墨烯例如三维金属掺杂石墨烯。
在本发明的另一实施例中,上述金属掺杂石墨烯还可包含氮元素。
基于上述,本发明能藉由等离子体化学气相沉积法配合使用碳前驱物、金属前驱物以及VI族前驱物,而成长具有高金属含量的金属掺杂石墨烯。这种方法能同时掺杂异质元素并成长立体石墨烯,其处理快速,且无需额外加热,成长时等离子体温度不超过500℃。上述金属掺杂石墨烯可应用于电容、催化剂或是储氢材料。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。
附图简述
图1是依照本发明的一实施例的一种金属掺杂石墨烯的成长示意图。
图2是实验例1中成长金属掺杂石墨烯的示意图。
图3是实验例1的铝掺杂石墨烯的XPS曲线图。
图4是实验例1的铝掺杂石墨烯中所含碳(C)的XPS曲线图。
图5是实验例1的铝掺杂石墨烯中所含铝(Al)的XPS曲线图。
图6是实验例2的铝掺杂石墨烯的XPS曲线图。
图7是实验例2的铝掺杂石墨烯中所含硫(S)的XPS曲线图。
图8是实验例3的铝掺杂石墨烯的XPS曲线图。
图9是实验例4的钯掺杂石墨烯的XPS曲线图。
图10是实验例5的钯掺杂石墨烯的XPS曲线图。
图11是应用例1的循环伏安图(显示局部电位)。
图12是应用例2的循环伏安图(显示局部电位)。
符号说明
100、200:碳前驱物
100a:氢原子
100b:碳原子
102、202:金属前驱物中的金属原子
104、204:VI族前驱物中的VI族原子
106、208:石墨烯
108:金属掺杂石墨烯
206:等离子体
实施方式
图1是依照本发明的一实施例的一种金属掺杂石墨烯的成长示意图。
请参照图1,本实施例的方法是以碳前驱物100、金属前驱物以及VI族前驱物经等离子体化学气相沉积法(PECVD)进行成长,其中碳前驱物100包括碳氢气体,如CH4、C2H4、C2H2等,因此图1中的碳前驱物100经分解后可得到氢原子100a和碳原子100b。上述碳前驱物100(如碳氢气体)的流量例如1sccm~100sccm。在本实施例中,金属前驱物可为铝前驱物、钯前驱物、铁前驱物等,例如三氯化铝(AlCl3)、二氯化钯(PdCl2)、三氯化铁(FeCl3)等。上述VI族前驱物则包括硫、氧或硒。举例来说,若使用三氯化铝作为金属前驱物,可搭配使用硫前驱物。另外,金属前驱物的使用量例如10mg~1000mg;VI族前驱物的使用量例如10mg~1000mg。
在本实施例中,等离子体化学气相沉积法例如微波等离子体火焰(MPT)化学气相沉积法或感应耦合(ICP)等离子体化学气相沉积法。若是以MPT化学气相沉积法为例,其微波等离子体火焰温度约小于500度;微波源功率例如在100W到2000W之间。此外,等离子体化学气相沉积法的处理时间例如0.5分钟至10分钟;工作压力例如0.001torr到300torr。以上处理参数均可依照需求作调整,并不一定限制在上述范围内。
详细来说,图1左边显示的是等离子体化学气相沉积法初期,碳前驱物100中的碳原子100b和金属前驱物中的金属原子102会被VI族前驱物中的VI族原子104活化;图1中间则显示碳原子100b和金属原子102具反应性而产生键结;图1右边则是处理结束后,同时成长出石墨烯106与掺杂金属原子102的金属掺杂石墨烯108,其中金属元素占金属掺杂石墨烯108总含量的1at%到30at%。上述金属掺杂石墨烯108例如三维金属掺杂石墨烯。而金属掺杂石墨烯108还包含VI族元素(104)。举例来说,VI族元素若为硫或硒,其含量占金属掺杂石墨烯108总含量的0.5at%~6at%;VI族元素若为氧,其含量占金属掺杂石墨烯108总含量的1at%~30at%。另外,金属掺杂石墨烯108中也可不含VI族元素,而只有石墨烯106与金属元素。
在本发明的另一实施例中,成长金属掺杂石墨烯108时还可通入惰性气体(如Ar)或氮气(N2)。如果在等离子体化学气相沉积法期间通氮气,则金属掺杂石墨烯108可能会同时掺杂有氮元素1at%~8at%。
根据上述实施例,成长金属掺杂石墨烯108的过程是同时成长石墨烯106与掺杂金属(102),所以掺杂的金属原子102不限于材料表面,而是以三维掺杂的方式存在于金属掺杂石墨烯108中。因此,本发明的方法与一般先制作石墨烯,再另外将金属掺杂进石墨烯的方式大不相同,而且所成长的金属掺杂石墨烯108具有高含量的金属元素,因此应用于电容、催化剂与储氢材料方面,预期都能具有更佳的效果。
以下列举数个实验用以验证本发明的功效,但本发明的范围并不局限于以下实验例。
实验例1
实验例1是以微波等离子体火焰(MPT)化学气相沉积法为例,成长铝掺杂石墨烯。
首先,在MPT化学气相沉积机台中的石英反应器内设置钛片基材,并将200mg作为金属前驱物的三氯化铝以及50mg作为VI族前驱物的二苯基二硫(BDS)也置入反应器中,之后通入作为碳前驱物的甲烷与氮气,其流量比例为1:4。然后,于工作压力0.05torr下,以微波瓦数800W激发等离子体进行15分钟的成长。
在微波聚焦后可提升等离子体解离率,同时分解VI族前驱物、金属前驱物和碳前驱物,导致图2所示的VI族前驱物中的VI族原子204增加碳前驱物(CH4)200和金属前驱物中的金属原子202的反应性,使得金属原子202可以跟碳前驱物200中的碳原子进行键结,而同时成长石墨烯208和掺杂金属原子202。
将所制得的铝掺杂石墨烯经过X射线光电子光谱(XPS)分析后,可以得知掺杂比例为8at%铝元素、2at%硫元素以及5.4at%氮元素,如图3所示。而图4和图5是分别针对碳(C)和铝(Al)的分析图。
实验例2
使用与实验例1相同的步骤成长铝掺杂石墨烯,但处理参数略有不同,包括:三氯化铝的量改为300mg、二苯基二硫(BDS)的量改为100mg;通入气体改为流量比例1:3的甲烷与氩气;工作压力变为0.02torr、微波瓦数为1000W、处理时间为10分钟。
将所制得的铝掺杂石墨烯经过XPS分析后,可以得知掺杂比例为10.8at%铝元素以及5.6at%硫元素,如图6所示。而图7是针对硫(S)的分析图。
实验例3
使用与实验例1相同的步骤成长铝掺杂石墨烯,但处理参数略有不同,包括:三氯化铝的量改为500mg、二苯基二硫(BDS)的量改为150mg;通入气体改为流量比例1:4的甲烷与氮气;工作压力变为0.02torr、微波瓦数为1200W、处理时间为10分钟。
将所制得的铝掺杂石墨烯经过XPS分析后,可以得知掺杂比例为20at%铝元素、0.5at%硫元素以及7.9at%氮元素,如图8所示。
实验例4
实验例4是以微波等离子体火焰(MPT)化学气相沉积法为例,成长钯掺杂石墨烯。
首先,在MPT化学气相沉积机台中的石英反应器内设置钛片基材,并将100mg作为金属前驱物的二氯化钯以及50mg作为VI族前驱物的二苯基二硫(BDS)也置入反应器中,之后通入作为碳前驱物的甲烷与氩气,其流量比例为1:4。然后,于工作压力0.05torr下,以微波瓦数1000W激发等离子体进行10分钟的成长。
在微波聚焦后可提升等离子体解离率,同时分解VI族前驱物、金属前驱物和碳前驱物,导致图2所示的VI族前驱物中的VI族原子204增加碳前驱物(CH4)200和金属前驱物中的金属原子202的反应性,使得金属原子202可以跟碳前驱物200中的碳原子进行键结,而同时成长石墨烯208和掺杂金属原子202。
将所制得的钯掺杂石墨烯经过X射线光电子光谱(XPS)分析后,可以得知掺杂比例为12.4at%钯元素、7.6at%硫元素,如图9所示。
实验例5
使用与实验例4相同的步骤成长钯掺杂石墨烯,但处理参数略有不同,包括:未使用VI族前驱物的二苯基二硫(BDS);通入气体改为流量比例1:4的甲烷与氩气;工作压力为0.05torr、微波瓦数为1000W、处理时间为10分钟。
将所制得的钯掺杂石墨烯经过X射线光电子光谱(XPS)分析后,可以得知掺杂比例为1at%钯元素、3at%氧元素,如图10所示。
应用例1
应用例1是将实验例1的铝掺杂石墨烯应用于催化剂的试验,详细步骤及条件如下。
应用例是以电化学工作站CHI730进行氧还原反应(oxygen reductionreaction,ORR)的评估。
首先,为了实施旋转环盘电极(rotating ring-disk electrode,RRDE)测量,于超声波槽中将1.32mg的铝掺杂石墨烯分散在包含8μL,5wt%全氟磺酸树酯(Nafion)与392μL的酒精的混合物中经过20分钟,以制备出试验用墨水(ink)。
然后,在已于室温下真空干燥8小时的玻璃碳盘电极的表面上低下15μL均匀的悬浮液(上述试验用墨水)。所有样品的质量负载约0.2mg cm-2
之后,铂环电极的电位在1.2V极化(相对于RHE),用以氧化从上述盘电极产生的中间体。
上述RRDE伏安法是在氧气饱和的电解质中,使旋转速度从400rpm改变到1600rpm来进行的。在所有ORR研究中,电解质是0.1M KOH,并使用Ag/AgCl(Argenthal,207mV vs.SHE at 25℃)作为对照,且以铂丝(4cm2)作为对电极。RRDE伏安法的电位范围在5mV s-1是从0.9V到0.2V(相对于RHE)。循环伏安法则是在用O2或N2清洁电解质30分钟后,在10mV s-1从0.9V到0.2V(vs.RHE)进行的,结果显示于图11。
从图11可知,铝掺杂石墨烯的氧化还原催化过电位(overpotential)与纯石墨烯相比可降低250mV。
应用例2
应用例2是将实验例4和5的钯掺杂石墨烯应用于催化剂的试验,步骤及条件如应用例1,结果显示于图12。
从图12可知,12at%钯掺杂石墨烯的氧化还原催化过电位与1at%钯掺杂石墨烯相比可降低300mV,但两者均优于图11的纯石墨烯。
综上所述,本发明以碳前驱物、金属前驱物以及VI族前驱物经等离子体化学气相沉积法,能成长出具有高金属掺杂量的金属掺杂石墨烯。这种方法能同时掺杂异质元素并成长立体石墨烯,因此与已知的金属掺杂石墨烯不同,且处理更为快速而不需额外加热。上述金属掺杂石墨烯可应用于电容、催化剂或是储氢材料。举例来说,当用作储氢材料时,储氢量能提升;用作催化剂经验证可增加氧气还原的催化能力;作为电容材料则可增加法拉第反应,提升拟电容电容含量。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的权利要求所界定者为准。

Claims (21)

1.一种金属掺杂石墨烯的成长方法,其特征在于所述方法包括:
以碳前驱物、金属前驱物以及VI族前驱物,经等离子体化学气相沉积法成长金属掺杂石墨烯。
2.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述碳前驱物包括碳氢气体。
3.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述碳前驱物的流量为1sccm~100sccm。
4.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述金属前驱物包括铝前驱物、钯前驱物或铁前驱物。
5.如权利要求4所述的金属掺杂石墨烯的成长方法,其中所述金属前驱物包括三氯化铝、二氯化钯或三氯化铁。
6.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述VI族前驱物包括硫、氧或硒。
7.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述金属前驱物与所述VI族前驱物的使用量各自独立为10mg~1000mg。
8.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述等离子体化学气相沉积法包括微波等离子体火焰(MPT)化学气相沉积法或感应耦合等离子体化学气相沉积法。
9.如权利要求8所述的金属掺杂石墨烯的成长方法,其中所述MPT化学气相沉积法的微波等离子体火焰温度小于500度。
10.如权利要求8所述的金属掺杂石墨烯的成长方法,其中所述MPT化学气相沉积法的微波源功率为100W到2000W。
11.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述等离子体化学气相沉积法的处理时间为0.5分钟至10分钟。
12.如权利要求1所述的金属掺杂石墨烯的成长方法,其中所述等离子体化学气相沉积法的工作压力为0.001torr到300torr。
13.如权利要求1所述的金属掺杂石墨烯的成长方法,其中成长所述金属掺杂石墨烯的过程包括同时成长石墨烯与掺杂金属。
14.如权利要求1所述的金属掺杂石墨烯的成长方法,其中成长所述金属掺杂石墨烯时,还包括通入惰性气体。
15.如权利要求1所述的金属掺杂石墨烯的成长方法,其中成长所述金属掺杂石墨烯时,还包括掺杂氮。
16.一种金属掺杂石墨烯,其特征在于所述金属掺杂石墨烯包括:
石墨烯;以及
金属元素,其中所述金属元素占所述金属掺杂石墨烯总含量的1at%到30at%。
17.如权利要求16所述的金属掺杂石墨烯,还包括VI族元素。
18.如权利要求17所述的金属掺杂石墨烯,其中所述VI族元素包括硫、氧或硒。
19.如权利要求16所述的金属掺杂石墨烯,其中所述金属元素包括铝、钯或铁。
20.如权利要求16所述的金属掺杂石墨烯,其中所述金属掺杂石墨烯为三维金属掺杂石墨烯。
21.如权利要求16所述的金属掺杂石墨烯,还包括氮元素。
CN201610268853.2A 2016-03-08 2016-04-27 金属掺杂石墨烯及其成长方法 Active CN107176601B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105106978 2016-03-08
TW105106978A TWI648423B (zh) 2016-03-08 2016-03-08 金屬摻雜石墨烯及其成長方法

Publications (2)

Publication Number Publication Date
CN107176601A true CN107176601A (zh) 2017-09-19
CN107176601B CN107176601B (zh) 2019-07-05

Family

ID=59788101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610268853.2A Active CN107176601B (zh) 2016-03-08 2016-04-27 金属掺杂石墨烯及其成长方法

Country Status (3)

Country Link
US (1) US10079392B2 (zh)
CN (1) CN107176601B (zh)
TW (1) TWI648423B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108910867A (zh) * 2018-07-25 2018-11-30 恒力(厦门)石墨烯科技产业集团有限公司 一种mpcvd制备掺杂氮磷石墨烯的方法
CN113101926A (zh) * 2021-03-18 2021-07-13 杭州电子科技大学 一种金属复合石墨烯氧还原反应电催化剂材料的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
PT115782B (pt) * 2019-09-17 2021-11-04 Inst Superior Tecnico Processo para a produção de materiais nanocompósitos em reator único utilizando tecnologia plasma
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
KR20230071632A (ko) * 2021-11-16 2023-05-23 삼성전자주식회사 메모리 셀 스트링을 포함하는 수직형 비휘발성 메모리 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288075A (zh) * 2013-05-24 2013-09-11 大连理工大学 氮掺杂石墨烯纳米带及其制备方法
CN104556014A (zh) * 2015-01-08 2015-04-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
CN104998631A (zh) * 2015-07-06 2015-10-28 湖北大学 氮杂石墨烯、负载Pd的氮杂石墨烯催化剂及其制备方法、应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2459483A2 (en) 2009-07-31 2012-06-06 Massachusetts Institute of Technology Systems and methods related to the formation of carbon-based nanostructures
US8507797B2 (en) * 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
CN102191476B (zh) 2011-04-11 2014-12-10 兰州大学 硫掺杂石墨烯薄膜的制备方法
US8486363B2 (en) * 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
KR20140093944A (ko) 2011-10-07 2014-07-29 퍼듀 리서치 파운데이션 그래핀의 신속 합성 및 그래핀 구조의 형성
CA2866650A1 (en) 2012-03-09 2013-09-12 Basf Se Aerogel based on doped graphene
WO2014019089A1 (en) 2012-07-30 2014-02-06 Zhongwei Chen Low cost synthesis of single material bifunctional nonprecious catalyst for electrochemical devices
US20140084252A1 (en) * 2012-09-25 2014-03-27 International Business Machines Corporation Doped graphene transparent conductive electrode
JP5357346B1 (ja) 2013-01-15 2013-12-04 株式会社Micc Tec 還元型酸化グラフェンの製造方法
CN104528703B (zh) 2014-12-29 2017-02-01 中国科学院宁波材料技术与工程研究所 氮磷共掺杂石墨烯的制备方法
CN104787740B (zh) 2015-04-30 2016-01-20 青岛大学 一种三维掺氮石墨烯的制备方法
CN105293483B (zh) * 2015-12-08 2017-07-11 武汉理工大学 一种原位制备过渡金属掺杂多孔石墨烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288075A (zh) * 2013-05-24 2013-09-11 大连理工大学 氮掺杂石墨烯纳米带及其制备方法
CN104556014A (zh) * 2015-01-08 2015-04-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
CN104998631A (zh) * 2015-07-06 2015-10-28 湖北大学 氮杂石墨烯、负载Pd的氮杂石墨烯催化剂及其制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALBERT DATO,ET AL.: "Substrate-free microwave synthesis of graphene:experimental conditions and hydrocarbon precursors", 《NEW JOURNAL OF PHYSICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108910867A (zh) * 2018-07-25 2018-11-30 恒力(厦门)石墨烯科技产业集团有限公司 一种mpcvd制备掺杂氮磷石墨烯的方法
CN113101926A (zh) * 2021-03-18 2021-07-13 杭州电子科技大学 一种金属复合石墨烯氧还原反应电催化剂材料的制备方法

Also Published As

Publication number Publication date
TWI648423B (zh) 2019-01-21
CN107176601B (zh) 2019-07-05
TW201732071A (zh) 2017-09-16
US20170263940A1 (en) 2017-09-14
US10079392B2 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
CN107176601A (zh) 金属掺杂石墨烯及其成长方法
Chu et al. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods
Gao et al. Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery
Wen et al. O doping hierarchical NiCoP/Ni2P hybrid with modulated electron density for efficient alkaline hydrogen evolution reaction
Xiao et al. Core–shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage
Xu et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea
Mao et al. Efficient electrochemical reduction of bromate by a Pd/rGO/CFP electrode with low applied potentials
JP4907745B2 (ja) 二酸化炭素を還元する方法
Lv et al. Fe2TiO5-incorporated hematite with surface P-modification for high-efficiency solar water splitting
Han et al. Prussian blue@ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor
Ge et al. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing
Zhang et al. Preparation of Pt/(Ti3C2Tx) y-(MWCNTs) 1-y electrocatalysts via a facile and scalable solvothermal strategy for high-efficiency methanol oxidation
Li et al. Preparation of a nitrogen-doped reduced graphene oxide-modified graphite felt electrode for VO 2+/VO 2+ reaction by freeze-drying and pyrolysis method
Zheng et al. Microstructure effect of carbon nanofibers on Pt/CNFs electrocatalyst for oxygen reduction
Li et al. Boosting the performance of formic acid microfluidic fuel cell: Oxygen annealing enhanced Pd@ graphene electrocatalyst
Dolganov et al. Fabrication of new metal-free materials for the hydrogen evolution reaction on base of the acridine derivatives immobilized on carbon materials
Zhao et al. sp-Hybridized nitrogen doped graphdiyne for high-performance Zn–air batteries
Sano et al. Direct synthesis of carbon nanotubes on stainless steel electrode for enhanced catalyst efficiency in a glucose fuel cell
Zhang et al. Construction of CuO/Cu/WO3− x/WO3/W self-supported electrodes by a dry chemical route for hydrogen evolution reaction
Kondaveeti et al. Investigating the role of metals loaded on nitrogen-doped carbon-nanotube electrodes in electroenzymatic alcohol dehydrogenation
Zhang et al. Superior catalytic performance and CO tolerance of PtCu/graphdiyne electrocatalyst toward methanol oxidation reaction
Hu et al. One-pot electrodeposition of metal organic frameworks composites accelerated by electroreduced graphene oxide and gold nanoparticles for rutin electroanalysis
Chen et al. The integration of conductive polymelamine and NiFe hydroxides to boost the electrochemical overall water splitting
Lv et al. Gold-Modified Mo2C Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes for Electrochemical Nitrogen Fixation
CN205355154U (zh) 空气阴极以及微生物燃料电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant