CN106086776B - 一种氮化铁磁粉的低温等离子氮化制备方法 - Google Patents

一种氮化铁磁粉的低温等离子氮化制备方法 Download PDF

Info

Publication number
CN106086776B
CN106086776B CN201610469967.3A CN201610469967A CN106086776B CN 106086776 B CN106086776 B CN 106086776B CN 201610469967 A CN201610469967 A CN 201610469967A CN 106086776 B CN106086776 B CN 106086776B
Authority
CN
China
Prior art keywords
iron powder
low
temperature
nitriding
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610469967.3A
Other languages
English (en)
Other versions
CN106086776A (zh
Inventor
李静
袁玮
彭晓领
杨艳婷
徐靖才
王攀峰
金红晓
金顶峰
洪波
王新庆
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongyang Dingfeng Magnetism Material Co ltd
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610469967.3A priority Critical patent/CN106086776B/zh
Publication of CN106086776A publication Critical patent/CN106086776A/zh
Application granted granted Critical
Publication of CN106086776B publication Critical patent/CN106086776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种氮化铁磁粉的低温等离子氮化制备方法。该发明以平均粒径为2~80μm的雾化铁粉、羟基铁粉或还原铁粉为原材料;通入O2,在300~400℃氧化1‑10h,以获得氧化铁粉;通入氢气,在300~400℃还原4‑20h,以重新获得铁粉;低温等离子氮化,控制温度在120~200℃,氮化1~30h;降温,随炉冷却至室温,取出样品。该方法采用低温氮等离子进行渗氮,解决了氨气渗氮法中氨气分解效率低下的瓶颈问题,有效地提高了渗氮效率。

Description

一种氮化铁磁粉的低温等离子氮化制备方法
技术领域
本发明涉及一种氮化铁磁粉的低温等离子氮化制备方法,属于材料制备领域。
背景技术
Fe-N化合物优良的软磁性、抗氧化性和耐磨性,使之成为理想的磁记录介质和磁感元件材料,受到人们的关注。Fe-N化合物主要有Fe3N,Fe4N和α"-Fe16N2等几种。根据国内外文献报道,α"-Fe16N2的磁性是铁氮化合物中最好的一类,它的饱和磁化强度达到280emu/g,比纯铁高,是目前发现的具有最高饱和磁化强度的物质。
由于α"-Fe16N2相在常温下是一个亚稳相,它的生成区很窄,所以要制备出α"-Fe16N2是一件很困难的事情,而且制备α"-Fe16N2的实验基本上都不具有重复性,每次的实验结果都不可能一模一样。多年来,众多科学家尝试从物理机制和应用角度重现具有高饱和磁化强度的α"-Fe16N2,也使用了很多的方法,比如氮化退火法、共析法、离子注入法、化学气相沉积法,物理气相沉积法等。
目前制备α"-Fe16N2的团队中最成功的是日木东北大学研宄生院高桥研教授、小川智之和户田工业助教等组成的研究小组。他们成功的以克为单位生成了α"-Fe16N2粉末。这是全球首次以高达91%的纯度,可再现地生成以g为单位的α"-Fe16N2。他们生产的α"-Fe16N2粉末粒径从几十到几百纳米,在50K下饱和磁化强度为230emu/g,在室温下为221emu/g,高于纯铁。
针对以上,本发明采用氧化、还原、低温等离子法氮化的方法制备了含α"-Fe16N2相的铁磁性材料。
发明内容
本发明的目的在于提供一种氮化铁磁粉的低温等离子氮化制备方法。
采用气相渗氮制备α"-Fe16N2时,通常采用的是氨气气氛,通过氨气在α-Fe表面的吸附、分解、扩散进行的。而最关键的一步是氨气在α-Fe表面的分解,也是决定氮化效率的关键。本发明采用低温等离子体技术,直接采用高能离子化的氮对α-Fe进行氮化,有效地增大了氮化效率。
本发明的具体步骤为:
1)材料准备
选择平均粒径为2~80μm的铁粉为原材料,铁粉可以为雾化铁粉、羟基铁粉或还原铁粉;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在300~400℃氧化1-10h,以获得氧化铁粉;
3)还原
通入氢气,在300~400℃还原4-20h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在120~200℃,氮化1~30h;降温,随炉冷却至室温,取出样品。
本发明的优点是:采用低温氮等离子进行渗氮,解决了氨气渗氮法中氨气分解效率低下的瓶颈问题,有效地提高了渗氮效率。
具体实施方式
下面结合实施例对本发明进行详细描述,以便更好地理解本发明的目的、特点和优点。虽然本发明是结合该具体的实施例进行描述,但并不意味着本发明局限于所描述的具体实施例。相反,对可以包括在本发明权利要求中所限定的保护范围内的实施方式进行的替代、改进和等同的实施方式,都属于本发明的保护范围。对于未特别标注的工艺参数,可按常规技术进行。
本发明的具体步骤为:
1)材料准备
选择平均粒径为2~80μm的铁粉为原材料,铁粉可以为雾化铁粉、羟基铁粉或还原铁粉;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在300~400℃氧化1-10h,以获得氧化铁粉;
3)还原
通入氢气,在300~400℃还原4-20h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在120~200℃,氮化1~30h;降温,随炉冷却至室温,取出样品。
通过本发明可以更加有效地制备含α"-Fe16N2相的氮化铁磁粉。
实施例1:
步骤为:
1)材料准备
选择平均粒径为2μm的雾化铁粉为原材料;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在300℃氧化10h,以获得氧化铁粉;
3)还原
通入氢气,在300℃还原20h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在120℃,氮化30h;降温,随炉冷却至室温,取出样品。
对实施例1所制备的样品进行XRD表征,检测到了α"-Fe16N2相。
实施例2:
步骤为:
1)材料准备
选择平均粒径为4μm的羟基铁粉为原材料;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在320℃氧化8h,以获得氧化铁粉;
3)还原
通入氢气,在320℃还原15h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在140℃,氮化20h;降温,随炉冷却至室温,取出样品。
对实施例2所制备的样品进行XRD表征,检测到了α"-Fe16N2相。
实施例3:
步骤为:
1)材料准备
选择平均粒径为10μm的羟基铁粉为原材料;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在340℃氧化6h,以获得氧化铁粉;
3)还原
通入氢气,在340℃还原10h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在160℃,氮化15h;降温,随炉冷却至室温,取出样品。
对实施例3所制备的样品进行XRD表征,检测到了α"-Fe16N2相。
实施例4:
步骤为:
1)材料准备
选择平均粒径为20μm的雾化铁粉为原材料;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在360℃氧化4h,以获得氧化铁粉;
3)还原
通入氢气,在360℃还原8h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在170℃,氮化10h;降温,随炉冷却至室温,取出样品。
对实施例4所制备的样品进行XRD表征,检测到了α"-Fe16N2相。
实施例5:
步骤为:
1)材料准备
选择平均粒径为40μm的还原铁粉为原材料;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在380℃氧化2h,以获得氧化铁粉;
3)还原
通入氢气,在380℃还原6h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在180℃,氮化4h;降温,随炉冷却至室温,取出样品。
对实施例5所制备的样品进行XRD表征,检测到了α"-Fe16N2相。
实施例6:
步骤为:
1)材料准备
选择平均粒径为80μm的羟基铁粉为原材料;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在400℃氧化1h,以获得氧化铁粉;
3)还原
通入氢气,在400℃还原4h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在200℃,氮化1h;降温,随炉冷却至室温,取出样品。
对实施例6所制备的样品进行XRD表征,检测到了α"-Fe16N2相。

Claims (1)

1.一种氮化铁磁粉的低温等离子氮化制备方法,其特征在于具体步骤为:
1)材料准备
选择平均粒径为2~80μm的铁粉为原材料,铁粉为雾化铁粉、羟基铁粉或还原铁粉;
2)氧化
将铁粉置于热处理炉中,以恒定的速率通入O2,在300~400℃氧化1-10h,以获得氧化铁粉;
3)还原
通入氢气,在300~400℃还原4-20h,以重新获得铁粉;
4)低温等离子氮化
低温等离子氮化,控制温度在120~200℃,氮化1~30h;降温,随炉冷却至室温,取出样品。
CN201610469967.3A 2016-06-26 2016-06-26 一种氮化铁磁粉的低温等离子氮化制备方法 Active CN106086776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610469967.3A CN106086776B (zh) 2016-06-26 2016-06-26 一种氮化铁磁粉的低温等离子氮化制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610469967.3A CN106086776B (zh) 2016-06-26 2016-06-26 一种氮化铁磁粉的低温等离子氮化制备方法

Publications (2)

Publication Number Publication Date
CN106086776A CN106086776A (zh) 2016-11-09
CN106086776B true CN106086776B (zh) 2018-06-01

Family

ID=57252531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610469967.3A Active CN106086776B (zh) 2016-06-26 2016-06-26 一种氮化铁磁粉的低温等离子氮化制备方法

Country Status (1)

Country Link
CN (1) CN106086776B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818853A (zh) * 2017-11-23 2018-03-20 龙岩紫荆创新研究院 一种氮化磁性粉体及其制备方法
CN109650405A (zh) * 2019-01-21 2019-04-19 昆明理工大学 一种连续合成氨的方法
CN112038082A (zh) * 2020-08-28 2020-12-04 常州古金磁性材料科技有限公司 使用高压氮化的方法制备铁氮磁性材料的方法
CN112872348B (zh) * 2020-12-31 2021-11-30 广东省科学院稀有金属研究所 一种提高稀土-铁合金氮化效率的方法
CN113199030B (zh) * 2021-04-25 2023-08-15 西安建筑科技大学 一种利用离子渗氮制备3d打印不锈钢粉末的方法
CN115181923A (zh) * 2022-06-16 2022-10-14 浙江兴昌风机有限公司 一种铝材基底离子氮化制备氮化铝薄膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621549A (zh) * 2003-11-27 2005-06-01 同和矿业株式会社 氮化铁磁粉和制造该磁粉的方法
CN103920886A (zh) * 2014-05-06 2014-07-16 四川金沙纳米技术有限公司 超细铁粉的生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932326B2 (ja) * 1998-05-22 2007-06-20 Dowaエレクトロニクス株式会社 窒化鉄磁性材料の製法
JP4534059B2 (ja) * 2004-03-17 2010-09-01 Dowaエレクトロニクス株式会社 窒化鉄系磁性粉末およびその製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621549A (zh) * 2003-11-27 2005-06-01 同和矿业株式会社 氮化铁磁粉和制造该磁粉的方法
CN103920886A (zh) * 2014-05-06 2014-07-16 四川金沙纳米技术有限公司 超细铁粉的生产方法

Also Published As

Publication number Publication date
CN106086776A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106086776B (zh) 一种氮化铁磁粉的低温等离子氮化制备方法
US9378876B2 (en) Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet
WO2017150557A1 (ja) サマリウム-鉄-窒素合金粉末及びその製造方法
CN103050209B (zh) 一种扁平状磁性粉体及其制备方法
Son et al. Superior magnetic performance in FePt L10 nanomaterials
Okada et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique
CN105986202A (zh) 铁基非晶材料及其制备方法
JP2012246174A (ja) 窒化鉄材の製造方法及び窒化鉄材
CN101891163A (zh) 一种超细球形氮化铁粉末的制备方法
JP6461828B2 (ja) 磁性粒子の製造方法
CN105895291A (zh) 一种软磁复合材料及其制备方法
CN112382498B (zh) 一种高矫顽力高磁能积扩散钐铁氮磁体的制备方法
Wang et al. Nd2Fe14B hard magnetic powders: Chemical synthesis and mechanism of coercivity
JP2010232511A (ja) 有機磁性材料及びその製造方法
CN106205919B (zh) 运用电子束加热快速制备纳米双相复合永磁材料的方法
CN105858625B (zh) 一种氮化铁纳米线及其制备方法
Hirotsu et al. Growth and atomic ordering of hard magnetic L10-FePt, FePd and CoPt alloy nanoparticles studied by transmission electron microscopy: alloy system and particle size dependence
WO2020026501A1 (ja) 焼結磁石および焼結磁石の製造方法
CN106011748B (zh) 一种氮化铁薄膜的制备方法
CN105869814B (zh) 一种扁平化氮化铁磁粉及其制备方法
CN105861908B (zh) 一种永磁材料的制备方法
CN110277211A (zh) 一种钐铁氮磁纳米管的制备方法
Akbar et al. Development of Fe-Cr-Co permanent magnets by single step thermo-magnetic treatment
Carnevale Jr Understanding Magnetic Exchange Behavior in Core@ Shell Nanoparticles
Djéga-Mariadassou 3. 2.1. 3 FePt-based homocomposites: Magnetic properties and nanostructure: Nanocrystalline Materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Li Jing

Inventor after: Wang Xinqing

Inventor after: Ge Hongliang

Inventor after: Yuan Wei

Inventor after: Peng Xiaoling

Inventor after: Yang Yanting

Inventor after: Xu Jingcai

Inventor after: Wang Panfeng

Inventor after: Jin Hongxiao

Inventor after: Jin Dingfeng

Inventor after: Hong Bo

Inventor before: Li Jing

Inventor before: Ge Hongliang

Inventor before: Peng Xiaoling

Inventor before: Yang Yanting

Inventor before: Xu Jingcai

Inventor before: Wang Panfeng

Inventor before: Jin Hongxiao

Inventor before: Jin Dingfeng

Inventor before: Hong Bo

Inventor before: Wang Xinqing

COR Change of bibliographic data
TA01 Transfer of patent application right

Effective date of registration: 20170302

Address after: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Applicant after: China Jiliang University

Address before: Hangzhou City, Zhejiang province 311112 ancient Pier Road, Yuhang District Ming Nga Court 15-1-101

Applicant before: Peng Xiaoling

CB02 Change of applicant information

Address after: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Applicant after: CHINA JILIANG UNIVERSITY

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Applicant before: China Jiliang University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211025

Address after: 322100 Jinhua City, Zhejiang Province, Dongyang City, Lake Creek Industrial Area

Patentee after: DONGYANG DINGFENG MAGNETISM MATERIAL Co.,Ltd.

Address before: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou, Zhejiang

Patentee before: China Jiliang University

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A low-temperature plasma nitriding preparation method for iron nitride magnetic powder

Granted publication date: 20180601

Pledgee: Postal Savings Bank of China Limited Dongyang City sub branch

Pledgor: DONGYANG DINGFENG MAGNETISM MATERIAL CO.,LTD.

Registration number: Y2024980053225