CN112038082A - 使用高压氮化的方法制备铁氮磁性材料的方法 - Google Patents

使用高压氮化的方法制备铁氮磁性材料的方法 Download PDF

Info

Publication number
CN112038082A
CN112038082A CN202010886339.1A CN202010886339A CN112038082A CN 112038082 A CN112038082 A CN 112038082A CN 202010886339 A CN202010886339 A CN 202010886339A CN 112038082 A CN112038082 A CN 112038082A
Authority
CN
China
Prior art keywords
iron
pressure
magnetic material
preparing
nitrogen magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010886339.1A
Other languages
English (en)
Inventor
姜岩峰
杜昊临
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Gujin Magnetic Material Technology Co ltd
Original Assignee
Changzhou Gujin Magnetic Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Gujin Magnetic Material Technology Co ltd filed Critical Changzhou Gujin Magnetic Material Technology Co ltd
Priority to CN202010886339.1A priority Critical patent/CN112038082A/zh
Publication of CN112038082A publication Critical patent/CN112038082A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开了使用高压氮化的方法制备铁氮磁性材料的方法,应用在磁性材料领域,其技术方案要点是:准备铁颗粒,清除表面污染,保持表面清洁;将铁颗粒放入高压反应釜中,然后封闭后充气增压,通入氨气和氢气的混合物的气氛介质,气氛压力保持在20~100MPa,氨气与氢气之间的流量比为1:10~10:1;高压反应釜置入常温状态,保持时间为5~60min;具有的技术效果是:本发明产品中所含的Fe16N2相的含量增加,更利于铁氮相材料的制备。

Description

使用高压氮化的方法制备铁氮磁性材料的方法
技术领域
本发明涉及磁性材料技术领域,特别涉及使用高压氮化的方法制备铁氮磁性材料的方法。
背景技术
铁氮体系材料种类繁多,各个相之间关系错综复杂,所以对铁氮材料开展研究,近年鲜有整个铁氮系材料全面研究工作的报道,一般而言,相关研究组从实际需求出发,仅针对某种感兴趣的铁氮材料开展研究。例如,对于磁记录领域的应用,研究人员感兴趣的是具有超高饱和磁场强度的α’’-Fe16N2以及γ’-Fe4N相;软磁变压器领域的应用,则对表面电阻率高且具有高饱和磁场强度的γ’-Fe4N相感兴趣;永磁方面的研究,对磁晶各向异性能量较高的α’’-Fe16N2相感兴趣;表面涂覆方面,则针对对高氮含量的FeN或Fe2N开展研究工作。
关于γ’-Fe4N的研究,国内外很快就达成了共识,该材料性能稳定,表面电阻较高,晶体结构对称,磁晶各向异性能量低,在整体性能上与铁氧体类似,属于中低端软磁材料,可用来制作变压器磁芯、电感、扼流圈等磁性元件,但对应的截止频率较低、损耗较高,无法与高端的软磁材料相提并论。
关于α’’-Fe16N2的研究,则出现了一定的波折,α’’-Fe16N2是否具有高达3.0T的饱和磁化强度曾存在很大的争议。上个世纪九十年初,国际材料学界对此有过激烈的争论但当时未有定论,沉寂多年之后,由于α’’-Fe16N2在科学和技术上的重要价值,这一问题近期又成为材料研究的热点。
α’’-Fe16N2相是Jack于1951年首先报道的,是一种有序的亚稳相。有序是指N原子在Fe晶格中排列有序,三个晶轴方向间隔排列,对边方向交错排列。亚稳是因为这种结构在200oC以上的温度下热处理时会分解为α-Fe和γ’-Fe4N。1972年,Kim等人在研究Fe薄膜的磁性和真空度的关系时(使用N2来改变真空室的真空度),发现Fe-N具有比Fe更高的饱和磁化强度,并根据相图认为有α’’-Fe16N2相形成,饱和磁化强度高达2.83T。1989年,Komuro等人用分子束外延的方法在GaAs基板上制备了单晶的α’’-Fe16N2薄膜,其饱和磁化强度在2.8-3.0T之间。这一结果在实验和理论两方面都得到了其他独立的研究组的证实。
无论从科学还是从技术角度考虑,α’’-Fe16N2的高饱和磁化强度均具有重要的意义。理论上的意义在于,Fe16N2的高饱和磁化强度,表明现有的凝聚态理论对Fe、N原子的交换作用的估计是不足的,需要很大的改进。从应用角度考虑,在磁记录中,磁头所能产生的最大磁场决定于材料的饱和磁化强度,而磁头的磁化场直接与磁记录密度相关。目前现有磁头工艺能够提供约1.9T的磁化场,如果采用高饱和磁化强度的Fe16N2做为磁头材料,则能将磁头场提高近50%,能够在现有工艺水平下将记录密度进一步提升。在永磁材料领域,材料的最大磁能积正比于其饱和磁化强度的平方,采用α’’-Fe16N2能够将磁能积极限提高40%,或者将材料体积降低30%。
虽然铁氮磁性材料具有很好的性能和应用前景,但是迄今为止,该类材料没有成功进入产业化。主要原因在于氮化问题。
我们知道,氮气是非常稳定的气体,本身偏于稳定,化学反应活性不够强。用氮气是不能直接和铁进行反应的,一般用氨气作为反应气体,氨气和铁会发生反应形成铁氮化合物。但是这种反应仅仅发生在金属表面。可以看出,氨气和铁在铁金属表面形成铁氮化合物,这个铁氮化合物会形成阻挡层,阻挡氮原子继续和内部的铁发生反应。所以,这种氨气氮化技术多用于材料表面氮化改性的作用。
使用氨气对铁进行氮化的时候,用下列公式来描述氮化的能力:
Figure 571118DEST_PATH_IMAGE002
,这里Kn定义为氮化势能,其中pNH3表示反应炉中氨气的压力,而pH2表示反应炉中氢气的压力。
因为这种氨气的氮化仅仅能发生在铁金属的表面,所以目前在制备铁氮磁性材料的时候,通常原材料采用纳米级铁颗粒,一般的制备流程是:(1)将纳米级铁颗粒放入反应炉中,在100至350摄氏度范围内通氢气,对纳米铁颗粒表面进行还原反应,因为在准备原材料的时候,纳米铁颗粒表面不可避免要有氧化,所以要通过氢气反应,将表面的氧化铁还原成纯铁。(2)在氢气还原反应完成之后,在反应炉中通氨气和氢气的混合物,具体的分压由氮化势能Kn来确定,反应温度一般为100至500摄氏度,反应时间一般为几小时至几十个小时。(3)氮化反应后,进行适当温度的退火。
以上为目前制备铁氮磁性材料的步骤,可以看出,存在以下缺点:
(1)气体氮化的方式,仅能氮化金属表面,不能深入氮化;
(2)氮化效率极低,需要氮化的时间较长;
(3)对原材料要求较高,要求原材料为纳米级铁颗粒,这种原材料的价格非常贵。
发明内容
本发明的目的是提供使用高压氮化的方法制备铁氮磁性材料的方法,本发明提供的方法优点在于降低了材料的制备成本。
本发明的上述技术目的是通过以下技术方案得以实现的:使用高压氮化的方法制备铁氮磁性材料的方法,1)准备铁颗粒,清除表面污染,保持表面清洁;2)将铁颗粒放入高压反应釜中,然后封闭后充气增压,通入氨气和氢气的混合物的气氛介质,气氛压力保持在20~100MPa,氨气与氢气之间的流量比为1:10~10:1;3)高压反应釜置入常温状态,保持时间为5~60min;4)启动高压反应釜加热,合成温度控制在100~500℃,保温时间控制在0.1~100h;5)加热反应结束后,停机冷却至常温,然后将压力降至常压;6)向高压反应釜内充入氮气,将高压反应釜打开出炉,合成产物即为铁氮磁性材料,Fe16N2相含量在20%~80%。
本发明进一步设置为:铁颗粒的尺寸为9~10um。
本发明进一步设置为:氨气和氢气的混合物、铁颗粒之间的体积比》10:1。
本发明进一步设置为:铁颗粒包括铁粉,铁粉的颗粒直径为0.01~1000um,纯度》90%。
本发明进一步设置为:铁氮磁性材料为Fe2N、Fe3N、Fe4N、Fe8N或Fe16N2中的任意一种或几种。
本发明进一步设置为:所制备的铁氮磁性材料可用于变压器和传感器。
本发明进一步设置为:所制备的铁氮磁性材料可用于功率电子器件。
一种铁氮磁性材料,通过上述方法制备得到。
综上所述,本发明具有以下有益效果:
1、首次采用高压反应釜工艺,通过高压制备的方法达到提高制备材料的磁性的目的;
2、本发明中随着高压反应釜的压力升高,铁氮材料含量随之增加,当高压反应釜内的气压达到100MPa时,材料对应的磁感应强度明显增加;
3、本发明产品中所含的Fe16N2相的含量增加,更利于铁氮相材料的制备;
4、本发明工艺简单、材料生产率高、成本低廉、易于产业化。
附图说明
图1是本实施例在不同高压下制备的样品的磁性特性曲线分布图;
图2是XRD结果的对比示意图;
图3是本发明不同压力情况下所制备Fe16N2相的含量曲线图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例:请参阅图1、图2和图3,图1是本实施例在不同高压下制备的样品的磁性特性曲线分布图;图2是XRD结果的对比示意图;图3是本发明不同压力情况下所制备Fe16N2相的含量曲线图。使用高压氮化的方法制备铁氮磁性材料的方法,1)准备铁颗粒,清除表面污染,保持表面清洁;2)将铁颗粒放入高压反应釜中,然后封闭后充气增压,通入氨气和氢气的混合物的气氛介质,气氛压力保持在20~100MPa,氨气与氢气之间的流量比为1:10~10:1;3)高压反应釜置入常温状态,保持时间为5~60min;4)启动高压反应釜加热,合成温度控制在100~500℃,保温时间控制在0.1~100h;5)加热反应结束后,停机冷却至常温,然后将压力降至常压;6)向高压反应釜内充入氮气,将高压反应釜打开出炉,合成产物即为铁氮磁性材料,Fe16N2相含量在20%~80%,氨气和氢气的混合物、铁颗粒之间的体积比》10:1,铁颗粒包括铁粉,铁粉的颗粒直径为0.01~1000um,纯度》90%,铁氮磁性材料为Fe2N、Fe3N、Fe4N、Fe8N或Fe16N2中的任意一种或几种,所制备的铁氮磁性材料可用于变压器、传感器和功率电子器件,其中在常压下,使用氨气对铁进行氮化的时候,用下列公式来描述氮化的能力:
Figure 284996DEST_PATH_IMAGE004
,当在高压下,使用氨气对铁进行氮化的时候,用下列公式来描述氮化的能力:
Figure DEST_PATH_IMAGE005
,由上述两个公式经过计算对比,和常压下的氮化能力相比,高压下多了一个系数,如果我们采用100倍大气压,则氮化能力将提高10倍以上。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (8)

1.使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于该方法包括如下步骤:
1)准备铁颗粒,清除表面污染,保持表面清洁;
2)将铁颗粒放入高压反应釜中,然后封闭后充气增压,通入氨气和氢气的混合物的气氛介质,气氛压力保持在20~100MPa,氨气与氢气之间的流量比为1:10~10:1;
3)高压反应釜置入常温状态,保持时间为5~60min;
4)启动高压反应釜加热,合成温度控制在100~500℃,保温时间控制在0.1~100h;
5)加热反应结束后,停机冷却至常温,然后将压力降至常压;
6)向高压反应釜内充入氮气,将高压反应釜打开出炉,合成产物即为铁氮磁性材料,Fe16N2相含量在20%~80%。
2.根据权利要求1所述的使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于:铁颗粒的尺寸为9~10um。
3.使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于:氨气和氢气的混合物、铁颗粒之间的体积比》10:1。
4.使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于:铁颗粒包括铁粉,铁粉的颗粒直径为0.01~1000um,纯度》90%。
5.使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于:铁氮磁性材料为Fe2N、Fe3N、Fe4N、Fe8N或Fe16N2中的任意一种或几种。
6.使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于:所制备的铁氮磁性材料可用于变压器和传感器。
7.使用高压氮化的方法制备铁氮磁性材料的方法,其特征在于:所制备的铁氮磁性材料可用于功率电子器件。
8.一种铁氮磁性材料,其特征在于:通过权利要求1~7任一项所述的方法制备而来。
CN202010886339.1A 2020-08-28 2020-08-28 使用高压氮化的方法制备铁氮磁性材料的方法 Pending CN112038082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010886339.1A CN112038082A (zh) 2020-08-28 2020-08-28 使用高压氮化的方法制备铁氮磁性材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010886339.1A CN112038082A (zh) 2020-08-28 2020-08-28 使用高压氮化的方法制备铁氮磁性材料的方法

Publications (1)

Publication Number Publication Date
CN112038082A true CN112038082A (zh) 2020-12-04

Family

ID=73587628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010886339.1A Pending CN112038082A (zh) 2020-08-28 2020-08-28 使用高压氮化的方法制备铁氮磁性材料的方法

Country Status (1)

Country Link
CN (1) CN112038082A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334423A (zh) * 2022-01-07 2022-04-12 浙江工业大学 一种铁基氮化物软磁材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042794A (zh) * 1988-11-14 1990-06-06 旭化成工业株式会社 含有稀土元素、铁、氮和氢的磁性材料
CN1621549A (zh) * 2003-11-27 2005-06-01 同和矿业株式会社 氮化铁磁粉和制造该磁粉的方法
CN101613813A (zh) * 2009-07-27 2009-12-30 西南交通大学 一种多孔铁基复合粉体材料的制备方法
CN105621377A (zh) * 2014-10-28 2016-06-01 中国石油化工股份有限公司 基于金属有机骨架材料的氮化铁的制备方法
CN106086776A (zh) * 2016-06-26 2016-11-09 彭晓领 一种氮化铁磁粉的低温等离子氮化制备方法
US20180025841A1 (en) * 2015-01-26 2018-01-25 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042794A (zh) * 1988-11-14 1990-06-06 旭化成工业株式会社 含有稀土元素、铁、氮和氢的磁性材料
CN1621549A (zh) * 2003-11-27 2005-06-01 同和矿业株式会社 氮化铁磁粉和制造该磁粉的方法
CN101613813A (zh) * 2009-07-27 2009-12-30 西南交通大学 一种多孔铁基复合粉体材料的制备方法
CN105621377A (zh) * 2014-10-28 2016-06-01 中国石油化工股份有限公司 基于金属有机骨架材料的氮化铁的制备方法
US20180025841A1 (en) * 2015-01-26 2018-01-25 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
CN106086776A (zh) * 2016-06-26 2016-11-09 彭晓领 一种氮化铁磁粉的低温等离子氮化制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334423A (zh) * 2022-01-07 2022-04-12 浙江工业大学 一种铁基氮化物软磁材料及其制备方法

Similar Documents

Publication Publication Date Title
US9378876B2 (en) Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet
JP6334812B2 (ja) 多層鉄窒化物硬質磁性材料
Li et al. Prospect and status of iron-based rare-earth-free permanent magnetic materials
US10072356B2 (en) Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
CN103123837B (zh) 醇系溶液及烧结磁铁
KR101687981B1 (ko) 희토류 영구자석 분말, 그것을 포함한 접착성 자성체 및 접착성 자성체를 응용한 소자
US20110059005A1 (en) Iron nitride powders for use in magnetic, electromagnetic, and microelectronic devices
KR20170039303A (ko) 화학 증착 또는 액상 에피택시를 사용하여 질화철 경자성 재료를 형성하는 방법
US20140085023A1 (en) Process for producing ferromagnetic particles, anisotropic magnet, bonded magnet and compacted magnet
TW201627508A (zh) 氮化鐵磁性材料之應用磁場合成及加工
KR20180106852A (ko) 고열안정성 희토류 영구자석 재료, 그 제조 방법 및 이를 함유한 자석
Okada et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique
EP0656145B1 (en) Permanent magnet material containing a rare-earth element, iron, nitrogen and carbon
JPH0366105A (ja) 希土類系異方性粉末および希土類系異方性磁石
CN112038082A (zh) 使用高压氮化的方法制备铁氮磁性材料的方法
CN1198292C (zh) Sm(Co,Fe,Cu,Zr,C)组合物及其制造方法
JPH04233709A (ja) Sm−Fe−N系異方性磁石材料から成る成形体の製造方法
CN114334423A (zh) 一种铁基氮化物软磁材料及其制备方法
Ching et al. Magnetic properties and structure of Mn4N films on glass substrates
CN107557551A (zh) 一种钐铁氮系永磁材料的制备方法
JP5011588B2 (ja) 磁性材料
CN113593802A (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
US20220392675A1 (en) Magnetic materials and manufacturing
KR100285350B1 (ko) 수지자석용 영구자석의 제조방법
CN113264758A (zh) 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204

RJ01 Rejection of invention patent application after publication