CN105861908B - 一种永磁材料的制备方法 - Google Patents

一种永磁材料的制备方法 Download PDF

Info

Publication number
CN105861908B
CN105861908B CN201610469973.9A CN201610469973A CN105861908B CN 105861908 B CN105861908 B CN 105861908B CN 201610469973 A CN201610469973 A CN 201610469973A CN 105861908 B CN105861908 B CN 105861908B
Authority
CN
China
Prior art keywords
magnetic
heat treatment
nitrogen
treatment furnace
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610469973.9A
Other languages
English (en)
Other versions
CN105861908A (zh
Inventor
彭晓领
张敖
杨艳婷
李静
王攀峰
徐靖才
洪波
金红晓
金顶峰
王新庆
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongyang Tongqiang Magnetism Steel Co Ltd
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610469973.9A priority Critical patent/CN105861908B/zh
Publication of CN105861908A publication Critical patent/CN105861908A/zh
Application granted granted Critical
Publication of CN105861908B publication Critical patent/CN105861908B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及一种取向氮化铁永磁材料的磁场热处理制备方法。该方法将表面清洁的α‑Fe薄片置于热处理炉中,通入氮气,在650~800℃保温0.5~20h,以形成氮的奥氏体γ相;待完全氮化后将合金从炉中取出,在温度低于0℃时淬火;淬火后的样品在磁场热处理炉中100~180℃回火4~100h,磁场强度为0.1~2T。该方法既可以大批量制备氮化铁材料,又可以通过磁场回火,使低温马氏体回火析出α"‑Fe16N2相时产生晶体学取向,进而获得沿磁场方向的高取向度。

Description

一种永磁材料的制备方法
技术领域
本发明涉及一种永磁材料的制备方法,属于材料制备领域。
背景技术
铁氮化工艺最初的应用目的是提高钢铁的耐腐蚀性能和硬度,最近的研究发现铁氮化物具有某些优异的磁性能而引起广泛的关注。随氮含量的变化,氮化铁具有不同的结构和性能,主要包括间隙固溶体(α,γ,ε),化合物相(γ´-Fe4N,ε-Fe3N)和介稳相(α´-马氏体和α"-Fe16N2)。所有氮化铁都为亚稳相,会分解成Fe和N2。但在400℃以下其分解的动力学过程非常缓慢,受动力学过程限制,氮化铁相在室温可以稳定存在。这其中α"-Fe16N2的饱和磁化强度值为 2.83 T,远高于其他材料,引起人们浓厚的兴趣。
α"-Fe16N2最早是在1951年发现的。Jack用X射线衍射方法研究Fe-N二元合金系统的相图时,在富铁的一边,发现了一种新的亚稳态相,即具有体心四方晶格结构的α"-Fe16N2相。Jack的做法是将铁粉末在700~750℃下进行氮化反应,得到含氮奥氏体γ相,然后对奥氏体进行急速冷却得到α´-马氏体,再在120℃下经过长时间回火,最后得到α+α"-Fe16N2或α+α"-Fe16N2+γ的混合相。得到的混合相中α"-Fe16N2的含量不超过50%。
多年来,众多科学家使用了多种方法,如:氮化退火法、共析法、离子注入法、化学气相沉积法,物理气相沉积法等。然而令人遗憾的是一直未能成功的制备单相的α"-Fe16N2。一个可能的原因是:α"-Fe16N2是亚稳相,在温度超过200℃时易分解为α+γ´-Fe4N。而Fe4N,Fe3N是稳定的相,在用传统的薄膜沉积技术制备Fe-N薄膜的过程中,具有较低饱和磁化强度的Fe4N,Fe3N化合物比亚稳相α"-Fe16N2更易形成,所以制备纯单相α"-Fe16N2是比较困难的。1989 年,日本日立研究所的 Sugita 等人用分子束外延法在In0.2Ga0.8As(001)单晶基片上成功制备出α"-Fe16N2单晶薄膜,并用振动样品磁强计测得其饱和磁化强度值为2.9T。
因此虽然出现了一系列制备α"-Fe16N2相的方法,但制备单相的α"-Fe16N2相依然困难。现在制备α"-Fe16N2材料最主要的方法还是最早采用的方法:氮化退火法。因此,如何在现有技术的基础上提高材料的磁性就比较关键。
鉴于以上,本发明的目的是采用磁场热处理退火的方式,获得有序取向的α"-Fe16N2相,进而提高氮化铁材料的磁性。
发明内容
本发明是采用磁场热处理退火的方式,获得一种高性能氮化铁永磁材料的制备方法。
本发明的具体步骤为:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至650~800℃;保温0.5~20h,以形成氮的奥氏体γ相;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在100~180℃回火,保持4~100h,磁场强度为0.1~2T;磁场可以由永磁体产生,也可以由电磁铁产生,但高强磁场只能通过电磁铁获得。
本发明的优点是:
1)可以大批量制备氮化铁材料;
2)通过磁场回火,使低温马氏体回火析出α"-Fe16N2相时产生晶体学取向,进而获得沿磁场方向的高取向度。
具体实施方式
下面结合实施例对本发明进行详细描述,以便更好地理解本发明的目的、特点和优点。虽然本发明是结合该具体的实施例进行描述,但并不意味着本发明局限于所描述的具体实施例。相反,对可以包括在本发明权利要求中所限定的保护范围内的实施方式进行的替代、改进和等同的实施方式,都属于本发明的保护范围。对于未特别标注的工艺参数,可按常规技术进行。
本发明的具体步骤为:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至650~800℃;保温0.5~20h,以形成氮的奥氏体γ相;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在100~180℃回火,保持4~100h,磁场强度为0.1~2T;磁场可以由永磁体产生,也可以由电磁铁产生,但高强磁场只能通过电磁铁获得。
通过本发明可以制备沿外磁场方向具有高取向度的氮化铁磁体,在取向方向具有出色的磁性能。
实施例1:
本发明的步骤为:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至650℃;保温20h;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在100℃回火,保持100h,磁场强度为0.1T;磁场由钐钴永磁体产生。
对实施例1所制备的样品进行XRD表征,检测到了α"-Fe16N2相,并且沿磁场方向具有取向性。
实施例2:
本发明的步骤为:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至700℃;保温10h;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在120℃回火,保持60h,磁场强度为0.8T;磁场由电磁铁产生。
对实施例2所制备的样品进行XRD表征,检测到了α"-Fe16N2相,并且沿磁场方向具有取向性。
实施例3:
本发明的步骤为:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至750℃;保温4h;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在140℃回火,保持20h,磁场强度为1.2T;磁场由电磁铁产生。
对实施例3所制备的样品进行XRD表征,检测到了α"-Fe16N2相,并且沿磁场方向具有取向性。
实施例4:
本发明的步骤为:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至800℃;保温0.5h;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在180℃回火,保持4h,磁场强度为2T;磁场由电磁铁产生。
对实施例4所制备的样品进行XRD表征,检测到了α"-Fe16N2相,并且沿磁场方向具有取向性。

Claims (1)

1.一种永磁材料的制备方法,其特征在于该方法包括以下步骤:
1)材料准备
准备α-Fe薄片,清除表面污染,保持表面清洁;
2)高温氮化
将α-Fe薄片置于热处理炉中,以恒定的速率通入氮气;待完全排出空气后,以5℃/min的速度升温至700~800℃;保温0.5~20h,以形成氮的奥氏体γ相;
3)淬火
将完全氮化后的合金从炉中取出,在温度低于0℃时淬火;
4)磁场热处理
将淬火后的样品在磁场热处理炉中,在100~180℃回火,保持4~100h,磁场强度为0.1~2T;磁场可以由永磁体产生,也可以由电磁铁产生,但高强磁场只能通过电磁铁获得。
CN201610469973.9A 2016-06-26 2016-06-26 一种永磁材料的制备方法 Expired - Fee Related CN105861908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610469973.9A CN105861908B (zh) 2016-06-26 2016-06-26 一种永磁材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610469973.9A CN105861908B (zh) 2016-06-26 2016-06-26 一种永磁材料的制备方法

Publications (2)

Publication Number Publication Date
CN105861908A CN105861908A (zh) 2016-08-17
CN105861908B true CN105861908B (zh) 2017-10-17

Family

ID=56655220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610469973.9A Expired - Fee Related CN105861908B (zh) 2016-06-26 2016-06-26 一种永磁材料的制备方法

Country Status (1)

Country Link
CN (1) CN105861908B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653428C1 (de) * 1996-12-20 1998-03-26 Vacuumschmelze Gmbh Verfahren zum Herstellen von Bandkernbändern sowie induktives Bauelement mit Bandkern
JP2001358377A (ja) * 2000-02-10 2001-12-26 Toshiba Corp 超磁歪材料とその製造方法、およびそれを用いた磁歪アクチュエータと磁歪センサ
US20140294657A1 (en) * 2011-09-22 2014-10-02 Tohoku University Process for producing ferromagnetic iron nitride particles, anisotropic magnet, bonded magnet and compacted magnet

Also Published As

Publication number Publication date
CN105861908A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN101845637B (zh) 提高钕铁硼磁体矫顽力的处理方法
Clark et al. Effect of quenching on the magnetostriction on Fe/sub 1-x/Ga/sub x/(0.13 x< 0.21)
JP2018509756A (ja) 窒化鉄磁性材料の印加磁場合成及び処理
CN105989983B (zh) 永久磁铁
Kostyuchenko et al. High-field magnetic behavior and forced-ferromagnetic state in an ErF e 11 TiH single crystal
CN106086776A (zh) 一种氮化铁磁粉的低温等离子氮化制备方法
CN101894644A (zh) 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
CN1272464C (zh) 利用磁场热处理改善多晶Ni2MnGa的磁驱动可逆应变量的方法
CN105861908B (zh) 一种永磁材料的制备方法
Nakano et al. Magnetic properties of Nd-Fe-B thick-film magnets prepared by laser ablation technique
Nakano et al. Magnetic properties of pulsed laser deposition-fabricated isotropic Fe–Pt film magnets
CN106542826B (zh) 一种磁性碳化硅材料及其制备方法
CN105858625B (zh) 一种氮化铁纳米线及其制备方法
CN105861978B (zh) 一种氮化铁磁粉的机械球磨制备方法
Gu et al. Soft magnetic properties of amorphous Fe52Co34Hf7B6Cu1 alloy treated by pulsed magnetic field and annealing
Permyakova et al. Effect of external actions on the magnetic properties and corrosion resistance of Co 70.5 Fe 0.5 Cr 4 Si 7 B 18 amorphous alloy
Rosen et al. Elasticity Pheonomena during Spin Rotation in Ho x Tb 1− x Fe 2 Cubic Laves Compounds
CN106082146B (zh) 一种氮化铁磁性材料的制备方法
CN106011748B (zh) 一种氮化铁薄膜的制备方法
Stobiecki The crystallization kinetics of amorphous Fe1− xBxfilms
JP2020021804A (ja) 焼結磁石および焼結磁石の製造方法
Akbar et al. Development of Fe-Cr-Co permanent magnets by single step thermo-magnetic treatment
CN103794325A (zh) 一种钴铁基低矫顽力软磁材料及制备方法
Kume On Some Magnetic Properties of Ilmenite at Low Temperatures
Mizusaki et al. Ferromagnetism and spin reorientation in Sm12Fe14Al5

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Peng Xiaoling

Inventor after: Wang Xinqing

Inventor after: Ge Hongliang

Inventor after: Zhang Ao

Inventor after: Yang Yanting

Inventor after: Li Jing

Inventor after: Wang Panfeng

Inventor after: Xu Jingcai

Inventor after: Hong Bo

Inventor after: Jin Hongxiao

Inventor after: Jin Dingfeng

Inventor before: Zhang Ao

Inventor before: Wang Xinqing

Inventor before: Ge Hongliang

Inventor before: Peng Xiaoling

Inventor before: Yang Yanting

Inventor before: Li Jing

Inventor before: Wang Panfeng

Inventor before: Xu Jingcai

Inventor before: Hong Bo

Inventor before: Jin Hongxiao

Inventor before: Jin Dingfeng

CB03 Change of inventor or designer information
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170907

Address after: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Applicant after: CHINA JILIANG UNIVERSITY

Address before: Hangzhou City, Zhejiang province 311112 ancient Pier Road, Yuhang District Ming Nga East 15-1-101

Applicant before: Peng Xiaoling

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190816

Address after: 322100 Lizhai Town Industrial Zone, Dongyang City, Zhejiang Province

Patentee after: Dongyang Tongqiang Magnetism Steel Co., Ltd.

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Patentee before: CHINA JILIANG UNIVERSITY

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171017

Termination date: 20210626

CF01 Termination of patent right due to non-payment of annual fee