CN106083040A - 一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法 - Google Patents

一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法 Download PDF

Info

Publication number
CN106083040A
CN106083040A CN201610409599.3A CN201610409599A CN106083040A CN 106083040 A CN106083040 A CN 106083040A CN 201610409599 A CN201610409599 A CN 201610409599A CN 106083040 A CN106083040 A CN 106083040A
Authority
CN
China
Prior art keywords
wall part
curved surface
piezoelectric ceramics
preparation
antimony lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610409599.3A
Other languages
English (en)
Inventor
张家敏
廉舒冰
甘国友
严继康
杜景红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201610409599.3A priority Critical patent/CN106083040A/zh
Publication of CN106083040A publication Critical patent/CN106083040A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate

Abstract

本发明公开一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法,属于材料制备技术领域。本发明所述方法通过粉体预烧、陶瓷悬浮液制备、凝胶注模成型、成型坯体干燥及脱模、成型坯体脱脂、成型坯体烧结、被银、极化八个步骤,最终得到组织均匀、致密的PMS‑PZT压电陶瓷环形曲面薄壁件。本发明解决了采用凝胶注模制备PMS‑PZT压电陶瓷环形曲面薄壁件时,高固相体积含量、低粘度陶瓷悬浮液的制备难,干燥与脱脂过程易产生开裂、变形缺陷等诸多问题,实现了组织、性能均匀,综合压电性能良好的PMS‑PZT压电陶瓷环形曲面薄壁件的制备。

Description

一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法
技术领域
本发明涉及一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法,属于材料制备技术领域。
背景技术
锰锑锆钛酸铅(PMS-PZT)压电陶瓷是一种三元系PZT固溶体,同时具有良好的机电耦合系数和机械品质因数,适用于大功率、高频的工作环境,高频谐振时温度稳定性良好,可被用来制备大功率超声换能器。
现有压电陶瓷曲面环形薄壁件的制备方法(简单介绍):已报道的精密陶瓷成型方法主要有模压成型法:最传统的干法成型,将粉体装入模具中,通过单向加压法成型;冷等静压成型法:将粉体装入高压模具中,通过液体介质均匀传递压力的性质从各方向对粉体进行均匀加压;注射成型法:将含有有机载体的粉体陶瓷粉体通过加热使之变成粘稠性熔体,后加压注入模具中;固相无模成型法:陶瓷成型新技术,目前最广为人知的是3D打印技术、激光选区烧结技术等。
模压成型法:单向加压会造成成型坯体受力不均最终导致组织性能均匀性较差,只是用于形状简单、尺寸单一的构件成型,由于是加压成型,对模具及设备依赖较大;冷等静压成型法:成型坯体组织性能均匀,致密性良好,但生产成本过高,对设备、模具要求较高,需要耐高压,且损耗较大,因此一直无法实现批量生产;注射成型法:成型坯体组织性能均匀性良好,但需要加入的有机载体量较多,后续脱脂过程极易造成坯体产生开裂、变形等缺陷,且设备及模具需要耐热耐高压,增高制备成本;固相无模成型法:正处于研究阶段,所需技术含量较高,例如3D打印技术和激光选区烧结技术均需要激光加热。
凝胶注模技术是一种20世纪90年代初,由美国橡树岭实验室的M Janney等人发明的原位固化成型技术,用于陶瓷材料的成型,属于近净尺寸成型技术。但凝胶注模技术用于薄壁件的制备过程中较容易发生开裂、变形等缺陷,因此,尚未见其用于不规则形状的薄壁件的生产制备中。
发明内容
本发明要解决的技术问题是:采用凝胶注模法制备压电陶瓷环形曲面薄壁件的诸多工艺难点。
本发明的目的在于提供一种掺杂改性的压电陶瓷曲面环形薄壁件,其成分为Pb0.92Sr0.06Ba0.02(Mn1/3Sb2/3)xZryTi1-x-yO3,0<x≤0.1,0.45≤y≤0.5。
本发明的另一目的在于提供一种掺杂改性的锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的制备方法,实现了组织与性能均匀、综合压电性能良好的不规则形状PMS-PZT压电陶瓷薄壁件的制备,具体包括以下步骤:
(1)粉体预烧:按比例将陶瓷粉体混合均匀并压制成块体,在800-900℃下预烧,并保温1-3h;取出预烧后的块体破碎成粉状,得到陶瓷预烧粉体;
(2)陶瓷悬浮液制备:配制单体质量百分比浓度为10-20wt%的单体预混液,按交联剂与单体质量比为16:1-32:1的比例将交联剂加入到单体预混液中混合均匀得到混合液A,在混合液A中加入陶瓷预烧粉体和分散剂的混合物,并调节pH值至9-11得到陶瓷悬浮液,陶瓷预烧粉体和分散剂的混合物中分散剂的含量为0.3wt%-0.38wt%,陶瓷悬浮液中固相体积分数为56%-60%;将陶瓷悬浮液电力搅拌6-8h,进行除气处理;
(3)凝胶注模成型:按催化剂的体积百分比为0.2-0.3%的比例向除气处理后的陶瓷悬浮液中加入催化剂,并混合均匀;然后按过硫酸铵的体积百分比为0.2-0.4%的比例加入过硫酸铵,加入的同时搅拌混合均匀;然后将悬浮液注入成型模具中静置直至其完全凝固;
(4)成型坯体脱脂:对成型坯体进行热脱脂处理;
(5)成型坯体烧结:将成型坯体于氧化锆中进行埋烧得到锰锑锆钛酸铅陶瓷烧结体,烧结温度为1180℃-1210℃,烧结时间为10~14h;
(6)被银:将锰锑锆钛酸铅陶瓷烧结体均匀涂覆一层银浆,烘干后,于750~850℃烧制,烧结时间为1~2h;
(7)极化:将步骤(6)得到的烧结体于真空极化设备中极化后得到锰锑锆钛酸铅压电陶瓷曲面环形薄壁件。
优选的,本发明所述热脱脂处理工艺为:以2-4℃/min从25℃升至200℃;以1-2℃/min从200℃升至350℃;以0.5-1℃/min从350℃升至400℃;在400℃保温90-120min;以0.5-1℃/min从400℃升至550℃;在550℃保温90-120min;以0.5-2℃/min从550℃升至600℃;自然冷却至室温。
优选的,本发明所述单体为丙烯酰胺,交联剂为N,N’-亚甲基双丙烯酰胺,分散剂为TH-908,引发剂为过硫酸铵,催化剂为N,N,N’,N’-四甲基乙二胺。
优选的,本发明步骤(7)中极化电压E=1.5-2.5kV/mm,极化温度T=120-140℃,极化时间t=20-30min。
本发明的有益效果:
(1)本发明所述方法可以准确控制该陶瓷薄壁件的尺寸,尤其是对压电性能和超声换能效果有影响的厚度,满足了压电陶瓷对尺寸精度要求高的需求。
(2)本发明所述方法制备得到的锰锑锆钛酸铅压电陶瓷曲面环形薄壁件,其组织与性能均匀性良好,满足压电陶瓷对电学性能精度要求高的需求。
(3)本发明所述方法制备得到的锰锑锆钛酸铅压电陶瓷曲面环形薄壁件在性能方面具有较高的压电常数,同时具有较大的机械品质因数和机电耦合系数,在做高频谐振运动时具有良好的温度稳定性。
附图说明
图1是所制备的PMS-PZT压电陶瓷曲面薄壁件的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
本发明实施例所用原料的来源为:丙烯酰胺、过硫酸铵、N,N,N’,N’-四甲基乙二胺、由国药试剂提供,均为分析纯;N,N’-亚甲基双丙烯酰胺由天津科密欧化学试剂有限公司提供,为分析纯;TH-908由山东泰和水处理科技股份有限公司提供,浓度为40%。
实施例1
本实施例所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的成分为Pb0.92Sr0.06Ba0.02(Mn1/ 3Sb2/3)0.05Zr0.48Ti0.47O3,其制备方法,具体包括以下步骤:
(1)粉体预烧:将Pb3O4、SrCO3、BaCO3、MnO2、Sb2O3、ZrO2、TiO2按比例混合均匀并压制成块体,在800℃下预烧,并保温3h;取出预烧后的块体破碎成粉状,得到陶瓷预烧粉体。
(2)陶瓷悬浮液制备:配制丙烯酰胺质量百分比浓度为10wt%的丙烯酰胺预混液,按N,N’-亚甲基双丙烯酰胺与丙烯酰胺质量比为16:1的比例将N,N’-亚甲基双丙烯酰胺加入到丙烯酰胺预混液中混合均匀得到混合液A,在混合液A中加入陶瓷预烧粉体和TH-908的混合物,并调节pH值至9得到陶瓷悬浮液,陶瓷预烧粉体和TH-908的混合物中TH-908的含量为0.3wt%,陶瓷悬浮液中固相体积分数为56%;将陶瓷悬浮液电力搅拌8h,进行除气处理;制备得到的陶瓷悬浮液在使用NDJ-1旋转式粘度计2号转子、转速为60r/min测量粘度时,粘度为145mPa·s(<1000mPa·s)。
(3)凝胶注模成型:按催化剂N,N,N’,N’-四甲基乙二胺的体积百分比为0.2%的比例向除气处理后的陶瓷悬浮液中加入N,N,N’,N’-四甲基乙二胺,并混合均匀;然后按过硫酸铵的体积百分比为0.2%的比例加入过硫酸铵,加入的同时搅拌混合均匀;然后将悬浮液注入成型模具中静置直至其完全凝固。
(4)成型坯体脱脂:对成型坯体进行热脱脂处理;热脱脂处理条件为:以2℃/min从25℃升至200℃;以1℃/min从200℃升至350℃;以0.5℃/min从350℃升至400℃;在400℃保温90min;以0.5℃/min从400℃升至550℃;在550℃保温100min;以1℃/min从550℃升至600℃;自然冷却至室温。
(5)成型坯体烧结:将成型坯体于氧化锆中进行埋烧得到锰锑锆钛酸铅陶瓷烧结体,烧结温度为1180℃,烧结时间为14h;制备得到的烧结坯体的收缩率为16.2%。
(6)被银:将锰锑锆钛酸铅陶瓷烧结体均匀涂覆一层银浆,烘干后,于750℃烧制,烧结时间为2h。
(7)极化:将步骤(6)得到的烧结体于真空极化设备中极化后得到锰锑锆钛酸铅压电陶瓷曲面环形薄壁件,其中极化电压E=2.0kV/mm,极化温度T=130℃,极化时间t=15min。
本实施例所述方法制备得到的锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的压电常数d33为356pC·N-1,介电常数εr为1430,机电耦合系数Kp为0.56,机械品质因数Qm为1320,介电损耗正切角tanδ为0.52。
实施例2
本实施例所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的成分为Pb0.92Sr0.06Ba0.02(Mn1/ 3Sb2/3)0.1Zr0.5Ti0.4O3,其制备方法,具体包括以下步骤:
(1)粉体预烧:将Pb3O4、SrCO3、BaCO3、MnO2、Sb2O3、ZrO2、TiO2按比例混合均匀并压制成块体,在850℃下预烧,并保温2h;取出预烧后的块体破碎成粉状,得到陶瓷预烧粉体。
(2)陶瓷悬浮液制备:配制丙烯酰胺质量百分比浓度为15wt%的丙烯酰胺预混液,按N,N’-亚甲基双丙烯酰胺与丙烯酰胺质量比为25:1的比例将N,N’-亚甲基双丙烯酰胺加入到丙烯酰胺预混液中混合均匀得到混合液A,在混合液A中加入陶瓷预烧粉体和TH-908的混合物,并调节pH值至10得到陶瓷悬浮液,陶瓷预烧粉体和TH-908的混合物中TH-908的含量为0.34wt%,陶瓷悬浮液中固相体积分数为58%;将陶瓷悬浮液电力搅拌7h,进行除气处理;制备得到的陶瓷悬浮液在使用NDJ-1旋转式粘度计2号转子、转速为60r/min测量粘度时,粘度为178mPa·s(<1000mPa·s)。
(3)凝胶注模成型:按催化剂N,N,N’,N’-四甲基乙二胺的体积百分比为0.25%的比例向除气处理后的陶瓷悬浮液中加入N,N,N’,N’-四甲基乙二胺,并混合均匀;然后按过硫酸铵的体积百分比为0.3%的比例加入过硫酸铵,加入的同时搅拌混合均匀;然后将悬浮液注入成型模具中静置直至其完全凝固。
(4)成型坯体脱脂:对成型坯体进行热脱脂处理;热脱脂处理条件为:以2℃/min从25℃升至200℃;以1℃/min从200℃升至350℃;以0.5℃/min从350℃升至400℃;在400℃保温100min;以0.5℃/min从400℃升至550℃;在550℃保温90min;以1℃/min从550℃升至600℃;自然冷却至室温。
(5)成型坯体烧结:将成型坯体于氧化锆中进行埋烧得到锰锑锆钛酸铅陶瓷烧结体,烧结温度为1200℃,烧结时间为12h,制备得到的烧结坯体的收缩率为13%。
(6)被银:将锰锑锆钛酸铅陶瓷烧结体均匀涂覆一层银浆,烘干后,于850℃烧制,烧结时间为1h。
(7)极化:将步骤(6)得到的烧结体于真空极化设备中极化后得到锰锑锆钛酸铅压电陶瓷曲面环形薄壁件,其中极化电压E=1.5kV/mm,极化温度T=130℃,极化时间t=20min。
本实施例所述方法制备得到的锰锑锆钛酸铅压电陶瓷曲面环形薄壁件压电常数d33为365pC·N-1,介电常数εr为1460,机电耦合系数Kp为0.57,机械品质因数Qm为1380,介电损耗正切角tanδ为0.51。
实施例3
本实施例所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的成分为Pb0.92Sr0.06Ba0.02(Mn1/ 3Sb2/3)0.05Zr0.45Ti0.5O3,其制备方法,具体包括以下步骤:
(1)粉体预烧:将Pb3O4、SrCO3、BaCO3、MnO2、Sb2O3、ZrO2、TiO2按比例混合均匀并压制成块体,在900℃下预烧,并保温1h;取出预烧后的块体破碎成粉状,得到陶瓷预烧粉体。
(2)陶瓷悬浮液制备:配制丙烯酰胺质量百分比浓度为20wt%的丙烯酰胺预混液,按N,N’-亚甲基双丙烯酰胺与丙烯酰胺质量比为32:1的比例将N,N’-亚甲基双丙烯酰胺加入到丙烯酰胺预混液中混合均匀得到混合液A,在混合液A中加入陶瓷预烧粉体和TH-908的混合物,并调节pH值至11得到陶瓷悬浮液,陶瓷预烧粉体和TH-908的混合物中TH-908的含量为0.38wt%,陶瓷悬浮液中固相体积分数为60%;将陶瓷悬浮液电力搅拌6h,进行除气处理;制备得到的陶瓷悬浮液在使用NDJ-1旋转式粘度计2号转子、转速为60r/min测量粘度时,粘度为270mPa·s。
(3)凝胶注模成型:按催化剂N,N,N’,N’-四甲基乙二胺的体积百分比为0.3%的比例向除气处理后的陶瓷悬浮液中加入N,N,N’,N’-四甲基乙二胺,并混合均匀;然后按过硫酸铵的体积百分比为0.4%的比例加入过硫酸铵,加入的同时搅拌混合均匀;然后将悬浮液注入成型模具中静置直至其完全凝固。
(4)成型坯体脱脂:对成型坯体进行热脱脂处理;热脱脂处理条件为:以2℃/min从25℃升至200℃;以1℃/min从200℃升至350℃;以0.5℃/min从350℃升至400℃;在400℃保温120min;以0.5℃/min从400℃升至550℃;在550℃保温120min;以1℃/min从550℃升至600℃;自然冷却至室温。
(5)成型坯体烧结:将成型坯体于氧化锆中进行埋烧得到锰锑锆钛酸铅陶瓷烧结体,烧结温度为1210℃,烧结时间为10h,制备得到的烧结坯体的收缩率为12.44%。
(6)被银:将锰锑锆钛酸铅陶瓷烧结体均匀涂覆一层银浆,烘干后,于800℃烧制,烧结时间为1.5h。
(7)极化:将步骤(6)得到的烧结体于真空极化设备中极化后得到锰锑锆钛酸铅压电陶瓷曲面环形薄壁件,其中极化电压E=2.5kV/mm,极化温度T=120℃,极化时间t=30min。
本实施例所述方法制备得到的锰锑锆钛酸铅压电陶瓷曲面环形薄壁件压电常数d33为336pC·N-1,介电常数εr为1290,机电耦合系数Kp为0.55,机械品质因数Qm为1300,介电损耗正切角tanδ为0.52。

Claims (5)

1.一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件,其特征在在于:其成分为Pb0.92Sr0.06Ba0.02(Mn1/3Sb2/3)xZryTi1-x-yO3,0<x≤0.1,0.45≤y≤0.5。
2.如权利要求1所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的制备方法,其特征在在于,具体包括以下步骤:
(1)粉体预烧:按比例将陶瓷粉体混合均匀并压制成块体,在800-900℃下预烧,并保温1-3h;取出预烧后的块体破碎成粉状,得到陶瓷预烧粉体;
(2)陶瓷悬浮液制备:配制单体质量百分比浓度为10-20wt%的单体预混液,按交联剂与单体质量比为16:1-32:1的比例将交联剂加入到单体预混液中混合均匀得到混合液A,在混合液A中加入陶瓷预烧粉体和分散剂的混合物,并调节pH值至9-11得到陶瓷悬浮液,陶瓷预烧粉体和分散剂的混合物中分散剂的含量为0.3wt%-0.38wt%,陶瓷悬浮液中固相体积分数为56%-60%;将陶瓷悬浮液电力搅拌6-8h,进行除气处理;
(3)凝胶注模成型:按催化剂的体积百分比为0.2-0.3%的比例向除气处理后的陶瓷悬浮液中加入催化剂,并混合均匀;然后按过硫酸铵的体积百分比为0.2-0.4%的比例加入过硫酸铵,加入的同时搅拌混合均匀;然后将悬浮液注入成型模具中静置直至其完全凝固;
(4)成型坯体脱脂:对成型坯体进行热脱脂处理;
(5)成型坯体烧结:将成型坯体于氧化锆中进行埋烧得到锰锑锆钛酸铅陶瓷烧结体,烧结温度为1180℃-1210℃,烧结时间为10~14h;
(6)被银:将锰锑锆钛酸铅陶瓷烧结体均匀涂覆一层银浆,烘干后,于750~850℃烧制,烧结时间为1~2h;
(7)极化:将步骤(6)得到的烧结体于真空极化设备中极化后得到锰锑锆钛酸铅压电陶瓷曲面环形薄壁件。
3.根据权利要求2所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的制备方法,其特征在于:热脱脂处理工艺为:以2-4℃/min从25℃升至200℃;以1-2℃/min从200℃升至350℃;以0.5-1℃/min从350℃升至400℃;在400℃保温90-120min;以0.5-1℃/min从400℃升至550℃;在550℃保温90-120min;以0.5-2℃/min从550℃升至600℃;自然冷却至室温。
4.根据权利要求2所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的制备方法,其特征在于:所述单体为丙烯酰胺,交联剂为N,N’-亚甲基双丙烯酰胺,分散剂为TH-908,引发剂为过硫酸铵,催化剂为N,N,N’,N’-四甲基乙二胺。
5.根据权利要求2所述锰锑锆钛酸铅压电陶瓷曲面环形薄壁件的制备方法,其特征在于:步骤(7)中极化电压E=1.5-2.5kV/mm,极化温度T=120-140℃,极化时间t=20-30min。
CN201610409599.3A 2016-06-13 2016-06-13 一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法 Pending CN106083040A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610409599.3A CN106083040A (zh) 2016-06-13 2016-06-13 一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610409599.3A CN106083040A (zh) 2016-06-13 2016-06-13 一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法

Publications (1)

Publication Number Publication Date
CN106083040A true CN106083040A (zh) 2016-11-09

Family

ID=57227986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610409599.3A Pending CN106083040A (zh) 2016-06-13 2016-06-13 一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法

Country Status (1)

Country Link
CN (1) CN106083040A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975753A (zh) * 2017-03-16 2017-07-25 东莞市依诺电子科技有限公司 一种金属材料薄壁结构零件的3d打印加工方法
CN108439980A (zh) * 2018-03-30 2018-08-24 广东工业大学 一种锆钛酸锰钡陶瓷及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125757A (zh) * 2007-07-13 2008-02-20 华中科技大学 一种制备功能陶瓷材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125757A (zh) * 2007-07-13 2008-02-20 华中科技大学 一种制备功能陶瓷材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙华君等: "Ba取代对四元系PMNS-PZT压电陶瓷结构和电学性能的影响", 《陶瓷学报》 *
朱志刚等: "烧结温度对PMS-PZT系陶瓷显微结构和压电性能的研究", 《无机材料学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975753A (zh) * 2017-03-16 2017-07-25 东莞市依诺电子科技有限公司 一种金属材料薄壁结构零件的3d打印加工方法
CN108439980A (zh) * 2018-03-30 2018-08-24 广东工业大学 一种锆钛酸锰钡陶瓷及其制备方法与应用
CN108439980B (zh) * 2018-03-30 2021-07-06 广东工业大学 一种锆钛酸锰钡陶瓷及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN101503297B (zh) 旋转磁场中梯度材料的流延成型制备方法
CN106007709B (zh) 一种凝胶注模成型制备高强度陶瓷的方法
CN113045313B (zh) 一种热固化粉末注射成型的锆钛酸铅镧压电陶瓷的制备方法
CN105016751B (zh) 一种利用颗粒级配结合凝胶注模工艺制备锆英石耐火材料的方法
CN105552212B (zh) 一种3‑3型压电陶瓷/水泥压电复合材料及其制备方法
CN109320235A (zh) 一种nbt基压电织构陶瓷及其制备方法
CN106083040A (zh) 一种锰锑锆钛酸铅压电陶瓷曲面环形薄壁件及其制备方法
CN103373848A (zh) ZrO2凝胶注模成型料浆的制备及固化工艺
CN107914333A (zh) 利用凝胶注模成型工艺制作氧化锆陶瓷手机后盖的方法
CN104693688B (zh) Pcb基板用微波介质陶瓷/树脂双连续复合材料的制备方法
CN1915626A (zh) 脉冲磁场中强磁-弱磁梯度材料流延成型制备方法
Li et al. Direct ink writing of 3D piezoelectric ceramics with complex unsupported structures
CN106630996A (zh) 一种凝胶注模成型MgAl2O4素坯的制备方法
CN106348736A (zh) 一种快速固化陶瓷浆料的方法
CN102299254B (zh) 一种流延法制备大尺寸厚膜压电复合材料的方法
CN108000684A (zh) 一种粉末注射成型用粘结剂制备方法及其应用
CN109081685B (zh) 一种氧化铝陶瓷及其制备方法
CN108164269A (zh) 一种模量可调控凝胶注模生坯的制作方法
CN101514108A (zh) 一种简单可靠的凝胶浇注素坯的多步干燥方法
CN108298992A (zh) 一种环保型凝胶注模成型制备氮化硅陶瓷素坯的方法
CN101798201A (zh) 铌酸盐基压电陶瓷纤维/聚合物1-3型复合材料及制备方法
CN1275905C (zh) 一种制备高热导率和高尺寸精度氮化铝陶瓷零部件的方法
CN110357589A (zh) 一种结构陶瓷的水基注射成型工艺
CN107117964B (zh) 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
CN108409304A (zh) 一种卡波姆凝胶注模成型氧化铝素坯的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109

RJ01 Rejection of invention patent application after publication