CN106060715A - 噪声降低的声音再现 - Google Patents

噪声降低的声音再现 Download PDF

Info

Publication number
CN106060715A
CN106060715A CN201610404120.7A CN201610404120A CN106060715A CN 106060715 A CN106060715 A CN 106060715A CN 201610404120 A CN201610404120 A CN 201610404120A CN 106060715 A CN106060715 A CN 106060715A
Authority
CN
China
Prior art keywords
signal
filter
useful signal
transmission characteristic
spectrum shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610404120.7A
Other languages
English (en)
Inventor
M.克里斯托夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Becker Automotive Systems GmbH
Original Assignee
Harman Becker Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Becker Automotive Systems GmbH filed Critical Harman Becker Automotive Systems GmbH
Publication of CN106060715A publication Critical patent/CN106060715A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17827Desired external signals, e.g. pass-through audio such as music or speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17875General system configurations using an error signal without a reference signal, e.g. pure feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17885General system configurations additionally using a desired external signal, e.g. pass-through audio such as music or speech
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Otolaryngology (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Headphones And Earphones (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

公开了一种噪声降低的声音再现系统和方法,其中:将输入信号提供给扬声器,通过所述扬声器声学传播所述输入信号;通过麦克风接收通过所述扬声器传播的信号,所述麦克风通过次级路径被声学耦合到所述扬声器,且所述麦克风提供麦克风输出信号;从所述麦克风输出信号减去有用信号以生成滤波器输入信号;在有源噪声降低滤波器中对所述滤波器输入信号进行滤波以生成误差信号;以及所述有用信号减去所述误差信号以生成所述扬声器输入信号;以及在所述有用信号减去所述麦克风输出信号或所述扬声器输入信号或上述两者之前,通过一个或多个频谱整形滤波器对所述有用信号进行滤波。

Description

噪声降低的声音再现
本申请是申请日为2012年7月26日、申请号为201210261625.4、发明名称为“噪声降低的声音再现”的专利申请的分案申请。
技术领域
本文公开了一种噪声降低的声音再现系统,特别地,公开了一种包括耳机的噪声降低系统,其中耳机用于允许使用者享受具有降低的环境噪声的声音,例如再现的音乐等。
背景技术
在有源噪声降低系统,也称作有源噪声消除/控制(ANC)系统中,经常使用相同的扬声器,特别地,配置在头戴式耳机的两个耳机中的扬声器,进行噪声降低和期望的声音如音乐或言语的再现。但是,由于普通的噪声降低系统也在一定程度上降低期望声音的事实,在使用有源噪声降低所产生的声音效果和不使用有源噪声降低所产生的声音效果之间存在显著区别。因此,需要先进的电子信号处理来补偿这种影响,或者听众必须接受根据噪声降低打开或关闭而不同的声音效果。因此,需要一种改进的噪声降低系统来克服这个缺点。
发明内容
在本发明的第一方面中,公开了一种噪声降低的声音再现系统,包括:扬声器,与扬声器输入路径连接;麦克风,通过次级路径被声学耦合到所述扬声器,且与麦克风输出路径连接;第一减法器,与所述麦克风输出路径的下游和第一有用信号路径连接;有源噪声降低滤波器,与所述第一减法器的下游连接;第二减法器,连接在所述有源噪声降低滤波器和所述扬声器输入路径之间,并且与第二有用信号路径连接;其中,两个有用信号路径均提供有将被再现的有用信号,并且所述有用信号路径中的至少一个包括一个或多个频谱整形滤波器。
在本发明的第二方面中,公开了一种噪声降低的声音再见方法,其中:将输入信号提供给扬声器,通过所述扬声器声学传播所述输入信号;通过麦克风接收通过所述扬声器传播的信号,所述麦克风通过次级路径被声学耦合到所述扬声器,且所述麦克风提供麦克风输出信号;所述麦克风输出信号减去有用信号以生成滤波器输入信号;在有源噪声降低滤波器中对所述滤波器输入信号进行滤波以生成误差信号;以及所述有用信号减去所述误差信号以生成所述扬声器输入信号;在所述有用信号减去所述麦克风输出信号或所述扬声器输入信号或上述两者之前,通过一个或多个频谱整形滤波器对所述有用信号进行滤波。
附图说明
下面基于附图中所示的示例性实施方案详细描述各种具体的实施方案。除非另有说明,否则在所有的附图中使用相同的参考数字标记类似的或相同的组件。
图1是总的反馈类型的有源噪声降低系统的框图,其中有用信号提供给扬声器信号路径;
图2是总的反馈类型的有源噪声降低系统的框图,其中有用信号提供给麦克风信号路径;
图3是总的反馈类型的有源噪声降低系统的框图,其中有用信号提供给扬声器信号路径和麦克风信号路径;
图4是图3的有源噪声降低系统的框图,其中有用信号通过频谱整形滤波器提供给扬声器路径;
图5是图3的有源噪声降低系统的框图,其中有用信号通过频谱整形滤波器提供给麦克风路径;
图6是可结合图3-6的有源噪声降低系统应用的耳机的示意图;
图7是图5的有源噪声降低系统的框图,其中有用信号通过两个频谱整形滤波器提供给麦克风路径;
图8是表示可应用在图7的系统中的斜率滤波器的传输特性的振幅频率响应图;
图9是表示可应用在图7的系统中的均衡滤波器的传输特性的振幅频率响应图;
图10是图5的有源噪声降低系统的框图,其中有用信号通过频谱整形滤波器提供给麦克风路径和扬声器路径。
具体实施方式
反馈ANC系统意图通过在收听点提供噪声降低信号以降低或甚至消除干扰信号,其中随时间流逝,噪声降低信号与噪声信号相比,理想地具有相同的振幅但是相反的相位。通过叠加噪声信号和噪声降低信号,所产生的信号,也称作误差信号,理论上趋近于零。噪声降低的质量取决于所谓的次级路径,也就是扬声器和代表听众的耳朵的麦克风之间的声学路径的质量。噪声降低的质量进一步取决于连接在麦克风和扬声器之间的所谓的ANC滤波器的质量,ANC滤波器滤除通过麦克风提供的误差信号,从而当滤除的误差信号通过扬声器再现时,进一步降低误差信号。但是,当在收听点,特别地通过也再现滤除的误差信号的扬声器,为滤除的误差信号额外地提供有用信号如音乐或言语时,产生问题。然后,如前所述,有用信号可被系统恶化。
为了简单起见,此处不在电子和声学信号之间做出区分。但是,通过扬声器提供的或通过麦克风接收的所有信号实际上都具有声学性质。所有其他信号本质上都是电子的。扬声器和麦克风可以是具有由扬声器3形成的输入阶段和由麦克风形成的输出阶段的声学子系统(即,扬声器-房间-麦克风系统)的一部分。子系统被提供有电子输入信号并提供电子输出信号。就这一点而言,“路径”表示可包括更多的元件如信号传导单元、放大器、滤波器等的电子或声学连接。频谱整形滤波器是输入信号和输出信号的频谱在各个频率点上不同的滤波器。
现在参考图1,示出了普通的反馈类型的有源噪声降低(ANC)系统的框图,其中,干扰信号d[n],也称作噪声信号,通过初级路径1传输(传播)至收听点,例如,听众的耳朵。初级路径1具有传输特性P(z)。此外,输入信号v[n]通过次级路径2从扬声器3传输(传播)至收听点。次级路径2具有传输特性S(z)。
设置在收听点的麦克风4接收干扰信号d[n]和由扬声器3产生的信号。麦克风4提供表示这些接收到的信号的总和的麦克风输出信号y[n]。麦克风输出信号y[n]作为滤波器输入信号u[n]提供给ANC滤波器5,滤波器5输出误差信号e[n]至加法器6。ANC滤波器5可以为自适应滤波器,具有传输特性W(z)。加法器6还接收有用信号x[n],例如音乐或言语,并提供输入信号v[n]至扬声器3,其中有用信号x[n]任选地被预滤波,例如通过频谱整形滤波器(图中未示出)。
信号x[n]、y[n]、e[n]、u[n]和v[n]在离散时间域。为了下面的考虑,使用它们的频谱表示X(z)、Y(z)、E(z)、U(z)和V(z)。描述图1中示出的系统的微分方程如下:
Y(z)=S(z)·V(z)=S(z)·(E(z)+X(z)) (1)
E(z)=W(z)·U(z)=W(z)·Y(z) (2)
因此,在图1的系统中,有用信号传输特性M(z)=Y(z)/X(z)为
M(z)=S(z)/(1-W(z)·S(z)) (3)
假设W(z)=1,那么
假设W(z)=∞,那么
如公式(4)-(7)所示,当滤波器5的传输特性W(z)增大,有用信号传输特性M(z)接近于0,而次路径传输函数S(z)保持中立,即,在大约1的水平,即,0[dB]。为此,必须相应地调整有用信号x[n]以保证不管ANC是打开还是关闭,听众感受到的有用信号x[n]是相同的。而且,有用信号传输特性M(z)也取决于次级路径2的传输特性S(z),意思是,有用信号x[n]的调整也取决于传输特性S(z)及其由于衰老、温度和听众的改变等而引起的波动,由于所述波动,“打开”和“关闭”之间的区别将变得明显。
尽管在图1的系统中,有用信号x[n]提供给在加法器6处的声学子系统(扬声器、房间、麦克风),其中加法器6与扬声器3的上游连接,但是在图2的系统中,在麦克风4处提供有用信号x[n]。因此,在图2的系统中,省略加法器6,而在麦克风4的下游配置加法器7以总和如被预滤波的有用信号x[n]和麦克风输出信号y[n]。因此,扬声器输入信号v[n]是误差信号[e],即,v[n]=[e],并且滤波器输入信号u[n]是有用信号x[n]和麦克风输出信号y[n]的和,即,u[n]=x[n]+y[n]。
描述图2中示出的系统的微分方程如下:
Y(z)=S(z)·V(z)=S(z)·E(z) (8)
E(z)=W(z)·U(z)=W(z)·(X(z)+Y(z)) (9)
因此,不考虑干扰信号d[n],图2的系统中的有用信号传输特性M(z)为
M(z)=(W(z)·S(z))/(1-W(z)·S(z)) (10)
从公式(11)-(13)可看出,当开环传输特性(W(z)·S(z))增大或减小时,有用信号传输特性M(z)接近1,当开环传输特性(W(z)·S(z))接近0时,有用信号传输特性M(z)接近0。为此,在较高的频谱范围内必须额外地调整有用信号x[n]以保证不管ANC打开或关闭,听众感受到的有用信号x[n]是相同的。但是,在较高的频谱范围内的补偿是非常困难的,从而“打开”和“关闭”之间的区别将变得明显。另一方面,有用信号传输特性M(z)不取决于次级路径2的传输特性及其由于衰老、温度和听众的改变等引起的波动。
图3是示出普通的反馈类型的有源噪声降低系统的框图,其中有用信号提供给麦克风路径和扬声器路径。为了简单起见,下面省略初级路径1,虽然噪声(干扰信号x[n])仍然存在。特别地,图3的系统基于图1的系统,但是,具有额外的减法器8和减法器9,减法器8从麦克风输出信号y[n]减去有用信号x[n]以形成ANC滤波器输入信号u[n],减法器9替代加法器6并从误差信号e[n]减去有用信号x[n]。
描述图3中示出的系统的微分方程如下:
Y(z)=S(z)·V(z)=S(z)·(E(z)-X(z)) (14)
E(z)=W(z)·U(z)=W(z)·(Y(z)-X(z)) (15)
由此,图3的系统中的有用信号传输特性M(z)为:
M(z)=(S(z)-W(z)·S(z))/(1-W(z)·S(z)) (16)
从公式(17)-(19)可以看出,图3的系统的行为与图2的系统的行为相似。唯一的区别是,当开环传输特性(W(z)·S(z))接近0时,有用信号传输特性M(z)接近S(z)。与图1的系统类似,图3的系统取决于次级路径2的传输特性S(z)及其由于衰老、温度和听众的改变等引起的波动。
在图4中示出的系统基于图3的系统,并额外地包括均衡滤波器10,均衡滤波器10与减法器9的下游连接从而使用反向次级路径传输函数1/S(z)滤除有用信号x[n]。描述图4中示出的系统的微分方程如下:
Y(z)=S(z)·V(z)=S(z)·(E(z)-X(z)/S(z)) (20)
E(z)=W(z)·U(z)=W(z)·(Y(z)-X(z)) (21)
由此,图4的系统中的有用信号传输特性M(z)为:
M(z)=(1-W(z)·S(z))/(1-W(z)·S(z))=1 (22)
从公式(22)可看出,麦克风输出信号y[n]与有用信号x[n]相同,这意味着如果均衡滤波器正好是次级路径传输特性S(z)的倒数,那么信号x[n]不被改变。均衡滤波器10可以为最小相位滤波器以优化结果,即,优化它的实际传输特性近似至理论上的最小相位、次级路径传输特性S(z)的倒数,由此y[n]=x[n]。这种配置充当理想的线性化电路的作用,即,它补偿因有用信号从扬声器3传输到代表听众的耳朵的麦克风4而引起的任何恶化。因此,它为有用信号x[n]补偿或线性化次级路径S(z)的干扰影响,从而到达听众的有用信号x[n]与源提供的一样,不具有任何因头戴式耳机的声学性能所引起的消极影响,即,y[z]=x[z]。照此,通过这样的线性化滤波器的帮助,可以使得不良设计的头戴式耳机的声音像被声学地完美调整的声音,即线性声音一样。
在图5中示出的系统基于图3的系统,并且额外地包括均衡滤波器10,均衡滤波器10与减法器8的上游连接从而使用次级路径传输函数S(z)滤除有用信号x[n]。
描述图5中示出的系统的微分方程如下:
Y(z)=S(z)·V(z)=S(z)·(E(z)-X(z)) (23)
E(z)=W(z)·U(z)=W(z)·(Y(z)-S(z)·X(z)) (24)
由此,图5的系统中的有用信号传输特性M(z)为:
M(z)=S(z)·(1+W(z)·S(z))/(1+W(z)·S(z))=S(z) (25)
从公式(25)可看出,当ANC系统是有源的时,有用信号传输特性M(z)与次级路径传输特性S(z)相同。当ANC系统是无源的时,有用信号传输特性M(z)也与次级路径传输特性S(z)相同。由此,对于在接近麦克风4的位置处的听众来说,不管噪声降低是有源的还是无源的,有用信号的声学效果是相同的。
ANC滤波器5和均衡滤波器10与11可以是具有固定传输特性的固定滤波器或者具有可控制的传输特性的自适应滤波器。在附图中,通过各个方块下的箭头表示滤波器本身的自适应结构,通过虚线表示自适应结构的可选择性。
图5中示出的系统可应用在例如头戴式耳机中,其中根据噪声在不同的情况下再现有用信号,如音乐或言语,并且听众能够关闭ANC系统,特别地当没有噪声存在,在ANC系统的有源状态和无源状态和之间不存在任何可听区别时。但是,此处公开的系统不只仅仅可应用在头戴式耳机中,也可应用在需要偶尔的噪声降低的所有其他领域中。
图6示出示例性的耳机,其中可使用本发明的有源噪声减低系统。该耳机和另一相同的耳机可以为头戴式耳机(未示出)的一部分,并且可以声学地连接至听众的耳朵12。在本实施例中,耳朵12通过初级路径1接触到干扰信号d[n],例如环境噪声。耳机包括带有孔15的杯状壳体14,该杯状壳体14可被声音可透过的遮盖物覆盖,例如,格栅、网格或任何其他声音可透过的结构或材料。扬声器3传播声音至耳朵12并被布置在壳体14的孔15处,共同形成耳机腔13。腔13可为密闭的或者通过任何方法开口,例如通过接口、开孔、开口等方法。麦克风4设置在扬声器3的前面。声学路径17从说话者3延伸至耳朵12,并且为了噪声控制的目的,具有与次级路径2的传输特性近似的传输特性,其中次级路径2从扬声器3延伸至麦克风4。
在移动设备如头戴式耳机中,可被ANC系统利用的空间和能量是非常有限的。数字电路可能太费时间和能量,因此在移动设备的ANC系统的设计中经常优选使用模拟电路。但是,模拟电路仅仅允许ANC系统的非常有限的复杂性,因此很难仅仅通过模拟元件正确地模拟次级路径。特别地,在ANC系统中使用的模拟滤波器经常为固定滤波器或者非常简单的自适应滤波器,因为它们很容易构建,具有低能量消耗并且需要较小的空间。当使用模拟电路时,上述结合图4、5和7示出的系统也提供令人满意的结果,因为其较少地(图4)甚至不依赖(图5和7)次级路径行为。而且,图5和7的系统允许基于ANC滤波器传输特性W(z)和次级路径滤波器特性S(z)对均衡滤波器的必需传输特性进行较好的估计,其中ANC滤波器传输特性W(z)和次级路径滤波器特性S(z)共同形成开环传输特性W(z)·S(z),其原则上仅仅具有较小的波动,并且当连接到听众的头部时基于头戴式耳机的声学性能的估计。
ANC滤波器5通常具有这样的传输特性:在较低的频率处趋于具有较低的增益,随着频率的增大,增益增大到最大增益值再减小至环路增益。使用ANC滤波器5的高增益,ANC系统内在的环路保持系统在例如1KHz以下的频率范围内是线性的,由此在这个频率范围内放弃任何多余的均衡。在大于3KHz的频率范围内,ANC滤波器5几乎不具有增强或消除的效果,因此不具有线性化效果。当这个频率范围内的ANC滤波器增益接近环路增益,有用信号传输特性M(z)在较高的频率处经历增强,因此除了均衡滤波器外,必须通过单独的滤波器如斜率滤波器来进行补偿。在1KHz和3KHz之间的频率范围内,增强和消除均可能发生。根据声学效果,增强比消除更具干扰性,因此通过相应设计的消除滤波器可以足够补偿传输特性中的增强。如果ANC滤波器增益在3KHz以上为0dB,则不存在线性化效果,因此除了第一均衡滤波器外,可能使用第二均衡滤波器替代斜率滤波器。
从上述考虑中可看出,为了补偿可使用至少两个滤波器。图7示出使用(至少)两个滤波器18和19(子滤波器)的示例性ANC系统,而不是如图5的系统中使用单个滤波器11。例如,具有传输特性S1(z)的高音消除斜率滤波器(例如,滤波器18)和具有传输特性S2(z)的高音消除均衡滤波器(例如,滤波器19),其中,S(z)=S1(z)·S2(z)。可选地,可使用高音增强均衡滤波器作为例如滤波器18,使用高音消除均衡滤波器作为例如滤波器19。如果有用信号传输特性M(z)表现出更复杂的结构,可使用三个滤波器,例如,一个高音消除斜率滤波器和两个高音增强/消除均衡滤波器。使用的滤波器的数目取决于很多其他因素,例如成本、滤波器的噪声行为、头戴式耳机的声学性能、系统的延迟时间、执行系统可用的空间等。
图8是可应用在图7的系统中的斜率滤波器a、b的传输特性的示意图。特别地,示出第一级高音增强(+9dB)斜率滤波器(a)和低音消除(-3dB)斜率滤波器(b)。图9是可应用在图7的系统中的均衡滤波器c、d的传输特性的示意图。均衡滤波器的一个(c)在1KHz处提供9dB的增强,另一个(d)在具有更高的Q的100Hz处提供6dB的消除,由此带宽变得更锐利。
尽管频谱整形函数的范围受线性滤波器理论支配,但是这些函数的调整及它们可被调整的灵活性根据电路的拓扑学及它们需要满足的要求而不同。斜率滤波器通常是简单的第一级滤波器,改变比角频谱更高的频率和比角频率更低的频率之间的相对增益。调整低或低音栅以影响较低频率的增益而不影响角频率以上的增益。高或高音栅仅仅调整较高频率的增益。另一方面,单个均衡滤波器执行第二级滤波器功能。这包括三个调整:中心频率的选择,决定带宽的锐利度的品质因数(Q)的调整,以及决定所选择的中心频率相对于中心频率之上或之下的频率(很多)被增强或消除多少的水平或增益的调整。
图10是图4和图5中示出的系统的组合,其中有用信号x[n]分别通过具有传输特性S5(z)的滤波器20或具有传输特性S6(z)的滤波器21提供给麦克风路径和扬声器路径两者,其中,例如,S(z)=S5(z)·S6(z)。
尽管已经公开了实现本发明的各种实施例,但是对于本领域的技术人员,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化和修改,从而实现本发明的一些优点。对于本领域的技术人员,很明显地可以适当地替换执行相同功能的其他组件。这些对本发明的概念的修改也应包含在所附权利要求的范围内。

Claims (15)

1.一种噪音降低的声音再现系统,包括:
扬声器,与扬声器输入路径连接;
麦克风,通过次级路径被声学耦合到所述扬声器,且与麦克风输出路径连接;
第一减法器,与所述麦克风输出路径的下游和第一有用信号路径连接;
有源噪声降低滤波器,与所述第一减法器的下游连接;
第二减法器,连接在所述有源噪声降低滤波器和所述扬声器输入路径之间,并且与第二有用信号路径连接;其中,
两个有用信号路径均提供有将被再现的有用信号,并且
所述第二有用信号路径包括一个或多个频谱整形滤波器,其中
频谱整形滤波器中的至少一个具有关于所述有用信号在所述麦克风输出路径上线性化麦克风信号的传输特性。
2.根据权利要求1所述的系统,其中所述次级路径具有次级路径传输特性。
3.根据权利要求2所述的系统,其中所述第二有用信号路径包括第二频谱整形滤波器,所述第二频谱整形滤波器具有与反向次级路径传输特性相同的传输特性。
4.根据权利要求2所述的系统,其中所述第一有用信号路径包括第一频谱整形滤波器,其具有与次级路径传输特性相同的传输特性。
5.根据权利要求4所述的系统,其中所述第一频谱整形滤波器包括至少两个子滤波器。
6.根据权利要求3所述的系统,其中所述第一频谱整形滤波器是均衡滤波器或者斜率滤波器。
7.根据权利要求5所述的系统,其中所述第一频谱整形滤波器的子滤波器中的至少一个是均衡滤波器或者斜率滤波器。
8.根据权利要求6或7所述的系统,其中所述均衡滤波器是高音消除均衡滤波器。
9.根据权利要求6或7所述的系统,其中所述斜率滤波器是高音消除斜率滤波器。
10.根据权利要求3所述的系统,其中所述有源噪声降低滤波器、第一频谱整形滤波器和第二频谱整形滤波器中的至少一个是自适应滤波器。
11.一种噪声降低的声音再现方法,其中:
将输入信号提供给扬声器,通过所述扬声器声学传播所述输入信号;
通过麦克风接收通过所述扬声器传播的信号,所述麦克风通过次级路径被声学耦合到所述扬声器,且所述麦克风提供麦克风输出信号;
所述麦克风输出信号减去有用信号以生成滤波器输入信号;
在有源噪声降低滤波器中对所述滤波器输入信号进行滤波以生成误差信号;以及
所述误差信号减去所述有用信号以生成所述扬声器输入信号;并且
在所述误差信号减去所述有用信号之前,通过一个或多个频谱整形滤波器对所述有用信号进行滤波,其中
所述一个或多个频谱整形滤波器中的至少一个具有关于所述有用信号在所述麦克风输出路径上线性化麦克风信号的传输特性。
12.根据权利要求11所述的方法,其中所述次级路径具有次级路径传输特性,并且所有的频谱整形滤波器总起来模拟所述次级路径传输特性。
13.根据权利要求11或12所述的方法,其中在所述误差信号减去所述有用信号之前,使用与反向次级路径传输特性相同的传输特性对所述有用信号进行滤波,所述传输特性通过一个或多个频谱整形滤波器模拟。
14.根据权利要求11或12所述的方法,其中在所述麦克风输出信号减去有用信号之前,使用与所述次级路径传输特性相同的传输特性对所述有用信号进行滤波。
15.根据权利要求13所述的方法,其中所述有用信号的滤波包括均衡和/或斜率滤波。
CN201610404120.7A 2011-07-26 2012-07-26 噪声降低的声音再现 Pending CN106060715A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11175344.8 2011-07-26
EP11175344.8A EP2551845B1 (en) 2011-07-26 2011-07-26 Noise reducing sound reproduction
CN2012102616254A CN102905208A (zh) 2011-07-26 2012-07-26 噪声降低的声音再现

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2012102616254A Division CN102905208A (zh) 2011-07-26 2012-07-26 噪声降低的声音再现

Publications (1)

Publication Number Publication Date
CN106060715A true CN106060715A (zh) 2016-10-26

Family

ID=44763786

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201811432252.6A Active CN109600698B (zh) 2011-07-26 2012-07-26 噪声降低的声音再现系统及方法
CN2012102616254A Pending CN102905208A (zh) 2011-07-26 2012-07-26 噪声降低的声音再现
CN201610404120.7A Pending CN106060715A (zh) 2011-07-26 2012-07-26 噪声降低的声音再现

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201811432252.6A Active CN109600698B (zh) 2011-07-26 2012-07-26 噪声降低的声音再现系统及方法
CN2012102616254A Pending CN102905208A (zh) 2011-07-26 2012-07-26 噪声降低的声音再现

Country Status (4)

Country Link
EP (1) EP2551845B1 (zh)
JP (2) JP2013029834A (zh)
CN (3) CN109600698B (zh)
CA (1) CA2783382C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656436A (zh) * 2017-11-16 2020-09-11 ams有限公司 噪声消除滤波器结构、噪声消除系统及信号处理方法
CN111883097A (zh) * 2020-08-05 2020-11-03 西安艾科特声学科技有限公司 一种基于虚拟传感的列车驾驶室有源噪声控制系统

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075343A2 (en) 2010-12-03 2012-06-07 Cirrus Logic, Inc. Oversight control of an adaptive noise canceler in a personal audio device
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US8948407B2 (en) 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9325821B1 (en) 2011-09-30 2016-04-26 Cirrus Logic, Inc. Sidetone management in an adaptive noise canceling (ANC) system including secondary path modeling
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9319781B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Frequency and direction-dependent ambient sound handling in personal audio devices having adaptive noise cancellation (ANC)
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9369798B1 (en) 2013-03-12 2016-06-14 Cirrus Logic, Inc. Internal dynamic range control in an adaptive noise cancellation (ANC) system
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9324311B1 (en) 2013-03-15 2016-04-26 Cirrus Logic, Inc. Robust adaptive noise canceling (ANC) in a personal audio device
US10206032B2 (en) 2013-04-10 2019-02-12 Cirrus Logic, Inc. Systems and methods for multi-mode adaptive noise cancellation for audio headsets
US9066176B2 (en) 2013-04-15 2015-06-23 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation including dynamic bias of coefficients of an adaptive noise cancellation system
US9462376B2 (en) 2013-04-16 2016-10-04 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9460701B2 (en) 2013-04-17 2016-10-04 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by biasing anti-noise level
US9478210B2 (en) 2013-04-17 2016-10-25 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US9264808B2 (en) 2013-06-14 2016-02-16 Cirrus Logic, Inc. Systems and methods for detection and cancellation of narrow-band noise
US9392364B1 (en) 2013-08-15 2016-07-12 Cirrus Logic, Inc. Virtual microphone for adaptive noise cancellation in personal audio devices
US9666176B2 (en) 2013-09-13 2017-05-30 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by adaptively shaping internal white noise to train a secondary path
US9620101B1 (en) 2013-10-08 2017-04-11 Cirrus Logic, Inc. Systems and methods for maintaining playback fidelity in an audio system with adaptive noise cancellation
CN103686556B (zh) * 2013-11-19 2017-02-08 歌尔股份有限公司 微型扬声器模组和增强其频率响应的方法以及电子设备
US10219071B2 (en) 2013-12-10 2019-02-26 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
US10382864B2 (en) * 2013-12-10 2019-08-13 Cirrus Logic, Inc. Systems and methods for providing adaptive playback equalization in an audio device
US9704472B2 (en) 2013-12-10 2017-07-11 Cirrus Logic, Inc. Systems and methods for sharing secondary path information between audio channels in an adaptive noise cancellation system
US9369557B2 (en) 2014-03-05 2016-06-14 Cirrus Logic, Inc. Frequency-dependent sidetone calibration
US9479860B2 (en) 2014-03-07 2016-10-25 Cirrus Logic, Inc. Systems and methods for enhancing performance of audio transducer based on detection of transducer status
US9319784B2 (en) 2014-04-14 2016-04-19 Cirrus Logic, Inc. Frequency-shaped noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
US10181315B2 (en) 2014-06-13 2019-01-15 Cirrus Logic, Inc. Systems and methods for selectively enabling and disabling adaptation of an adaptive noise cancellation system
US9478212B1 (en) 2014-09-03 2016-10-25 Cirrus Logic, Inc. Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US9552805B2 (en) 2014-12-19 2017-01-24 Cirrus Logic, Inc. Systems and methods for performance and stability control for feedback adaptive noise cancellation
TWI562763B (en) * 2015-07-03 2016-12-21 Hit Inc Portable audiometry device
WO2017029550A1 (en) 2015-08-20 2017-02-23 Cirrus Logic International Semiconductor Ltd Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
US9578415B1 (en) 2015-08-21 2017-02-21 Cirrus Logic, Inc. Hybrid adaptive noise cancellation system with filtered error microphone signal
US10152960B2 (en) * 2015-09-22 2018-12-11 Cirrus Logic, Inc. Systems and methods for distributed adaptive noise cancellation
EP3182406B1 (en) * 2015-12-16 2020-04-01 Harman Becker Automotive Systems GmbH Sound reproduction with active noise control in a helmet
EP3185241B1 (en) * 2015-12-23 2020-02-05 Harman Becker Automotive Systems GmbH Externally coupled loudspeaker system
US10013966B2 (en) 2016-03-15 2018-07-03 Cirrus Logic, Inc. Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
CN108156551A (zh) * 2018-02-09 2018-06-12 会听声学科技(北京)有限公司 主动降噪系统、主动降噪耳机及主动降噪方法
JP7165864B2 (ja) 2018-09-28 2022-11-07 パナソニックIpマネジメント株式会社 機器制御システム、移動体、機器制御方法及びプログラム
CN113409755B (zh) * 2021-07-26 2023-10-31 北京安声浩朗科技有限公司 主动降噪方法、装置及主动降噪耳机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1717120A (zh) * 2004-06-15 2006-01-04 伯斯有限公司 降噪头戴耳机
US20080144853A1 (en) * 2006-12-06 2008-06-19 Sommerfeldt Scott D Secondary Path Modeling for Active Noise Control
CN101304621A (zh) * 2007-04-19 2008-11-12 索尼株式会社 噪声减小装置和音频再生装置
CN101354885A (zh) * 2007-01-16 2009-01-28 哈曼贝克自动系统股份有限公司 主动噪声控制系统
US20100329473A1 (en) * 2009-06-29 2010-12-30 Nokia Corporation Apparatus, method and computer program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274895A (ja) * 1990-03-24 1991-12-05 Calsonic Corp アクティブ・ノイズ・キャンセラー
JP3002049B2 (ja) * 1992-02-06 2000-01-24 松下電器産業株式会社 消音装置
US5481615A (en) * 1993-04-01 1996-01-02 Noise Cancellation Technologies, Inc. Audio reproduction system
US20010036283A1 (en) * 2000-03-07 2001-11-01 Mark Donaldson Active noise reduction system
EP1652297A2 (en) * 2003-07-28 2006-05-03 Koninklijke Philips Electronics N.V. Audio conditioning apparatus, method and computer program product
JPWO2007046435A1 (ja) * 2005-10-21 2009-04-23 パナソニック株式会社 騒音制御装置
JP4967894B2 (ja) * 2007-07-25 2012-07-04 ソニー株式会社 信号処理装置、信号処理方法、プログラム、ノイズキャンセリングシステム
JP5114611B2 (ja) * 2007-09-28 2013-01-09 株式会社DiMAGIC Corporation ノイズ制御システム
US8718289B2 (en) * 2009-01-12 2014-05-06 Harman International Industries, Incorporated System for active noise control with parallel adaptive filter configuration
EP2284831B1 (en) * 2009-07-30 2012-03-21 Nxp B.V. Method and device for active noise reduction using perceptual masking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1717120A (zh) * 2004-06-15 2006-01-04 伯斯有限公司 降噪头戴耳机
US20080144853A1 (en) * 2006-12-06 2008-06-19 Sommerfeldt Scott D Secondary Path Modeling for Active Noise Control
CN101354885A (zh) * 2007-01-16 2009-01-28 哈曼贝克自动系统股份有限公司 主动噪声控制系统
CN101304621A (zh) * 2007-04-19 2008-11-12 索尼株式会社 噪声减小装置和音频再生装置
US20100329473A1 (en) * 2009-06-29 2010-12-30 Nokia Corporation Apparatus, method and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOON S. GAN. ET AL: "An integrated audio and active noise control headsets", 《IEEE TRANSACTIONS ON CONSUMER ELECTRONIC》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656436A (zh) * 2017-11-16 2020-09-11 ams有限公司 噪声消除滤波器结构、噪声消除系统及信号处理方法
CN111656436B (zh) * 2017-11-16 2023-08-04 ams有限公司 噪声消除滤波器结构、噪声消除系统及信号处理方法
CN111883097A (zh) * 2020-08-05 2020-11-03 西安艾科特声学科技有限公司 一种基于虚拟传感的列车驾驶室有源噪声控制系统

Also Published As

Publication number Publication date
CA2783382C (en) 2016-02-23
JP2016218456A (ja) 2016-12-22
CN102905208A (zh) 2013-01-30
EP2551845B1 (en) 2020-04-01
CN109600698B (zh) 2021-07-30
CN109600698A (zh) 2019-04-09
JP2013029834A (ja) 2013-02-07
CA2783382A1 (en) 2013-01-26
EP2551845A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
CN106060715A (zh) 噪声降低的声音再现
US10056066B2 (en) Active noise reduction
US7184556B1 (en) Compensation system and method for sound reproduction
CN106210986B (zh) 主动降噪系统
Klippel The mirror filter-a new basis for reducing nonlinear distortion and equalizing response in woofer systems
EP0694197B1 (en) Improved audio reproduction system
EP2551846B1 (en) Noise reducing sound reproduction
US20060060420A1 (en) Active acoustics performance shell
CN102947685A (zh) 用于减少环境噪声对收听者的影响的方法和装置
CN102447992A (zh) 确定自适应音频处理算法中的参数的方法及音频处理系统
US10235985B2 (en) Externally coupled loudspeaker system for a vehicle
CN102111698A (zh) 处理信号的设备和方法
CN110913305B (zh) 一种车载音响的自适应均衡器补偿方法
WO2016083970A1 (en) Versatile electroacoustic diffuser-absorber
EP1730993A1 (en) Listening device with two or more microphones
US5673326A (en) Audio bass speaker driver circuit
EP0622896A1 (en) Sound system gain and equalization circuit
KR100952400B1 (ko) 원하지 않는 라우드 스피커 신호들을 제거하는 방법
US9491537B2 (en) Noise reducing sound reproduction system
GB2532796A (en) Low frequency active acoustic absorber by acoustic velocity control through porous resistive layers
US20200349916A1 (en) Noise cancellation filter structure, noise cancellation system and signal processing method
Rämö et al. Live sound equalization and attenuation with a headset
KR102424683B1 (ko) 다양한 유형의 강의 및 회의를 위한 통합 음향 제어 시스템
TWI840100B (zh) 主動降雜訊音訊設備、方法和儲存媒體
US20160173986A1 (en) Ultra-low distortion integrated loudspeaker system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026